

This material is based upon work supported by the National Science Foundation under Grant No. 1932418. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Do We Still Need Wi-Fi in the Era of 5G (and 6G)?

Henning Schulzrinne

Columbia University

Classical ecological niches

But now there's 5G – the grand unified network

Generational surprises

Generation	Expectation	Surprise	Cost per GB
0G (landline)	voice	fax & modem	
1G	corporate limousine	eavesdropping	
2G	better voice quality ("digital!")	SMS	\$1000
3G	WAP	web	\$100
4G	IMS	YouTube, WhatsApp, notifications	\$10
5G	IoT (low latency)	?	\$1?
	 underestimated cost and are the even generations 	fixed-equivalence as driv the successful ones?	vers

Classical (5G) requirements pyramid

Everybody needs 5G

... and researchers need another QoS motivator (slices! URLCC!)

FNI 02/2021

What's the economic case for 5G?

Mobile Volume per capita (GB per month)

IoT is not exactly new (1978)

X10 HOME AUTOMATION -	X10 PRO+	HOME SECURITY	CAMERAS	X10 E

ome → X10 Home Automation

K10 Home Automation

IoT – an idea older than the web (1985)

Peter Lewis (panel discussion 1985)

By connecting devices such as traffic signal control boxes, underground gas station tanks and home refrigerators to supervisory control systems, modems, auto-dialers and cellular phones, we can transmit status of these devices to cell sites, then pipe that data through the Internet and address it to people near and far that need that information. I predict that not only humans, but machines and other things will interactively communicate via the Internet. **The Internet of Things, or IoT, is the integration of people, processes and technology with connectable devices and sensors to enable remote monitoring, status, manipulation and evaluation of trends of such devices**. When all these technologies and voluminous amounts of Things are interfaced together -- namely, devices/machines, supervisory controllers, cellular and the Internet, there is nothing we cannot connect to and communicate with. What I am calling the Internet of Things will be far reaching.

2/3/21 Irfan Ali

5G & 4G EPC

Networks 1G through 4Gish

What exactly is a carrier?

2/3/21

Verizon shrinks 5G Home install time to under an hour

Why 5G for non-carrier networks?

- Home networks FWA (instead of cable/DSL)
 - largely downtown urban
- Venue networks (airports, stadiums, convention centers)
 - largely mobile users
 - integrated with MNO or eSIM (longer term)
- Factory networks
 - but complexity of EPC → likely only for large enterprises or maybe cloud 5G SA core?
 - advantage: access to 3.5 GHz "clean" CBRS spectrum (PAL)
 - carriers may want to operate, but in-house or system integrators seem more likely

incentives:

carriers → get back into enterprise Nokia & Ericsson → new markets

CBRS as new spectrum opportunity for LAN model

		3550	3600	3650	3700	MHz
Tier 1	Incumbents		Naval	Radar		Incubents have first right to access the spectrum
			FSS Earth Stations		ns	and are protected from PAL and GAA
				W	SPs 🛛	interference
Tier 2	Priority Access		DAI			Up to 7 licenses avalable per county by auction of
	License (PAL)		PAL			10 MHz channels with priority over GAA
Tier 3	General Authorized	Can utilize any spectrum not in use by		Can utilize any spectrum not in use by		
	Access (GAA)		GAA			Incumbents and PAL

~\$1,600

....

Parallel timelines

But it's looking like a Wi-Fi vs. 4G/5G (+ LoRA?) fight

Similar PHY: OFDM, OFDMA, QAM, MIMO, etc.

Wi-Fi & 5G technology likely similar

Category	Variable	5G	Wi-Fi 6 / Wi-Fi 6E
Technical	Peak data rate	2 Gbps (DL), 1Gbps (UL)	10 Gbps 8x8 (DL), 5 Gbps (UL)
Technical	MU-MIMO	128x128	8x8
Technical	Coverage range	100-300 meters for small cells, up to	<50 meters indoor, up to 300
Technical	Coverage range	tens of km for macro cells	meters outdoor
Technical	Carrier aggregation	Yes	Yes, 40, 80, 160 (or 80+80)
Technical	Inter-cell interference	Controlled	Mainly uncontrolled
Technical	Channel Access Scheme	OFDMA	OFDMA
Spectrum	License type	Mostly licensed	Unlicensed
Spectrum	General bands	Low, mid and high	Low and mid
Spectrum	Specific frequencies	700 MHz, 3.5 GHz, 26 GHz, 60 GHz	2.4 GHz, 5 GHz, 6 GHz
Spectrum	Channel Bandwidth	20, 40, 80, 100 MHz	20, 40, 80, 160 MHz
Business model	Bouonuo model	Pre- or post-pay billing for	None ('Piggybacks' on fixed
and cost	Revenue model	data services	broadband connections)
Business model and cost	User equipment price	High (>=\$300)	Low (>=\$100)
Business model and cost	Public versus private	Traditionally publicly provided by an MNO	Traditionally privately provided
Business model and cost	Chip/modem cost	High (\$10-50)	Low (\$1-5)
Business model and cost	Data cost	Monthly subscription (\$5-20)	Free ('piggybacks' on fixed broadband)
Installation and skills	Deployment approach	Controlled and managed	Uncontrolled and unmanaged
Installation and skills	Installation skill level	High	Low
Installation and skills	Development skill level	High	Low

Spectrum & management > technology

	•		
Licensed (national) spectrum	In-building cellular		Vertical niches (inc. public safety)
Local/shared spectrum	Semi-private enterprise networks/ slices	Hybrid public-private n neutrally hosted 4G &	etworks including 5G as-a-service
		Private	4G / 5G
Unlicensed spectrum	Public Wi-Fi + 5G NR-U	Managed Wi-Fi	Enterprise Wi-Fi
	Public ownership	Hybrid ownership	Private ownership

Revisiting Wireless Internet Connectivity: 5G vs Wi-Fi 6

What kind of communication networks today?

Dominant challenge	Example	solution
Fixed-function peripherals	earphones, mouse, keyboard	Bluetooth
Low monthly bandwidth cost	Residential	Wi-Fi
High bandwidth outdoors	Stadium (spectators, cameras)	5G mmWave
High bandwidth indoors	University lecture hall	Wi-Fi
Outdoor, but regional or urban	Public transit, metering, traffic signage	NB-IoT, LoRAWAN
Outdoor, on major roads	Connected vehicles	DSRC + LTE?
Outdoor (land-based) 100% coverage, small antenna	Agriculture sensors	Iridium NEXT?
Outdoor (including oceans) 100% coverage, antenna size not limited	Agriculture machinery, construction, pipelines, shipping, logistics	LEO satellites?

Network value is (much) more than PHY

Property	Requirements?	Example
Universality	Can I operate my system (almost) anywhere in the world?	Adaptive frequency use by region (device knows location)
Incremental system cost	How much does it cost to add the functionality to the system?	< \$5 for IoT devices
Data cost	Can I build "free" data systems, even if restricted? Can I leverage cheap landline BW?	< \$0.10/GB for in-home use
Network architecture	Can I build my own network?	peer-to-peer → mesh → access point → cellular → long-range
User management	Can I design my own user management?	database + credential device-based model coupled to other systems (e.g., combined with other services)
System management	Can the system largely manage itself?	Frequencies & power, but also users and traffic restrictions

identity management and trust still deficient

2/3/21

DARPA RADICS

GOVERNMENT

Mock grid, real threats: DARPA borrows an island for a cyberattack drill

Scenes from DARPA's electrical-grid cyberattack drill on Plum Island, New York, in November. (DARPA photos)

Example: DARPA PHOENIX nodes

DARPA RADICS: support blackstart for electric utilities

high-bandwidth VHF

- mesh network (OLSR) with multiple VLANs (VoIP, SCADA, ...)
- goal: self-configuring just turn on
- network-technology agnostic (not just 4G)
- local services (VoIP, messaging, edge cloud)
- with diagnostics and traffic isolation

DECT

SDR: P.25 over VHF + Codec2 + data

Example: distributed VoIP implementation

Every node can function by itself Local capability, "global" dial plan

What made Wi-Fi successful?

- Scalable complexity 802.11b/g/n to 802.11ax
- Architectural flexibility
 - peer-to-peer, access point, mesh, long haul Pt2MP & Pt2Pt
 - re-use cheap local wired network and shared (managed & firewalled) access
- Multiple authentication models
 - from open access to federated 802.1x RADIUS
- Minimal viable network functionality
 - Ethernet frames + IP
 - local multicast
- International usability
 - universal "bootstrap" band (2.4 GHz)
 - locally-discoverable spectrum availability

What didn't work so well?

- Authentication has had repeated security problems
- More complex authentication (802.1x) seems rarely used
 - separate L2 confidentiality from access authorization
- Captive portal model cumbersome and doesn't work for IoT devices
- Unlicensed-only model decreases reliability
 - interference & insufficient capacity in dense urban areas
- QoS degradation is still hard to diagnose

Why have Zigbee and Bluetooth remained niche?

- Most home IoT devices are probably Wi-Fi, not Zigbee
- Need for gateway to home network
- Smart home speakers

😵 Bluetooth

- Mostly relegated to headphones, car audio systems, keyboards, mice and fitness watches
 - good functional interoperability
- Never quite got IP or IoT
- Pairing remains awkward and error-prone

5G can, theoretically, replace Wi-Fi

Source: HP Enterprise and Bernstein analysis.

What's bad about having both Wi-Fi and (nG) cellular?

- System hardware complexity (e.g., for IoT devices)
- No seamless roaming
- Maintain multiple user identities
- Difficult to do consistent traffic restriction
 - cellular bypasses corporate firewall
- Inconsistent network behavior
 - e.g., IPv6 support
- More limited competition

Wi-Fi (and BT & LoRa) "won" by integration

Japanese operator NTT Docomo announced it will shut down its NB-IoT network today (31 March), less than a year after launching the service, as it looks to prioritise resources and turn its focus to LTE-M.

Currently, 3G/4G is ~10-15x expensive – why?

Bluetooth, Cellular 4G LTE CAT-M1 (AT&T/Verizon) Transceiver Module \$69

Cellular LTE Transceiver Module 700MHz, 850MHz, 1.7GHz, 1.9GHz \$104

Cellular 3G (AT&T) Transceiver Module 850MHz, 900MHz, 1.8GHz, 1.9GHz, 2.1GHz **\$69**

Current authentication models

×	Wi-Fi settings	SAVE
Netwo	ork name	
Kindı	ness	
Passw	vord	
•••••	•••••	
	Show	8 characters minimum

WPA2-Personal

federated (RADIUS, DIAMETER)

Global WiFi Roaming For Academia an Internet 2-NET+ service

international roaming

From web login to apps

veriz	on					
Main	Wireless Settings	My Network	Firewall Settings	Parental Control	Advanced	System Monitoring
Main Wireless Status			w	ireless Status		
Basic Security Settings		Radio Enabled:		No		
Advanced Security Settings		SSID:		XXP89		
Lecout		Channel:		Automatic		
Logout		Security Enabled:		Yes		
		WEP 64-bit:		N/A		
		WEP 802.1x:		N/A		
		WPA2:		LL77WHRL67VSF	5DQ	
		SSID Broadcast:		N/A		
		MAC Authentication:		Disabled		
		Wireless Mode:		Compatibility Mo	de(802.11b/g/n)	

Kindness is online

13 devices connected

Anybody use WPS?

1. Look on your modem or router to see if it has a WPS button:

2. Go into the Network menu of your Internet capable device to see if the WPS option is availa

[:]ollow these steps to set up a WPS (Push Button) connection:

- 1. Using the supplied remote, press the HOME button.
- 2. Select Settings.
- 3. Select Network.
- 4. Select Network Set up or Setup Network Connections.
- 5. Select Wireless, Wireless LAN or Wi-Fi.
- 6. Select WPS (Push Button).
- 7. Select Start so that the TV searches for the WPS connection.

Searching for wireless network...

Please press the WPS button on your wireless router now. If you do not press it within 2 minutes, the search will be cancelled.

New (additional) authentication model

- Old model assumed human-atmachine (laptop, printer, ...)
- Or opaque 802.1x certificate model
- Add hardware admission model
 - "Should I admit the Smart Teapot blinking red and blue?"
 - "Here's a list of device manifests add them to the network"
 - "Admit the device I just touched"
 - "Admit the blinking device I'm pointing the camera at"
 - "Admit the device playing a melody"

Next-generation networks (6G!)

6G vision – multiply or divide by 10

Latency

Jitter

nk Budget KPIs

(Global) Extended Range/ Coverage (Incl. Satellite) KPIs

KPIS

AND

IECHNOLOGY

RODUCTIVITY DRIVEN

3D-mapping Fidelity KPIs

Existing Tuned 5G KPIs (Incl. Mobile Broadband)

Position Accuracy and Update Rate

Cost KPIs

Energy KPIs

Stacks always focus on data – complexity is in control

..

Two evolutionary paths for 6G

like 4G & 5G, just more highest mobility

FNI 02/2021

Protocols matter, but programmability matters more

- Nobody wants to program raw protocols
- Most significant network application creation advances:
 - 1983: socket API \rightarrow abstract data stream or datagram
 - 1998: Java network API \rightarrow mostly names, HTTP, threads
 - 1998: PHP \rightarrow network input as script variables
 - 2005: Ruby on Rails \rightarrow simplify common patterns
- Many fine protocols and frameworks failed the programmer hate test
 - e.g., JAIN for VoIP, SOAP for RPC
- Most IoT programmers and factory automation specialists will not be computer scientists (and won't have a telecom background)
- Nobody learns ONAP in their CS BS

Requirements for simple networks

- Separate link layer from network architecture
 - Why can't 5G (or 6G) NR operate on a home router, without a carrier?
 - Assume flexible spectrum access (geo database)
- Every interface must be testable and self-testing
- Interface neutrality = every control needs to be accessible to network consumer, not just operator (bounded by slice or authorization)
- Clean interfaces particularly at layer 2 and 3
- No configuration files, ever
- No hard-coded addresses (e.g., gateways), ever

Conclusion

- 6G needs an architecture re-think, not (only) better PHY
- Cleaner separation between media/complexity-dependent layers, common data transport and control planes
- Design scalable, IP-based control plane for everything from peer-topeer mode to managed national cellular network
- Cleanly separate access from backbone
 - since likely continue to be both locally (enterprise) and third-party managed
- Opportunity to bridge the Wi-Fi cellular chasm