
The Dagstuhl Beginners Guide to Reproducibility for
Experimental Networking Research

Vaibhav Bajpai
TU Munich

Anna Brunstrom
Karlstad University

Anja Feldmann
Max Planck Institute for

Informatics

Wolfgang Kellerer
TU Munich

Aiko Pras
University of Twente

Henning Schulzrinne
Columbia University

Georgios Smaragdakis
TU Berlin

Matthias Wählisch
FU Berlin

Klaus Wehrle
RWTH Aachen University

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Reproducibility is one of the key characteristics of good
science, but hard to achieve for experimental disciplines like
Internet measurements and network systems. This guide
provides advice to researchers, particularly those new to the
field, on designing experiments so that their work is more
likely to be reproducible and to serve as a foundation for
follow-on work by others.

CCS CONCEPTS
• General and reference → Surveys and overviews;

KEYWORDS
Experimental networking research; Internet measurements;
Reproducibility; Guidance

1 INTRODUCTION
Good scientific practice makes it easy for researchers other
than the authors to reproduce, evaluate and build on the
work. Achieving these goals, however, is often challenging
and requires planning and care. We attempt to provide guide-
lines for researchers early in their career and students work-
ing in the field of experimental networking research, and as
a reminder for others. We begin by summarizing the termi-
nology (§ 1.1) that will be used throughout this article. We
then elaborate the goals and principles (§ 1.2), describe best
practices required for reproducibility in general (§ 2) and for
specific research methodologies (§ 3), provide tool recom-
mendations (§ 4) and point to additional resources (§ 5).

1.1 ACM Terminology
The terms repeatability, replicability and reproducibility are
often used interchangeably and may not necessarily be used

Table 1: Repeatability, replicability, and reproducibil-
ity as defined by ACM [1].

Level of change
Term Team Setup
Repeatability same same
Replicability different same
Reproducibility different different

consistently within or across technical communities. Since
the Association for Computing Machinery (ACM) [1] pub-
lishes a significant fraction of papers in networked systems
and Internet measurements, we draw on their definitions
and summarize them in Table 1.

Repeatability is achieved when a researcher can obtain
the same results for her own experiment under exactly the
same conditions, i.e., she can reliably repeat her own experi-
ment (“Same team, same experimental setup”).

Replicability allows a different researcher to obtain the
same results for an experiment under exactly the same con-
ditions and using exactly the same artifacts, i.e., another
independent researcher can reliably repeat an experiment of
someone other than herself (“Different team, same experi-
mental setup”).

Reproducibility enables researcher other than the au-
thors to obtain the same results for an experiment under
different conditions and using her self-developed artifacts
(“Different team, different experimental setup”).

1.2 Goals and Principles
One of the fundamental hallmarks of science is that research
results produced by one team can be replicated or reproduced

1



(§ 1.1) by another team. Ideally, the second team should
only need their general knowledge of the discipline and
the details provided in the published paper, complemented
by auxiliary materials such as software documentation or
technical reports in some cases.

However, repeatability, replicability, and reproducibility is
about more than just following the scientific method and be-
ing a “good research citizen”. By carefully documenting your
work flow and following best practices, other team members
in your research group can continue earlier work and build
on it. Often, you yourself will need to revisit earlier work,
e.g., when compiling your research for your dissertation or a
journal paper, recreating results or updating them to reflect
new related work or changes in the environment. Nobody
likes spending time on reverse-engineering your own code
written a year ago or code written by somebody else, figuring
out why software packages do not compile or wondering
whether you can trust the experimental data you gather. Be-
sides facilitating progress in science, following best practices
will also make mistakes less likely or at least easier to find.

The practices described below work best if followed early
on, not just as the final step when completing a project.

2 GENERAL BEST PRACTICES
Long before you write a paper, the following best practices
help to ensure that your research succeeds and that you can
trust your results.

2.1 Problem Formulation and Design
Hypothesize: “Think first, run later”: Formulate and

document your hypothesis, design the experiments to
validate (or not) the hypothesis, conduct the necessary
experiments, and finally check the hypothesis. Indeed,
often the outcome of an experiment should lead you to
revisit the hypothesis. But sometimes, if an experiment
does not give you the predicted results or gives you
results that seem a little too good to be true, this may
be due to a mistake in the analysis chain. Therefore,
each step needs to be validated and cross-checked. As
such it is good practice to double check results with
others who may be able to spot problems, e.g., your
advisor, someone from the organization responsible
for the infrastructure on which the data was gathered,
or the author of a software component you used. If you
work in a small team, it is a good idea to plan the work
so that different persons work on different results so
that each one can cross check the work of the others.

Plan and solicit early feedback: Plan and prototype
how you want to present your results as early as pos-
sible. Visualizations are necessary to explain your re-
sults, but they also help you spot anomalies. You should

be able to explain notches, spikes or gaps in your graph
by something beyond randomness. Follow guidelines
for exploring the parameter space, e.g., an ANOVA [18]
experimental design. Get feedback early and often: be-
fore you start your project, after your initial experi-
mental design, after your first small-scale results and
after your first large-scale results.

Iterate: You will likely end up having to redo steps as
you modify the system under test or improve your
measurements and data analysis scripts. Record steps
and automate them, e.g., in scripts or Makefiles, so
that you are less likely to forget to set a command
line parameter, for example. How often do you need to
repeat your measurements to eliminate transient fac-
tors and gain confidence? Especially when measuring
operational systems such as data centers or the Inter-
net, one-time measurements are prone to be biased by
transient effects, temporary congestion or just the par-
ticular time of day. Those factors should be accounted
for when actually planning the measurement.

Factor dynamism: Generally expect that operational
systems you are measuring against are not static dur-
ing your measurements. There is evidence that well-
known Internet services change constantly and that
there are ongoing experiments run by service providers
that may interfere with your own measurements.

2.2 Documentation
Record the experiment: Documenting all steps and ob-

servations is critical. Scientists in the natural sciences
keep lab notebooks for a reason — follow their ex-
ample. The lab notebook can be an electronic shared
document, recording each step and each resulting ob-
servation. Record mistakes, too, so that others do not
have to repeat them. If the lab notebook is electronic,
recording script executions can be a first step to au-
tomating the workflow. It is often tempting to skip
documenting code until later, when there is suppos-
edly more time, but that time never seems to occur.
Research artifacts often live longer than you anticipate
and may be shared with other members of the research
team. Thus, code as if you are your colleague who has
to pick up your project.

Treat metadata as data: Any data file or database needs
to be accompanied by meta data to help you and others
understand how the data was created, what it contains,
where to find its documentation, and how to recreate it.
Meta data can be conveyed via file naming, contained
in header sections in the data, or stored separately
in a data log that references file names and, to avoid

2



accidental file name reuse, file hashes. Consider au-
tomating the generation of the “mechanical” meta data
in the scripts or tools you write, preferably in some
machine-readable format such as JSON or XML.

Use a version-control system: Using a version control
system for code, documentation, paper text, as well
as experimental results is essential. This will help you
determine if a change in measured results might be
due to an innocent-looking code change and which
experiments you might need to run again. Whenever
possible, you create a release of your own software that
you used to create the publishable results. Note that
including the raw experimental data may or may not
be feasible due to size, privacy, or other constraints.

Keep regular backups: Keep backups. There is noth-
ing more upsetting than losing the original data of a
paper that you are about to publish or that already
got published. This also avoids digging into the file
systems of graduate students who have long left the
university and hoping that their account has not been
deleted. Indeed, the data management plans for most
organizations and research grants require that scien-
tific artifacts are not only documented but also pre-
served for multiple years (e.g., five to ten years). Most
research institutions offer resources to store data safely
and with flexible access control policies.

2.3 Experimentation and Data Collection
Validate and scale: Start small and then expand. Run

small sample sets, where you can readily predict the re-
sults, to understand and verify your tools, approaches
and analysis setup. These can then later be used as
test cases and sanity checks to ensure that the analysis
pipeline is still working even if one of the components
gets updated. Use a tool chain to first validate previ-
ously published results to ensure that there are no fun-
damental flaws in the analysis or your understanding
of the problem. A welcome side effect is that this often
leads to insights which lead to new research results.

Do not reinvent the wheel: Before initiating a major
software development project check if there is a tool
that solves your problem. Creating your own tool may
bring you to face issues that others have already solved.
More than that, creating your own tool also likely com-
mits you to maintaining it. Think about convenient
ways of decomposing your problem to follow the Unix
philosophy of building simple, modular, and exten-
sible code that can be easily maintained, tested and
re-purposed.

Monitor your experiment: Make sure tomonitor your
toolchain, preferably by automated checking tools.

Common problems include running out of disk space
and, therefore, creating zero-length files; reboot of a
machine without restarting the tools or causing log
files to be overwritten; wrong permissions, e.g., when
access tokens time out; network failures and, there-
fore, missing results from a remote machine or API
and finally, resource leaks, such as too many open files,
that prevent or distort data gathering.

2.4 Handling Data
Data privacy and anonymization: Most datasets have

privacy constraints that you need to respect. You should
never try to de-anonymize data, as that is unethical and
will likely discourage others from making data avail-
able. Before making data available to others, consider
whether it raises any privacy concerns and whether
these concerns can be alleviated by anonymization. If
in doubt, always consult other members of your re-
search team, more senior researchers and your local
ethics panel or institutional review board (IRB). Data
that may seem unlinkable by itself can now often be
de-anonymized by drawing on external data sources.

Data integrity: Check for the integrity of your data and
account for observation biases. Did you consider syn-
chronization between system elements, randomization,
the effects of caching? When evaluating the perfor-
mance of a system, will likely use cases depend on
the average, best or worst-case performance or some
“likely” worst-case performance?

Licensing and giving credit: Consider early how code
you use or write will be licensed. Can you share copy-
righted code that you purchased or have access to
through your institution with your team or the public?
Does everyone on your team agree with how you in-
tend to license code youwrote? (For instance, your role
in the institution may determine whether your code is
for-hire work or your own.) Does the code license re-
quire you to make modifications publicly available? Do
code or data use Creative Commons [10] licenses that
mandate giving credit to sources? Does your research
institution or the organization providing research sup-
port have guidelines you need to be aware of? For
example, some research funding agencies strongly en-
courage giving credit to their funding, using template
text. Consider that often the most restrictive software
license for a system determines whether others can
use it. But even restrictive code licenses do not prevent
sharing of output data or results.

3



3 WHAT SHOULD BE DOCUMENTED?
Each paper or thesis should document key experimental
conditions, possibly in an appendix or separate technical
report for lengthy descriptions of details. Many of these ex-
perimental conditions that are needed to make your work
reproducible are similar for all basic types of experimental
networking research, often used in combination: simulation
(§ 3.1), prototyping (§ 3.2), network measurements (§ 3.3)
and human factors experiments (§ 3.4). We describe consid-
erations for each methodology in turn below.

3.1 Simulations
Simulation is a well-known method to understand and vali-
date a proposed concept, protocol or a system. When sim-
ulating a system under test (SuT), a model of this SuT is
used and its behavior under varying input and configura-
tions analyzed. Your analysis depends completely on the
chosen model and will only reflect the characteristics of the
model. Therefore, choose your model with care – whether
you create it yourself or use the model somebody else cre-
ated. Furthermore, consider the granularity at which you
plan to simulate, such as traffic flows, individual packets or
the physical channel model.
In order for someone to repeat your simulation results,

your simulation code and input data should be well packaged
and documented such that someone can easily re-run your
simulation, e.g., by just executing a Makefile or script. In
order to be able to reproduce or replicate your results, other
researchers should also understand why you chose the par-
ticular simulation parameters.

Software setup: Describe the simulation software, in-
cluding the version and required run-time environ-
ment. Which additional tools such as traffic generators,
topology models, analysis tools are required? Which
versions were used? Does your simulation require any
specific run-time or execution environment, such as
many cores or massive amounts of RAM, that may
exceed what is commonly available?

Data input and configuration: Describe the network
or system topology including transmission rate, bit
error rates and propagation delays. What traffic traces
or models did you use? What were the parameters of
the models, including units? (Be particularly careful
with easily confused units, such as kb/s (kilobits [1000
bits] per second) vs. KB/s (Kilobytes (1024 bytes) per
second).) If you are including a model of the physical
channel, such as a wireless link, what parameters did
you choose and are they meant to represent a particu-
lar real-world environment? If aspects of your traffic
or system parameters are chosen randomly, describe
which and how you generated the random variables. If

random number generator seeds matter, provide them.
Any simulator configuration file that can be shared?

Limitations: Is your simulation limited in some impor-
tant way, e.g., in terms of scale or the execution time
needed? How does your simulation abstract and sim-
plify the system you are modeling?

Experiments: How often did you repeat the experiment
and how did you choose the repeat count? How did you
initialize the system, e.g., were caches cleared before
each run? How did you space your parameters? Did
they cover the desired design space for your system?

Analysis: In general, data is sacrosanct and all raw data
should be archived. How did you prepare the data?
Did you remove any outliers or obvious measurement
errors? Did outages or errors leave gaps in your data
gathering? How are you accounting for start-up and
transient effects? Were there any anomalies? How are
you showing the strength of your evidence, e.g., by
confidence intervals, variance, ANOVA, goodness-of-
fit testing? How did you choose the parameters for
statistical tests? Did you change your measurement
approach to, for example, meet a p-value or confidence
interval threshold? If you are testing a hypothesis, how
strong is the evidence that the results are not due to
random chance?

Presentation: Did you include all units for all axes in a
clear and unambiguous way? Captions for plots should
explain the setting and contain all major parameters so
that the caption and figure can stand alone. Consider
data formats that allow including the plot points or
complement plots with tables showing raw data in an
appendix or an extended technical report.

Data access: If your simulation depends on input data
other than parameterized random variables, such as
traces or topologies, these should be included with
the simulation code or stored in a publicly accessible
repository – see § 3.2.

3.2 Systems Prototyping and Evaluations
To evaluate a new protocol, service or algorithm you can
build a prototype and then measure its scalability, perfor-
mance or efficiency, typically in a controlled environment
such as a testbed.

Software setup: Describe the operating system, any non-
standard libraries, including version information, and
the hardware environment, including network inter-
faces, memory size and graphics cards. For libraries,
note if these are not readily available, e.g., due to li-
censing restrictions. If you used an emulator (e.g., for
network links), describe the configuration in detail.

4



Data input and setup: What data sources drove the in-
put for your system? What were sources of random-
ness?

Limitations: Are you aware of any limitations in your
system that may have influenced the measurements,
such as performance limitations of the hardware, other
experiments sharing the same infrastructure, caches or
timing resolution and clock synchronization between
systems?

Experiments: Howoften did you repeat the experiment?
What was the set of parameters you used? (As above,
be careful to use unambiguous units and explain if
necessary.)

Analysis and presentation: See § 3.1.
Data access: Are any of the traces or raw data avail-

able to others? Did you document the log or trace file
format? Is it unambiguous which data trace or log
correspond to which experiment or measurement? Is
the data public or restricted, for instance under non-
disclosure agreement (NDA)? Do you anticipate that
the data will only be available for a limited time, e.g.,
because it is a rolling data collection? Consider getting
a Digital Object Identifier (DOI) for your data set to
make it easy to reference.

3.3 Real-world Measurements
Measurements help understand how real systems function.
For example, research might measure the current state of
deployment of a protocol or feature in the Internet, the char-
acteristics of Internet usage or the behavior of congestion
control, security and routing protocols. Measurements can
also complement simulations by observing how well a pro-
posed system or protocol functions in the Internet or a real
campus or data center network. Measurements can be intra-
and inter-domain, measuring the whole Internet, one ormore
Internet service providers, or a single data-center. Unlike for
the previous case, you typically have very limited control
over your measurement environment.

Setup: Where were your measurement vantage points?
For Internet measurement points, what kind of net-
works were they located in? Do you know the ser-
vice provider, organization, access technology or ge-
ographic location? How did you choose them? For
many measurements, the number and location of the
measurement vantage (observation) points determines
whether the results you obtain are only narrowly or
more broadly applicable.
What software did you use to collect the data, e.g.,
IPFIX [9], Netflow, traceroute, your own mobile ap-
plication? Did you rely on a public measurement in-
frastructure, e.g., RIPE Atlas [16]; Planetlab [8]; etc.

Describe the software version and execution environ-
ment, such as the operating system and any relevant
libraries. What hardware (vendor, model, version or
model year) did you use, including any special network
interfaces, dedicated flow exporters or special-purpose
switches? Do your measurements rely on precise time
and how did you ensure clock synchronization both
between measurement points and to absolute time?
When running active measurements, characterize your
traffic sources. For passive measurements, describe
whether you collected all traffic or sampled traffic.

Data collection: Do themeasurements represent a snap-
shot in time or a longitudinal observation? Justify your
sampling period (e.g., subset of packets versus compre-
hensive packet capture), the frequency of data collec-
tion (e.g., hourly, daily, randomly), and the number of
times the data collection has been repeated.
Time and date may influence your results. When was
the measurement collected? Be sure to clearly state the
timezone. While UTC is generally preferred, in cases
where your measurements depend on human diurnal
cycles, it may be helpful to capture the local time.
Document all external data sources, such as routing
tables, that you collected or that are provided by third
parties. If the additional data sources do not describe
the same time interval or locations as your collected
data, mention this and justify why you consider the
data to be applicable. Furthermore, when you measure
in an open system, such as the Internet, which is sub-
ject to uncontrolled changes, you need to collect all
relevant data about the system itself during the mea-
surements. This requires much more planning of the
measurements compared to a controlled lab testbed
setup where the system aspects are mostly static and
can likely be inspected after the measurements have
finished. For example, if you work with the Alexa 1M
most-popular web site lists, it should be clear which
version of the list you actually used. But even then
there is a dynamic mapping of names to addresses us-
ing the DNS — it may matter where, when and how
you resolve the names to addresses. If you use a dis-
tributed set of vantage points, you will sooner or later
need to understand the topology as seen from the per-
spective of the vantage points. Hence, it is best to col-
lect traceroute data (and if relevant name resolution
data) with your measurements as this will be crucial
later on to interpret your data set.
Any missing data needs to be mentioned, particularly
data gaps in the collection of measurements caused by
operational outages or system maintenance.

5



Limitations: Are there limitations that may affect the
validity or accuracy of your measurement data or may
bias your results?

Analysis and presentation: See § 3.1.
Data access: See § 3.2.
Ethics considerations: Do your measurements impli-

cate potential ethical concerns, in particular those that
anybody reproducing your work may need to be aware
of? For example, you should document any constraints
imposed by institutional review boards or ethics com-
mittees. This will also help reviewers judge whether
you are complying with general community guide-
lines [3, 11], or those of conferences such as ACM
Internet Measurement Conference (IMC).

3.4 Human Subject and Subjective
Experiments

In subjective experiments, participants evaluate the usability
or quality of experience (QoE) of a service, functionality, or
software. Often, you are testing a hypothesis (“my system
works better than the old system”, “Variable X improves task
performance”), which should be formulated ahead of time.

Setup: Who were the experimental subjects, e.g., by age
brackets, gender, education and computing skills? Had
the subjects taken part in similar experiments before?
How did you solicit volunteers? If applicable, note the
tracking number for your IRB (Institutional Review
Board) or ethics committee approval.

Experiments: Describe how the experiment was con-
ducted. Were the subjects provided with instructions
or just handed your artifact? Were they asked to com-
plete specific tasks? Did the subjects communicate
with each other or perform tasks independently?

Limitations: How did your experiment deviate from
“real life”, e.g., in duration or nature of the task?

Analysis and presentation: See § 3.1.
Ethics considerations: Human subject experimentswill

likely require approval by an institutional review board
(IRB) or ethics panel. You should document key consid-
erations for protecting human subjects that anybody
replicating your study should be aware of and make
your IRB filing available to others. (Following the same
process during a replication does not relieve the repli-
cator from the duty of seeking approval from an IRB or
ethics panel, nor does it guarantee that such approval
will be granted.)

4 TOOL RECOMMENDATIONS
Try to use common tools that are widely and readily available.
Only develop your own tools if there are no reasonable alter-
natives. Writing good tools almost always takes longer than

you were initially planning for and you will have to main-
tain those tools for both yourself, other team members and
other researchers trying to reproduce your results. We have
found the following tools useful in experimental network-
ing research: Document your work in shared lab notebooks
using Jupyter. Package your software as containers, using
Docker and Kubernetes, or virtual machines (using Vagrant)
to avoid dependency hell and ease execution in different en-
vironments. Use version control (with Git and its ecosystem
such as Github and Gitlab) for software and scripts, including
scripts for plotting (e.g., based on Python matplotlib, R or
gnuplot). You may also want to create software releases by
using Git tags.

Many research institutions offer centralized resources for
storing experimental data for the long term. Do not store
any valuable experimental data on personal devices, laptops
or computing devices used for experiments. An experiment
may accidentally trash a disk or brick the machine. Your lab
will eventually retire old computers and you do not want to
have to guess which of the terabytes of data are still valuable.

5 ADDITIONAL RESOURCES
The proceedings of the ACM SIGCOMM 2003 Workshop on
Models, Methods and Tools for Reproducible Network [6]
and the ACM SIGCOMM 2017 Workshop on Reproducibil-
ity [5] summarize past discussions on this topic. The Stanford
University Reproducibility course [19] is a good example of
how students can take published research and attempt to
reproduce and document the findings. A list of accepted
papers in SIGCOMM-sponsored conferences that released
artifacts were recently (2017) surveyed and a compiled list
has been made available [12]. The recently established SIG-
COMMArtifacts Evaluation Committee carried this initiative
forward and applied badges to accepted papers in SIGCOMM-
sponsored events in 2018. For instance, CoNEXT 2018 has
published the badges of these accepted papers both in the con-
ference proceedings and on the conference web page. Such
lists of papers with released artifacts and badged papers can
be a good starting to point for students to get started with
reproducing published research. Papers by Allman [2] and
Reuter et al. [13] discuss the dynamism and heterogeneous
nature of the Internet. Other interesting papers highlight pit-
falls with IP-address-based geolocation [17], the popularity
of webpages [15], and traceroute [4] that our community
has learned from over the past years of empirical research.
Other scientific communities are engaging in extensive ef-
forts to improve replicability and reproducibility [7, 14].

Acknowledgments
The ideas in this paper were developed at the Dagstuhl Sem-
inar #18412 on “Encouraging Reproducibility in Scientific

6



Research of the Internet” that took place in October 2018. Jür-
gen Schönwälder and Olivier Bonaventure provided valuable
input to this manuscript.

REFERENCES
[1] ACM. 2018. Artifact Review and Badging. https://www.acm.org/

publications/policies/artifact-review-badging. (2018). Reviewed April
2018; accessed November 11, 2018.

[2] Mark Allman. 2013. On Changing the Culture of Empirical Internet
Assessment. ACM SIGCOMM Computer Communication Review (CCR)
43, 3 (July 2013), 78–83. https://doi.org/10.1145/2500098.2500110.

[3] Mark Allman and Vern Paxson. 2007. Issues and Etiquette Concern-
ing Use of Shared Measurement Data. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement. ACM, San Diego, Cali-
fornia, USA, 135–140. https://doi.org/10.1145/1298306.1298327

[4] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,
Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata
Teixeira. 2006. Avoiding traceroute Anomalies with Paris tracer-
oute. In Proceedings of the 6th ACM SIGCOMM Conference on In-
ternet Measurement. ACM, Rio de Janeriro, Brazil, 153–158. https:
//doi.org/10.1145/1177080.1177100

[5] Olivier Bonaventure, Luigi Iannone, and Damien Saucez (Eds.). 2017.
Reproducibility ’17: Proceedings of the Reproducibility Workshop. ACM.
https://doi.org/10.1145/3097766.

[6] Georg Carle, Hartmut Ritter, and Klaus Wehrle (Eds.). 2003. MoMeTools
’03: Proceedings of the ACM SIGCOMMWorkshop on Models, Methods
and Tools for Reproducible Network Research. ACM, New York, NY, USA.
https://doi.org/10.1145/944773.

[7] Center for Open Science. 2018. Open Science Framework: A scholarly
commons to connect the entire research cycle. https://osf.io/. (2018).
accessed November 11, 2018.

[8] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Pe-
terson, Mike Wawrzoniak, and Mic Bowman. 2003. PlanetLab: An
Overlay Testbed for Broad-coverage Services. ACM SIGCOMM Com-
puter Communication Review (CCR) 33, 3 (July 2003), 3–12. https:
//doi.org/10.1145/956993.956995

[9] Benoit Claise, Brian Trammell, and Paul Aitken. 2013. Specification of
the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow
Information. RFC RFC 7011. RFC Editor, Fremont, CA, USA.

[10] Creative Commons Corporation. 2018. Creative Commons. https:
//creativecommons.org/. (2018). accessed December 31, 2018.

[11] David Dittrich and Erin Kenneally. 2012. The Menlo Report: Ethical Prin-
ciples Guiding Information and Communication Technology Research.
Technical Report. Department of Homeland Security. https://www.
caida.org/publications/papers/2012/menlo_report_actual_formatted/

[12] Matthias Flittner, Mohamed Naoufal Mahfoudi, Damien Saucez,
MatthiasWählisch, Luigi Iannone, Vaibhav Bajpai, and Alex Afanasyev.
2018. A Survey on Artifacts from CoNEXT, ICN, IMC, and SIGCOMM
Conferences in 2017. ACM Computer Communication Review (CCR) 48,
1 (2018), 75–80. https://doi.org/10.1145/3211852.3211864

[13] Andreas Reuter, Randy Bush, Italo Cunha, Ethan Katz-Bassett,
Thomas C. Schmidt, and Matthias Wählisch. 2018. Towards a Rig-
orous Methodology for Measuring Adoption of RPKI Route Validation
and Filtering. ACM SIGCOMM Computer Communication Review 48, 1
(2018), 19–27. https://doi.org/10.1145/3211852.3211856

[14] rOpenSci. 2018. Transforming science through open data and software.
https://ropensci.org/. (2018). accessed November 11, 2018.

[15] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten
Zimmermann, StephenD. Strowes, andNarseo Vallina-Rodriguez. 2018.
A LongWay to the Top: Significance, Structure, and Stability of Internet
Top Lists. In Proceedings of the Internet Measurement Conference 2018.
ACM, Boston, Massachusetts, USA, 478–493. https://doi.org/10.1145/
3278532.3278574

[16] Vaibhav Bajpai and Jürgen Schönwälder. 2015. A Survey on Internet
Performance Measurement Platforms and Related Standardization
Efforts. IEEE Communications Surveys and Tutorials 17, 3 (2015), 1313–
1341. https://doi.org/10.1109/COMST.2015.2418435

[17] Zachary Weinberg, Shinyoung Cho, Nicolas Christin, Vyas Sekar, and
Phillipa Gill. 2018. How to Catch when Proxies Lie: Verifying the
Physical Locations of Network Proxies with Active Geolocation. In
Proceedings of the Internet Measurement Conference 2018. ACM, Boston,
Massachusetts, USA, 203–217. http://doi.acm.org/10.1145/3278532.
3278551

[18] Wikipedia contributors. 2018. ANOVA:Analysis of Variance. https://en.
wikipedia.org/wiki/Analysis_of_variance. (2018). accessed November
30, 2018.

[19] Lisa Yan and Nick McKeown. 2017. Learning Networking by Reproduc-
ing Research Results. ACM SIGCOMM Computer Communication Re-
view (CCR) 47, 2 (2017), 19–26. https://doi.org/10.1145/3089262.3089266

7

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/2500098.2500110
https://doi.org/10.1145/1298306.1298327
https://doi.org/10.1145/1177080.1177100
https://doi.org/10.1145/1177080.1177100
https://doi.org/10.1145/3097766
https://doi.org/10.1145/944773
https://osf.io/
https://doi.org/10.1145/956993.956995
https://doi.org/10.1145/956993.956995
https://creativecommons.org/
https://creativecommons.org/
https://www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
https://www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
https://doi.org/10.1145/3211852.3211864
https://doi.org/10.1145/3211852.3211856
https://ropensci.org/
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.1109/COMST.2015.2418435
http://doi.acm.org/10.1145/3278532.3278551
http://doi.acm.org/10.1145/3278532.3278551
https://en.wikipedia.org/wiki/Analysis_of_variance
https://en.wikipedia.org/wiki/Analysis_of_variance
https://doi.org/10.1145/3089262.3089266

	Abstract
	1 Introduction
	1.1 ACM Terminology
	1.2 Goals and Principles

	2 General Best Practices
	2.1 Problem Formulation and Design
	2.2 Documentation
	2.3 Experimentation and Data Collection
	2.4 Handling Data

	3 What Should Be Documented?
	3.1 Simulations
	3.2 Systems Prototyping and Evaluations
	3.3 Real-world Measurements
	3.4 Human Subject and Subjective Experiments

	4 Tool Recommendations
	5 Additional Resources
	References

