
Block chains: miracle cure or snake
oil?

Henning Schulzrinne (Columbia University)
February 2019

Federal Reserve New York

1

2

”ML is programmed in
Python, AI in
PowerPoint.”
Blockchain in exclamation
marks!

3

Google searches: blockchain

Dec. 2017: $17,132

4

Bitcoin (1 year)

store of value?
unit of account?

5

Bitcoin is the new gold – is it?

6

High on blockchain

7

Recording research precedence

8

Telecom

9

An early analog blockchain

Nottingham, 1790

10

Key idea: linkage

11

What does a database do?

INSERT INTO ledger (customer, amount)
VALUES (1234, $543)

SELECT sum(amount) FROM ledger
WHERE customer = 1234 • trusted, reliable data store

• may be operated by third party (AWS, Azure, GC, …)
• transaction may be signed by originator
• content may be encrypted

12

Modern datastore architecture (simplified)

disk
(permanency)

back
up

log (DB or files)

transaction
(all or nothing)

validationauthorization

SELECT person, amount FROM payment JOIN person USING (person) WHERE …

stored
procedure

13

Centralized à distributed

The Internet Protocol Journal
3

Figure 1: Centralized and Distributed Ledgers

System with Read/Write Access Access ControllerMiner

A

A

Centralized Distributed

R/W

M

R/W

R/W

R/W

R/W

R/W

R/W

M

M
M

M

M

M

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Network

Second, a consensus mechanism is used in which computers on the
network check each other to ensure records are consistent. In block-
chain, this latter mechanism is implemented by systems called miners.
Their job it is to determine that each new addition to the ledger is
valid and consistent with previous entries. When the miners achieve
consensus on a new entry, it is permanently added to the ledger.

Consider the use of a distributed ledger to record financial transac-
tions or some other type of transaction that involves the exchange of
value. Each transaction is a signed message that creates new outputs
(transfer of value to another) while consuming old inputs (transfer of
value from the transaction maker). For financial applications, each
transaction is the digital equivalent of a paper check, and represents
a promise by the payer to transfer control of a given amount of value
to another party. The same funds or other value can be sent to only
one party. An attempt at double spending, by creating two transac-
tions that consume the same inputs, is prevented by the use of digital
signatures and the trust mechanisms of the distributed ledger.

Concept: non-repudiation
• “A statement's author cannot successfully dispute its authorship or the validity of

an associated contract (or signature).”
• Traditional grounds (McCullagh):

• The signature is a forgery;
• The signature is not a forgery, but was obtained via:

• Unconscionable conduct by a party to a transaction;
• Fraud instigated by a third party;
• Undue influence exerted by a third party.

• Crypto:
• A service that provides proof of the integrity and origin of data, both in an unforgeable

relationship, which can be verified by any third party at any time; or,
• In authentication, an authentication that with high assurance can be asserted to be

genuine, and that can not subsequently be refuted.
• Typically, uses public-private key pair for validation and signing.
• Refutation: author has to make plausible case that somebody stole their key.

14

15

BAR actors: Byzantine, altruistic, rational

Byzantine: may deviate from protocol for any reason
• technical failure
• deliberate harm
• gratuitous maliciousness

Rational: self interested
• maximize short-term or long-term benefit
• including any penalties or rewards

Altruistic: follow protocol exactly
• extrinsic or intrinsic motivation

general

general general

attack! retreat!

attack!

What is a blockchain?

• Distributed ledger
• Indelible, append-only log of transactions between parties
• Which transactions happened?
• "Alice transferred 10 coins to Bob”

• Order of transactions
• "Alice transferred 10 coins to Bob, and then Bob transferred title to his car to Alice”

• Public (mostly) & accessible to all parties
• Tamper-proof: no party can add, delete, or modify ledger entries once they

have been recorded
è Ledgers must be immune to attack, ensuring the ledger remains secure
even if some parties misbehave, whether accidentally or maliciously.

16

M. Herlihy, CACM 2/2019

block chain
(distributed ledger)

17

Public blockchain architecture

block chain
(distributed ledger)

Bitcoin Ethereum
(digital contracts)

currencies (ERC-20)
swaps

….

ILP

distributed ledger
+ consensus
+ currency

18

What kind of ledger?

19

Block chaining

The Internet Protocol Journal
5

Each block in the blockchain represents, in effect, the claim by some-
one on the network that the transactions contained inside the block
are the first ones to spend the inputs involved, and therefore any
transaction in the future that attempts to spend the same inputs
should be rejected as invalid.

The term “blockchain” is used interchangeably to describe both the
blockchain network (network of nodes) and the distributed ledger
(chain of blocks). It offers a way for users who may not know or trust
each other to create a record of who transacts what that will compel
the assent of everyone concerned.

The blockchain ledger is not housed on a single privileged server.
Rather, it is a shared data structure in which every node (user) on the
network has the same copy of all other nodes (subject to propagation
time delays) and can read any transaction in the ledger.

Blockchain Structure
A blockchain is a linear sequence of blocks used to store transactions.
Each block contains one or more related transactions, and the blocks
are ordered in increasing time sequence. Thus, each block represents
a set of events that have occurred over a given time frame that is
subsequent to the preceding block in the chain and prior to the fol-
lowing block in the chain. Users with application access to the chain
can read any transaction in the sequence and can add a new block at
the end of the sequence.

As shown in Figure 2, each block has a unique predecessor and
successor. A block is added only at the newer, or higher end of the
chain. As will be shown, there may temporarily be a branching struc-
ture as the chain grows. An essential element of blockchain is that
each block is linked to its preceding block using a cryptographic
algorithm. The scheme is designed such that it is computationally
feasible to add a new block to the end of the chain but computa-
tionally infeasible to replace a block interior to the chain or to insert
a new block between two existing blocks in the chain. After a block
is added to the chain, it is read-only. Figure 3 shows the blockchain
operation in general terms.

Figure 2: Block Chaining Concepts

Increasing height

0 1 2 3 4 5

A Block Directly Links
Only to the One Before It

Adjacent Blocks Are
Cryptographically

Connected

A Block Can Only
Be Added at the

Higher End

Stallings, 2017

Concept: identifier

• Bitcoin addresses are tokens
• May (should) use unique address for each transaction
• Examples
• P2PKH: 1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2
• Bech32: bc1qar0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq

20

21

Adding transactions

Stallings, 2017

The Internet Protocol Journal
6

Figure 3: Basic Blockchain Logic

Each Miner Collects
Broadcasted Transactions
and Creates a List of Them

Periodically, a Miner
Creates a Block

Containing Its Current
List and a Header

The Miner “Solves” the
Block and Appends It

to the Blockchain

Each User Can Access
the Blockchain as a
Distributed Ledger

User Performs a
Transaction and Creates

a Transaction Record

User Broadcasts
Transaction to the

Network

User Secures Transaction
Using Public-Key

Cryptography

The exact structure of a block may vary from one application to
another. Table 1 shows the typical block format. Each block begins
with a “magic number” that uniquely identifies this chain. For
Bitcoin, the magic number is 0xD9B4BEF9. This number is followed
by a blocksize field that specifies the total number of bytes in the
remainder of the block. Next comes the header, consisting of multiple
fields. Finally, the block contains a transaction counter (≥1) followed
by one or more transactions. The internal format of each transaction
is application-dependent.

The header begins with a Version Number, to allow for future alter-
ations to the block format. The blockchain application should be
backward compatible so that older format versions can be processed.
The foundation of the security of blockchain is found in the sec-
ond field, which in effect provides a Backward Link to the preceding
block. This backward link consists of the hash of all of the headers
of the preceding block (Figure 4). By using a cryptographically strong
hash function, such as SHA-256, this scheme secures the block-
chain against an adversary’s altering a block or inserting a block.

Blockchain continued

22

What’s in a block?

The Internet Protocol Journal
7

In either case, the adversary would have to create a block with a
header whose hash value equals a given value, and this creation is
computationally infeasible for SHA-256.

Table 1: Contents of a Block

Item Description

Magic Number A unique identifier for the blockchain; remains constant
for all subsequent blocks

Blocksize Number of bytes following up to end of block

Version Number Block format version

Link to Previous Block Hash of preceding block header

Transaction Hash
The root node of a Merkle Tree, a descendant of all the
hashed pairs in the tree. The root node is a 256-bit hash
based on all of the transactions in the block.

Timestamp When block was created

Mining Difficulty

A relative measure of how difficult it is to find a new
block. The difficulty is adjusted periodically as a function
of how much hashing power has been deployed by the
network of miners.

Nonce Used to calculate proof-of-work

Transaction Counter Number of transactions in this block

Transactions The (nonempty) list of transactions

Figure 4: Linkage Between Blocks

H
ea

de
r

•
•
•

Transaction

Transaction

H = SHA-256 Hash M = Merkle Tree Hash

Magic Number

Block i

Blocksize

Version Number

Backward Link

Transaction Hash

Timestamp

Mining Difficulty

Nonce

Transaction Count

•
•
•

Transaction

Transaction

Magic Number

Block i + 1

Blocksize

Version Number

Backward Link

Transaction Hash

Timestamp

Mining Difficulty

Nonce

Transaction Count

H

M

Consensus algorithms
• Goal: make it difficult for (cheating) participants to collude – 51% problem

• may also provide incentive to participate in validation – e.g., 12.5 BTC reward
• Idea: make it expensive to cheat

• preferably more than you can gain
• Encourage distribution of block approver à decentralization

• assumes implicitly linear cost à no or limited efficiencies of scale or scope
• only needed if identities are easily forged and no external recourse (e.g., criminal

prosecution)
• Variations, among many:

• Proof of Work (PoW): solve “hard” problem that requires computation à hardware +
energy cost
• reward given to first miner who solves cryptopuzzle
• scale: mining farms (human labor, ASICs)
• scope: own or access to cheap electricity or specialized circuits (ASICs)

• Proof of Stake (PoS): validator chosen based on wealth

23

24

PoW ingredient: hash

Hash (SHA-256 for Bitcoin
ethash for Ethereum)

hash('sha256', 'The quick brown fox jumped over the lazy dog.');
68b1282b91de2c054c36629cb8dd447f12f096d3e3c587978dc2248444633483

• Transforms any text or bit string into 32-byte (256 bit) number.
• 256 bit = 1.15 1077 = ~0.1% of number of atoms in visible universe.
• Need exhaustive search to construct string that creates same hash.
• Difficulty can be calibrated (number of matching digits).

25

Mine bitcoins at home!

Shark Mini, $2,590

26

This is not investment advice

27

Bitmain Ordos facility, Inner Mongolia

28

Bitcoin mining pool distribution

29

Bitcoin transactions

medium of exchange?

Smart contracts

• Most financial service applications will need more than key-value storage

• Most blockchains (BTC, ETH) include a programming language
• functions get executed on ”commit” by nodes

• Example asset transfer (Alice wants to trade share coupons for bitcoins):
• hashlock h prevents an asset from being transferred until the contract receives a matching secret s,

where h = H(s)
• Alice creates a secret s, h = H(s), and publishes a contract on the coupon blockchain with

hashlock h and timelock 48 hours in the future, ensuring the contract will transfer the coupons to
Bob if Bob can produce s within 48 hours. If he cannot, the coupons will be refunded to Alice.

• When Bob confirms that Alice's contract has been published on the coupon blockchain, he publishes
a contract on the Bitcoin blockchain with the same hashlock h but with timelock 24 hours in the
future, ensuring the contract will transfer the bitcoins to Alice if Alice can produce s within 24 hours.
If she cannot, the bitcoins will be refunded to Bob.

• When Alice confirms that Bob's contract has been published on the Bitcoin blockchain, she sends the
secret s to Bob's contract, taking possession of the bitcoins, and revealing s to Bob.

• Bob sends s to Alice's contract, acquiring the coupons and completing the swap.

30

M. Herlihy, CACM 2/2019

AWS RDS server (m4.2xlarge)
• 2,100 SQL transactions/second

• $3,521/year

• Intel Xeon E5-2676 v3: 120 W

Bitcoin
• 3-7 transactions/second

• $6,800 ‘all-in’ cost per BTC

• 12.5 BTC per block reward

• 10 minutes per block

•è 657k blocks/year à $4.46B

• 3.4 GW

31

AWS SQL server vs. bitcoin

32

Miracle cure (or at least good fit)
(all private)
• Distributed, semi-trusting users

• Limited ability to fund and

administer common

infrastructure

• Supply chain records

• Notary (time-stamped) services

• non-repudiability (but limited

time resolution)

Not FDA approved
(mostly public)
• Bitcoin, most digital currencies

• ICOs

• Consumer payments

• High-volume & low latency

transactions (< minutes)

• Complex business logic

33

Miracle cure vs. snake oil – public & private

blockchain

The blockchain conundrum
• Public blockchains don’t work all that well in practice
• high cost
• high risk
• low performance
• difficult governance (forks, ossification)
• hard to balance privacy vs. prevention of illegal uses

• Private blockchains work
• can avoid expensive consensus algorithms (no 51% problem)
• can share computational resources (instead of paying a fee)
• but if you have a trusted entity running the blockchain, why not run a database +

cryptographically signed records?

34

What makes systems hard in practice?

• Adversarial environment
• attacker almost always has the advantage

• has to find one flaw, you have to find all of them
• particularly, if one cannot back out mistakes

• Near-100% uptime
• Unknown scaling
• Versioning and backward compatibility
• no clear ability to upgrade
• unknown dependencies
• unclear governance (who gets to decide)

35

Leslie Lamport (1987): A distributed
system is one in which the failure of
a computer you didn’t even know
existed can render your own
computer unusable.

36

Cryptography is (relatively) easy, security is hard

Bitcoin, Ethereum

programming language
(e.g., EVM + Solidity)

smart contracts oracle

phishing
cyber attack
fraud

exchange

Same as all software systems
• Specification flaws

• protocol timing, bid down, man-in-
the-middle, …

• Implementation flaws
• in underlying system software
• in application software
• in configuration

• Credential theft or exposure
• Insider attacks

• and other non-technical issues

Specific to public blockchains
• Little legal recourse
• International
• No “backup”
• No “undo” (fund reversal)
• No intermediary (e.g., credit

card charge-back)
• May not be able to recover

credentials

37

Security problems

Limitations of computer science
• We do not know how to prove (most) specifications correct
• People routinely find problems in security protocols years later

• Programming languages themselves are often buggy
• Distributed systems are much harder than centralized systems
• “concurrency” – things can happen in various orderings
• many more failure possibilities à impossibility results

• We depend on assumptions on the underlying system that may not be true
• see Spectre & Meltdown

• Maintaining and configuring software is not well understood
• dependencies

• Cryptographic key management is logistically hard

38

39

Random examples

40

Unalterable is maybe not that great an idea

My tentative questions & recommendations
• Can a simpler (less general) system do the same thing?

• E.g., a digital notary service
• What other systems are connected to the blockchain and what effects can they

have?
• Eco system, not blockchain (e.g., exchanges, wallets, mining pools, …)

• Governance and sustainability is more important than technical details
• Who gets to do overrides when things go wrong?
• Who decides and how when there are conflicts between stake holders?

• Speed kills – slow down execution and allow reversals
• see Bangladesh Bank cyber heist

• What are the emergency brakes?
• see autonomous cars (remote control) – autonomous driving is easy; it’s the lack of

braking that causes accidents
• What are the data privacy and accountability trade-offs?

41

42

JPMorgan report 2019

Conclusion
• Blockchain offers a variation of an old computing abstraction (database)
• Important to distinguish public vs. private blockchains
• Useful general-purpose service for mid-to-low trust interaction
• Distributed, decentralized, limited trust à at cost of energy, privacy
• But many of the permissioned blockchain problems can be solved with less

effort and complexity
• Does not ensure truth, but may ensure non-repudiation
• But may offer convenient standard and infrastructure (”BaaS”)

• May assume more maturity of computer science than realistic
• More potential security issues, not fewer

43

Useful not-too-technical tutorials and opinions

• NIST, ”Blockchain Technology Overview”, NISTIR 8202, Oct. 2018
https://doi.org/10.6028/NIST.IR.8202

• W. Stallings, “A Blockchain Tutorial”, Cisco Internet Protocol Journal, Nov.
2017.
• Maurice Herlihy, “Blockchains From a Distributed Computing Perspective,”

Communications of the ACM (CACM), Feb. 2019.
• Bruce Schneier, “There’s no good reason to trust blockchain technology,”

Wired, Feb. 6, 2019.

44

45

46

DHS model

47

48

Predecessor: peer-to-peer systems

key – value mapping
(“noSQL”)
distributed storage
but: no inherent protection against

49

Bruce Schneier on private blockchains

Private blockchains are completely uninteresting. (By this, I
mean systems that use the blockchain data structure but don’t
have the above three elements.) In general, they have some
external limitation on who can interact with the blockchain and
its features. These are not anything new; they’re distributed
append-only data structures with a list of individuals authorized
to add to it. Consensus protocols have been studied in
distributed systems for more than 60 years. Append-only data
structures have been similarly well covered. They’re
blockchains in name only, and—as far as I can tell—the only
reason to operate one is to ride on the blockchain hype.

Wired, 2019

Trust models
• Liars and Outliers (Schneier, 2012):
• morals
• reputation
• institutions à ”laws formalize reputation” + sanctions + incentives (credit score)
• security systems (locks, fences, alarm systems, audit systems, …)

• Blockchain and the New Architecture of Trust (Werbach, 2018):
• peer-to-peer trust
• leviathan trust (institutional)

• contracts
• intermediary trust

• credit cards, escrow, …
• distributed trust

• blockchain (maybe also online review systems)

50

Practical CS: The power of a few service
abstractions

• Key-value store à noSQL, file system, AWS S3

• Database à linked tables with predicates

• Process à protection domain à containers (Docker, Kubernetes)

• Virtual machine

• Queue à AWS SQS, work queues

• Messaging à email, SMS, EDI

• Query-Response (API) à HTTP

• Serialization: data structures à portable objects (ASN.1, XML, JSON, …)

• Pattern matching

• Public key systems

51

