
THE INTERNET OF THINGS: GETTING 
TO SELF-MANAGED NETWORKS

Henning Schulzrinne
(+ Jan Janak, Kyung-Hwa Kim, Andy Xu & other CUCS IRT 
contributors)
NetSys 2017, Göttingen

NetSys 2017 1

The views and opinions expressed in this presentation are those of the author and do not 
necessarily reflect the official  policy or position of any agency of the U.S. government. Any 
resemblance to actual policies, living or dead, or actual events is purely coincidental.

This material is based upon work supported by the National Science Foundation under Grant No. (CNS-1218977). Any opinions, findings, 
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the 
National Science Foundation.



Natural evolution

NetSys 2017 2



IoT is not exactly new (1978)

NetSys 2017 3



IoT – an idea older than the web (1985)

NetSys 2017 4

© Chetan Sharma Consulting, 2016.  1 

CORRECTING THE IOT HISTORY 
CHETAN SHARMA 

 

In the last 5 years, IoT has entered the industry consciousness. There are varying forecasts 
calling for tremendous growth and revenue generation opportunities. We have argued IoT as 
part of the Connected Intelligence Evolution and have published a couple of papers on this topic 
of ongoing research. Last year, we delved into the history of IoT. Before it was fashionable to say 
IoT, it was M2M, and before that Telemetry and Telemetric systems.  

During our research last year, we came across something that our industry and the media got 
wrong – the origination of the term “Internet of Things” or “IoT.” The current thinking is that 
the term first originated at the Auto-ID center at MIT around 1999.  

IoT didn’t really enter the conversation until ITU’s IoT report in 2005. It took another 5-6 year 
before the 50B forecasts started appearing for connected devices and of course the lion-share of 
the growth was attributed to IoT. Regardless of the forecasts, IoT is a thriving ecosystem and the 
future of opportunities and its relevance in transforming industries has never been more 
important. 

  

Peter Lewis with Harry Brock, President, Metrocall in 1982 (Black Enterprise, 
June 1983)  (Left). Peter Lewis in 2015 (Right) 

That’s why it is important to get the historical context right. To the extent we could find, the 
term “Internet of Things” was first conceptualized, coined, and published in Sept 
1985 by Peter T. Lewis in a speech to the Congressional Black Caucus Foundation 15th Annual 
Legislative Weekend in Washington, D.C. There was no widespread availability of Internet in 
those days so the Internet didn’t archive it some place and Peter Lewis was busy with his new 

© Chetan Sharma Consulting, 2016.  2 

startup endeavors and we lost track of an important speech that brought together the vision of 
IoT together. Only a few close friends and colleagues knew about the speech.  

The full speech is published with permission in this note and as you will see, his vision was spot 
on – 30 years ago. Peter was uniquely positioned to understand the confluence of machines, 
wireless, Internet, applications because he had been exposed to them from different angles by 
then.  

By connecting devices such as traffic signal control boxes, underground gas 
station tanks and home refrigerators to supervisory control systems, 
modems, auto-dialers and cellular phones, we can transmit status of these 
devices to cell sites, then pipe that data through the Internet and address it 
to people near and far that need that information.  I predict that not only 
humans, but machines and other things will interactively communicate via 
the Internet.  The Internet of Things, or IoT, is the integration of people, 
processes and technology with connectable devices and sensors to 
enable remote monitoring, status, manipulation and evaluation of 
trends of such devices.  When all these technologies and voluminous 
amounts of Things are interfaced together -- namely, devices/machines, 
supervisory controllers, cellular and the Internet, there is nothing we 
cannot connect to and communicate with.  What I am calling the Internet 
of Things will be far reaching. 

Peter started his career as a young commander and nuclear officer-in-charge in the US Army 
and served in the US and abroad in charge of critical communications and as a nuclear officer, in 
charge of running NATO’s first strike force during the cold war. In fact, here is a fascinating 
trivia for the history buffs – Peter was called by the Secret Service to retrofit President Regan’s 
Limo (it was a 1972 Lincoln Presidential parade car) with phone service in the Motorola shop in 
Prince Georges County in 1984. 

Peter Lewis (panel discussion 1985)

From Chetan Sharma Consulting 2016



NetSys 2017 5



Kids, don’t do this at home

NetSys 2017 6



NetSys 2017 7

https://twitter.com/internetofshit



Towel dispensers

NetSys 2017 8



The IoT killer app

NetSys 2017 9

http://www.traptec.eu/



link.nyc & smart trash cans

NetSys 2017 10

GPRS or CDMA
GPS location service



But controlling light switches is still not the 
best use

NetSys 2017 11

Want to turn on the bedroom light? Sure, just 
pick up your smartphone, enter the unlock 
code, hit your home screen, find the Hue app, 
and flick the virtual switch. Suddenly, the smart 
home has turned a one-push task into a five-
click endeavor, leaving Philips in the amusing 
position of launching a new product, Tap, to 
effectively replicate the wall switches we 
always had.
https://techcrunch.com/2014/12/04/the-problem-with-the-internet-of-things/

http://www2.meethue.com/en-us/the-range/hue-tap/


Where does IoT make sense? 
• Probably

• home security
• residential & commercial 

locks
• home medical 

(recording)
• housekeeping (restroom 

supplies)
• outdoor lighting
• parking meters
• vending machines

• Not so much
• light switches
• most household 

appliances
• clothing
• smoke detectors?

NetSys 2017 12

not cost-effective, not just useless



Two kinds of IoT devices

< $20

• BlueTooth, ZigBee, 
proprietary L2

• connected only via 
gateway

• fixed-function: sense or 
activate

• single chip transceiver + 
MPU

• only use L2 security
• similar to peripherals

> $50

• Wi-Fi, LTE-M, LoRa, 
SIGFOX

• direct connection to 
Internet possible

• SOC + network module
• run (small) Linux stack
• programmable
• TLS and kin easy

NetSys 2017 13



Sensor networks may be (tiny) niche

NetSys 2017 14

http://eschatologist.net/blog/?p=266

• Most IoT systems will be near power since they’ll interact with energy-based 
systems (lights, motors, vehicles)

• Most IoT systems will not be running TinyOS (or similar)
• Protocol processing overhead is unlikely to matter
• Low message volume à cryptography overhead is unlikely to matter

• exceptions: light switches and similar 1-function I/O devices à BT/Zigbee
fixed-function devices

$35.00

• A 900MHz quad-core ARM 
Cortex-A7
• 1 GB RAM

16-41x



SCALING IOT UP

NetSys 2017 15



Scaling IoT up

NetSys 2017 16

one 
device

apartment 
building
(102 – 104)

city+
(106 – 108)



One Thing, one app

NetSys 2017 17

Awair Honeywell Logitech SATIS

Ring

Nest

Nespresso

D-link
August

WeMo



Does not scale well to real-world sizes

NetSys 2017 18

Le Lignon, Switzerland (0.7 mi long): 2,780 apartments

Camden NoMa (DC): 405 apartments



IoT = Internet at scale
• Security at scale

• still largely “add password to configuration file”
• identify by IP address

• Management at scale
• device-focused
• SNMP, at best
• CLI, at worst
• no performance diagnostics capabilities (“why 

is this so slow?”
• Naming at scale

• identify by node name
• Programming at scale

NetSys 2017 19

system
& rack

data center



Managing networks at scale

• Change Wi-Fi WPA password à re-do initialization for 

dozens of devices

• Change LTE-M service provider à swap thousands of 

SIMs?

• Who should have access to the device?

• co-resident family members

• children of elderly parents

• emergency service providers

• landlords (e.g., for air quality monitors)

• Which device was just compromised and is attacking web 

services?

NetSys 2017 20



IoT lifecycle vision

NetSys 2017 21

Enroll Discover Program Observe Diagnose Remediate



SECURITY

NetSys 2017 22



NIST cybersecurity framework

NetSys 2017 23

February 12, 2014 Cybersecurity Framework Version 1.0 

 19  

Table 1: Function and Category Unique Identifiers 
Function 
Unique 

Identifier 
Function 

Category 
Unique 

Identifier 
Category 

ID Identify 

ID.AM Asset Management 

ID.BE Business Environment 

ID.GV Governance 

ID.RA Risk Assessment 

ID.RM Risk Management Strategy 

PR Protect 

PR.AC Access Control 

PR.AT Awareness and Training 

PR.DS Data Security 

PR.IP Information Protection Processes and Procedures 

PR.MA Maintenance 

PR.PT Protective Technology 

DE Detect 
DE.AE Anomalies and Events 

DE.CM Security Continuous Monitoring 

DE.DP Detection Processes 

RS Respond 

RS.RP Response Planning 

RS.CO Communications 

RS.AN Analysis 

RS.MI Mitigation 

RS.IM Improvements 

RC Recover 
RC.RP Recovery Planning 

RC.IM Improvements 

RC.CO Communications www.nist.gov/cyberframework



IoT security confluence

NetSys 2017 24

IoT
insecurity

supply 
chain

long-lived 
device

one-time 
purchase

mostly 
hardware 
expertise

millions 
of them no 

liability

assembly 
of 

software

no UI

no 
BCP38



NetSys 2017 25



DDOS via IoT
• Krebs DDOS, 9/2016: 620 Gb/s, total of > 1.5 Tb/s
• GRE, SYN, HTTP GET, POST
• MiraiNet: “380k bots from telnet alone”
• Enabled by UPnP à bypass NATs

NetSys 2017 26

xc3511 vizxv
admin 888888 
xmhdipc
default 
123456 54321 
support



Mirai botnet
• Chinese manufacturer, used by lots of OEMs
• BusyBox Linux
• Brute-force ssh and telnet
• Web reset doesn’t change ssh or telnet 

NetSys 2017 27



Linux kernel lines of code

NetSys 2017 28

BusyBox:
177,650 SLOC



You cannot hide

NetSys 2017 29

Hackers worldwide currently probe IoT

devices for vulnerabilities after they have 

been connected to the internet for six 

minutes. Each hour these devices are tested 

for vulnerabilities - at least 800 times per 

hour - with an average of 400 login attempts 

occurring daily. On average, hackers try to 

access one IoT device every five minutes and 

a total of 66 per cent of their attempts end 

up being successful.

http://www.itproportal.com/news/the-average-iot-device-is-

compromised-after-being-online-for-6-minutes/



IoT DDOS economics
• DDOS as externality

• device owners don’t care:
• barely slows down their Internet service
• device still functions normally
• don’t know victims, generally

• vendors don’t care (enough)
• not liable for damage (right now) – public nuisance?
• only marginally affects their business reputation

• ISP don’t care (much)
• individually, not much load – in lightly-loaded direction (outbound)
• hard to combat
• haven’t adopted BCP38 (egress address filtering)

NetSys 2017 30

Schneier
Oct. 2016

Cohan
Apr. 2013



IoT lemons
• “The Market for Lemons: Quality 

Uncertainty and the Market 
Mechanism” (Akerlof, 1970)

• Information asymmetry
• purchaser cannot judge invisible qualities
• pays only average price
• à above-average-quality goods not 

marketed
• “defect four or more times and the 

problem is still occurring, the car may 
be deemed to be a lemon” à get 
purchase price back
• more than four patches?

NetSys 2017 31



Fixes for externalities and lemons
• Liability

• slow, one-by-one, uncertain standards of care
• what is “negligent”?

• Certification
• voluntary or mandatory

• Insurance liability
• homeowner’s insurance

• Regulation
• adherence to minimum performance 

standards

NetSys 2017 32



This is not that hard!
• No factory-default passwords

• long-term, no human-setable passwords at 
all à client certs

• No telnet, ssh, SNMP (typically)
• Only configure from local subset
• Automated, signed updates
• Web interfaces use non-root accounts
• Automated testing for XSS and SQL 

injection

NetSys 2017 33



ENROLL

NetSys 2017 34



Challenge: enrollment
• Commercial buildings à enroll 1,000s 

of devices at once
• Home à enroll one device at a time

• current model: one app per device (class)
• re-do if Wi-Fi password changes
• common options:

• QR code
• P2P Wi-Fi (Wi-Fi Direct)

• possibilities
• “hi, I’m a Philips light bulb – add me!” (PKI)

NetSys 2017 35



How should we secure things?

NetSys 2017 36

Old model

New model

commissioner

device authorization

database

DIAMETER

create entries

“I want 
to 

join!”

802.1x

WPA2
(P, E)



Our Device Enrollment Protocol

NetSys 2017 37

WiFi
Direct beacon

SRV: _enroll._udp.example.com

TLS: {Philips, example.com}

• Port number: 1201

• TTL: 86400

• Type: SRV

• Target: doorlock.example.com.

The commissioner starts discovering devices pro-
viding the commissioning service as soon as a Wi-
Fi P2P group is formed (even before any device is
joined). When the commissioner discovers a new de-
vice providing the commissioning service, the com-
missioner notifies the user that it is ready to authen-
ticate that device. Once the authentication process
is initiated by the user, the commissioner sends a
message to the selected device, telling it to initiate
a TLS connection to the commissioner. The En-
rollment Daemon on the selected IoT device then
presents its certificates to the commissioner via TLS
and the commissioner inspects the certificates to au-
thenticate it.

Details on how Zeroconf is implemented is dis-
cussed in Section 5.2.

4.3 Public-key Authentication Module
When the enrollment daemon on an IoT device re-
ceives an authentication request message, it starts
the authentication process by initiating a TLS ses-
sion to the commissioner. The authentication pro-
cess is a two-way handshake, in which the commis-
sioner first presents its server certificates to the IoT
device, which then presents its client certificates for
the commissioner to verify. Only after the commis-
sioner verifies both the identity of the IoT device and
the validity of the client certificates can the credential
transfer process be initiated. See Figure 2.

A detailed implementation of public-key authenti-
cation using Oracle’s JavaX SSL/TLS library is ex-
plained Section 5.3.

4.4 TLS Credential Transfer Module
We use the session generated by the TLS handshake
to securely transfer the credentials from the com-
missioner to the Enrollment Daemon [6]. Essen-
tially the Android Commissioner functions as a TLS

Figure 2: This figure shows the Public-Key authen-
tication flowchart. The module runs in a finite state
machine (FSM) and the flowchart can be seen as its
state transition diagram. Blocks highlighted in yel-
low are part of standard TLS handshake procedures,
whereas other are part of DEP specified procedures.

server and IoT devices (the Enrollment Daemon) act
as clients.

The commissioner uses a simple format for the
credential file based on the configuration file format
of wpa supplicant, a network authentication appli-
cation for UNIX-like operating systems. The com-
missioner first sends a 4-byte integer header encoded
in little-endian format indicating the size of the pay-
load, and then followed by the payload in JSON.

Figure 3: Configuration file format used in DEP.
In the left diagram, the first block indicates the file
size of the payload and the second block contains the
JSON credential file (the payload). A sample JSON
credential file is shown on the right.

5

Mfr: Philips
Mdl: Hue
SN: 12345

Admit 
Philips 
He?

Join WPA
network

WiFi Direct + ZeroConf + TLS

Join P2P
network



AllJoyn is doing something similar

NetSys 2017 38



AllJoyn

NetSys 2017 39



DISCOVER &
PROGRAM

NetSys 2017 40



NetSys 2017 41

“Remember when, on the Internet, nobody knew who you were?”



Don’t depend on one cloud

NetSys 2017 42



Discover & program
• Model: local computation (“fog”, “edge computing”) + 

cloud
• è if owned by user, ensures (some) privacy
• è basic functionality independent of network connectivity
• home router or building infrastructure

• Local gateway needs to discover new devices
• template-based programming
• “for thermostat in room X, set valve in room X”
• “for PIR sensor in room Y, turn on light in room Y”

NetSys 2017 43



Local processing for efficiency privacy

NetSys 2017 44

indoor
thermometer

publicly 
visible 
script

cloud 
storage 

and 
access

fuzz
anonymize

average
rate limit

node

observable storage

fog computing model



Protocols matter, but programmability 
matters more
• Nobody wants to program raw protocols
• Most significant network application creation advances:

• 1983: socket API à abstract data stream or datagram
• 1998: Java network API à mostly names, HTTP, threads
• 1998: PHP à network input as script variables
• 2005: Ruby on Rails à simplify common patterns

• Many fine protocols and frameworks failed the 
programmer hate test
• e.g., JAIN for VoIP, SOAP for RPC

• Most IoT programmers will not be computer scientists

NetSys 2017 45



What is the best generic (simple) 
architecture?

NetSys 2017 46

SQL (via HTTP RESTful API)

Streaming (JSON web stream … RTP)

cloud, fog, …

user-delivered code

event notification

mediate access

SENML?



Challenge: integrate embedded, mobile & 
virtual

NetSys 2017 47

magnetometer
accelerometer

location
gyroscope



Multi-network IoT, with differential visibility

NetSys 2017 48

public sensors & 
actuators

semi-private

private



Some of IoT is streaming

NetSys 2017 49

update rate of 10 to 250 Hz



SECE (Sense Everything, Control 
Everything)

NetSys 2017 50

monitor real & simulate devices



We could do better
• Somewhat unsatisfactory

• AllJoyn model only for LAN operations
• CoAP & HTTP better for get/set operations
• MQTT simpler for publish/subscribe
• SIP (or RTSP) better for media streaming

• Lots of proprietary network protocols
• BAC for building automation

• Same device or source, multiple identifiers
• HTTP URL or SIP URL or MQTT IP address/domain name
• none are particularly useful or semantically meaningful

• e.g., likely change if device is replaced

NetSys 2017 51



The age of application-specific {sensors, 
spectrum, OS, protocol …} is over
• Computing system: dedicated function à

OS
• à abstract into generic components
• e.g., USB human interface device (HID)
• e.g., HTTP + JSON for web interfaces

• What are the equivalent sensor and 
actuator classes?
• see SenML

• Networks: generic app protocols
• request/response à HTTP
• event notification à SMTP, SIP, XMPP?

NetSys 2017 52



Open issues
• Naming

• network-independent è logical addressing
• what stays constant when {location, manufacturer, network} change?
• do we need dynamic group addresses?

• Access control
• who can do what?
• same device may have public (read), semi-private (set within range) 

and private (set across range) access
• who protects the devices?
• how do we reason about who can do what?

• Simulation to deployment
• how can we test very large systems without building them?
• how can we test impact of faults and failures?
• mixed programming models: graphical, Python or Lua, IFFFT-style

NetSys 2017 53



DIAGNOSE & REMEDIATE

NetSys 2017 54



WiSlow
(“Why is my 

Wi-Fi Slow?”) 

DYSWIS and WiSlow

DYSWIS
(“Do you see 

what I 
see?”)

IoT
Diagnosti
c Platform

DYSWIS Framework

Rule 
SystemCrowdsourcingPeer 

Network

Fault
Filtering Remote Probing

802.11
Packet 

Analyzer

Non-WiFi 
Interference

Detector

55



DYSWIS Framework
• Collaboration of peers

• Peer-to-peer network
• Request probes
• More clues when probe results from various 

environments are obtained
• Overcome limitations of single-user investigation
• Identify via Facebook friends

• Automatic detection 
• Filtering mechanism

• Distinguishes meaningful failures
• Crowdsourced rules 

• Small and independent 
• Cooperate to build probe modules and diagnostic 

rules.
• Distributed probes

• Parallel and systemic approach

56

AS 14AS 5000

AS 1781

History
lookup

Remote
 Probe

Request

Diagnosis Rules & 
Probe Modules 

Repository

Network Experts

 upload 

downloadAdmins or 
Vendors

upload

Overlay Network
(DHT)

Crowdsourcing of 
modules and rules

Rules

Modules
Rules

Modules

Figure 1: DYSWIS Architecture

appropriate nodes effectively.
From Section II to Section IV, we present the architecture

and mechanisms of DYSWIS. In Section V, we evaluate our
approach, and in Section VI, we discuss several security
issues.

II. OVERVIEW

DYSWIS is designed to be a framework that supports
diagnostic software running on end users’ machines, such as
desktops and laptop computers. We present how DYSWIS
supports end users and how its crowdsourcing approach
enables end users, developers, and network administrators
to contribute new rules and diagnostic modules to expand
DYSWIS functionality.

A. Peer network
The key feature of DYSWIS is the collaboration of end

users. Therefore, a node first needs to discover other users
who are willing to assist in the problem diagnosis. A
centralized server can be used to maintain a list of available
peers, and an alternative method is to build a distributed
overlay network (e.g., DHT) composed of end users, which
is more scalable and tolerant to the single-point-of-failure
problem [1]. Our current implementation adopts the latter
approach.

Since we are focusing more on partial network faults, we
assume that a node can connect to the DYSWIS network
(a central server or other DHT nodes), or can at least have
a list of other nodes cached from when the network was
available. Service discovery technologies such as Bonjour
[2] can also be used when a DYSWIS node cannot join the
DYSWIS network while the local area network is available.

1) Peer classification and discovery: Since DHT sys-
tems only support exact-match lookups, a DYSWIS node
publishes node information with multiple key-value pairs.
For example, a single node can be represented by multiple
keys such as an Autonomous System Number (ASN), a
subnet, an IP address, or whether it uses a NAT. The value

Table I: Node types and examples of DHT keys

Node Format of keys Example of keys
Sister NAT@[IP address] “NAT@128.59.21.16”
Near public@[subnet] “public@128.59.16.0/24”
Internet public “public”
Far public@[subnet] “public@AS22”

corresponding to the key contains the node’s IP address, port
number, and properties such as type of operating system
(OS), network connection (e.g., Ethernet or wireless), or
whether it uses a firewall. Table I describes several exam-
ples of the keys. These key-value pairs are registered to
the DYSWIS network and enable other users to discover
appropriate nodes easily.

We categorize peers into five groups according to where
they are located. We define following node types:
● Local node: A node currently diagnosing faults.
● Sister node: A node behind the same NAT device.
● Near node: A node within the same subnet.
● Internet node: A node located in any other subnets.
● Far node: A node located in the service provider

network of a remote server (e.g., a web server).
To discover a specific type of collaborating nodes, a node

queries the DYSWIS network with a corresponding key. For
example, to obtain a near node, the key must include the
subnet information or address of the first-hop router. If the
local node is behind a NAT, we often need to discover a
sister node to obtain the view from the same environment.
In this case, the key includes the public IP address of the
NAT device. To seek an Internet node, we simply query with
a key, “public”, that returns a list of random nodes from
other networks. We can filter out near nodes from the list to
obtain only Internet nodes. In addition, we can discover a
far node located at a specific subnet. This far node is useful
when we need to obtain the information from the subnet at
which a remote server is located. Some examples of keys
are listed in Table I.

III. DETECTING FAULTS

We implement two methods for detecting a network
problem automatically: packet monitoring and application
plugins.

A. Monitoring packets
DYSWIS monitors raw network packets and checks vari-

ous failure conditions. First, we check whether the response
packets contain error indicators such as “name not found”
in DNS, “404 not found” in HTTP, or an RST flag in
TCP packets. Then, we monitor the no-response situations.
For example, we check if there are responses to outgoing
requests such as TCP SYN packets, DNS queries, or HTTP
GET messages. If there is no response to these packets,
DYSWIS reports it as a problem. Finally, we track the
number of TCP retransmissions and duplicated ACKs to
examine the status of the current network performance.

TCP 
connection

?
DHCP? DNS? Traceroute Ping HTTP?

Problem detected è Ask others:
Port 

blocking



Distributed Probing

57

Table III: Possible causes of connectivity errors and diagnostic rules

Problem
ID Description

C1 Misconfiguration on the user’s computer
C2 A problem on the link to a router
C3 Misbehavior of the local router
C4 ISP outage
C5 Link between the ISP and the Internet
C6 Remote service provider network outage
C7 Remote server down
C8 The service provider blocks your ISP
C9 The server blocks your ISP

C10 The service provider blocks your IP address
C11 The server blocks your IP address

(a) Possible causes

Rule
ID

Requesting
probing to: Probing module If response

is:
Likely
cause

Unlikely
cause

R1.1 Sister node TCP connection Yes C1 C2–C11
R1.2 Sister node TCP connection No C3–C11 C1, C2
R1.3 Sister node TCP connection No response C2 -
R1.4 Near node TCP connection Yes C10, C11 C1–C9
R1.5 Near node TCP connection No C5, C7–C9 C1–C3
R1.6 Near node TCP connection No response C2–C4 -
R1.7 Internet node TCP connection Yes C8–C11 C1–C7
R1.8 Internet node TCP connection No C6, C7 C1–C5
R1.9 Internet node TCP connection No response C1–C5 -

R1.10 Far node TCP connection Yes C11 C1–C8, C10
R1.11 Far node TCP connection No C7 C1–C6, C8–C11

(b) Examples of rules

system that is tailored to crowdsourcing of rules and parallel
remote probes.

1) Voting-based crowdsourced rules: Searching for “net-
work problems” on Google returns millions of web pages.
Many of these are linked to Q&A boards where people
discuss their symptoms and others suggest possible causes.
However, it is very inefficient to visit every site and read ev-
ery answer to determine a correct solution for their situation.
The DYSWIS rule repository is intended to provide a unified
platform for collecting such knowledge in a single place.
Questions and answers on the Internet are equivalent to
the diagnostic rules in DYSWIS. To support crowdsourcing
efficiently, we design the rules to be simple and independent.
Each rule contains the name of a probing module, a type
of node, a probe result, likely causes, and unlikely causes.
Likely causes are the causes that the author of the rule
believes to be the probable causes when the particular type
of node runs the probing module and returns the specified
result. On the contrary, unlikely causes are the causes that
are believed to be irrelevant to the returned result.

When a user creates or updates a rule on the DYSWIS rule
website, other experts can judge the new rule and vote; plus
one if they think it is true and useful (up-vote), and minus
one if it is incorrect (down-vote). The effectiveness of this
type of voting has been proven through many crowdsourced
social websites such as Reddit and Stackoverflow. Similar
to these websites, the useful rules acquire the attention and
greater points. The total voting points for an incorrect or
unhelpful rule will be low or even negative.

2) Parallel remote probing: To diagnose faults, DYSWIS
first selects an appropriate set of rules based on the detected
symptoms of failures and automatically excludes the rules
that have negative or low voting points. Then, it sends probe
requests to particular types of remote users according to
the rules. Remote users respond with their probing results
asynchronously, and whenever a result arrives, the possibility
scores of potential causes are updated. The details of the
algorithm are described in Algorithm 1.

When a probe result arrives, ResultReceived is
called. This module finds a rule matched to the received

Algorithm 1 Parallel distributed probing

1: function PROBE(failure)
2: Update rule sets from the repository.
3: for each rule in the rule set for failure do
4: if rule.nodeType == remote then
5: Send probing request to a remote node.
6: else
7: Run the probing module in a new thread
8:
9: //Invoked when each probing result arrives:

10: function RESULTRECEIVED(result)
11: R ← FindRuleSet(result.ruleId)
12: rules← FindRules(R, result.nodeType, result.response)
13: for each rule in rules do
14: if rule.votingPoint>0 then
15: for each cause in rule.likelyCauses do
16: P [cause] ← P [cause] + 1
17: for each cause in rule.unlikelyCauses do
18: P [cause] ← P [cause] − 1
19: DescendingSort(P)
20: Update current top possible causes to the users.

result. It then increases the possibility score of each cause
in the likely causes list and decreases it in the unlikely
causes list. For example, if a sister node is asked to run
the TCPConnection module, it will verify whether a TCP
connection to the remote server is successful. If it succeeds,
it will respond ‘Yes’, and we increase the possibility score
of problem C1 and decrease all the other possibility scores
according to rule R1.1, as shown in Table IIIb. The results
from other collaborative nodes also update the scores, and
finally, the cause with the highest score is considered the
most probable root cause. After informing the users of the di-
agnostic results, we can collect useful feedback information
from them as to whether the diagnostic result was correct.
The statistics obtained from this survey can be used to
improve the rules and estimate the occurrence frequencies of
the actual causes. In the case where our diagnostic results fail
to pinpoint a specific cause, but suggest multiple probable
causes, this occurrence frequency will be helpful to infer the
one most likely occur among them.



DYSWIS for IoT

58

* MoT: A Collaborative Network Troubleshooting Platform for the Internet of Things, Kyung-Hwa Kim, 
Hyunwoo Nam, Jin-Hyung Park, and Henning Schulzrinne, IEEE WCNC, April 2014



DYSWIS for IoT – node architecture

NetSys 2017 59

Arduino board

Network plugins (Bluetooth, ZigBee, X10, IR)

interface

Probe
Module

Probe
Module

Core layer

Probe 
interface

Probe
Module

Physical device

Arduino software

Problem and request handler

	B
 .P5 $MJFOU GPS "SEVJOP 	NJDSPDPOUSPMMFS


Mobile Device

Android

Network plugins (Bluetooth and WiFi)

interface

Diagnosis 
rules

Problem and request handler

Probe
Module

Probe
Module

Diagnosis 
rules

Diagnosis 
rules

Logic layer

Core layer

Probe 
interface

Probe
Module

User interface

	C
 .P5 $MJFOU GPS "OESPJE

'JHVSF ���� .P5 *NQMFNFOUBUJPO

��



WiSlow: Why is my Wi-Fi slow?

Why 
Slow? WiSlow? 

Because 
there is …

Application
No specialized hardware!

60



DYSWIS UI

NetSys 2017 61

'JHVSF ���� %:48*4 TDSFFO EVNQ

EJBHOPTJT QBDLBHFT� 04(J JT B KBWB�CBTFE GSBNFXPSL XIJDI QSPUFDUT FBDI +BWB DMBTT GSPN

BOPUIFS DMBTT۝T BDDFTTJOH JUT WBSJBCMFT BOE NFUIPET� 6TJOH 04(J
 %:48*4 QSPUFDUT FBDI

EJBHOPTJT QBDLBHFT GSPN PUIFS QBDLBHFT BT XF FYQFDU QSPHSBNNFST XPVME QBSUJDJQBUF JO

CVJMEJOH EJ੖FSFOU EJBHOPTJT QBDLBHFT� 8F BMTP MFWFSBHF UIJT UFDIOPMPHZ UP VQEBUF EJBH�

OPTJT QBDLBHFT EZOBNJDBMMZ BOE BVUPNBUJDBMMZ�

य़F SVMF TZTUFN FOBCMFT VTFST BEE PS NPEJGZ FYJTUJOH SVMFT XJUIPVU SF�DPNQJMJOH UIF

TPVSDF DPEF� "MTP
 SVMF EFWFMPQFST DBO FBTJMZ DSFBUF OFX SVMFT XJUIPVU BOBMZ[JOH UIF

TPVSDF DPEF� 8F FYQFDU UIJT GFBUVSF FODPVSBHFT OPU POMZ QSPHSBNNFST CVU BMTP BENJOJT�

USBUPST XJUIPVU LOPXMFEHF PG QSPHSBNNJOH UP QBSUJDJQBUF JO XSJUJOH SVMFT�

��



EvaluationInjected Problem Distance from the 
AP Accuracy False

Positive
No interference - 100.0 % 14.1 %

Channel contention - 92.2 % 1.5 %

Non-Wi-Fi 
interference (baby 
monitor, cordless 

phone, and 
microwave oven)

0.0 m 100.0 %

3.9 %

0.5 m 97.8 %
1.0 m 82.2 %
1.5 m 82.2 %
2.0 m 73.3 %
2.5 m 68.9 %

Non-Wi-Fi
Interference

Distance from 
the AP

Avg. 
Throughput

Diagnostic
Accuracy

False
Positive

Microwave
oven

0.0 m 7.54 Mb/s 100 %

0.4 %

0.5 m 8.52 Mb/s 100 %
1.0 m 8.96 Mb/s 100 %
1.5 m 9.33 Mb/s 100 %
2.0 m 9.30 Mb/s 100 %
2.5 m 8.91 Mb/s 93.3 %

Baby
monitor

0.0 m 0.51 Mb/s 100 %

1.1 %

0.5 m 3.16 Mb/s 100 %
1.0 m 4.79 Mb/s 100 %
1.5 m 4.49 Mb/s 100 %
2.0 m 4.81 Mb/s 100 %
2.5 m 5.17 Mb/s 100 %

FHSS Cordless
phone

0.0 m 6.76 Mb/s 100 %

24.8 %

0.5 m 9.65 Mb/s 100 %
1.0 m 10.02 Mb/s 100 %
1.5 m 10.05 Mb/s 66.7 %
2.0 m 12.44 Mb/s 26.7 %
2.5 m 13.28 Mb/s 6.7 %

• The accuracy of 
distinguishing problem 
sources:
• Channel contention
• Non-Wi-Fi interference
• No interference

• The accuracy of 
detecting the type of 
non-Wi-Fi interference 
source

– More than 90% when 
the problem source is 
close to the Wi-Fi 
devices

62



Conclusion
• IoT is finding lots of boring niches
• But IoT security is exposing almost all the security 

deficiencies of the Internet eco system
• “thoughts and prayers” approach
• continuing to do the same thing for the next 5 years and hoping for 

better results is not a strategy
• Start thinking beyond stove pipes of applications and 

home automation
• à engineering large scale systems x 10

NetSys 2017 63


