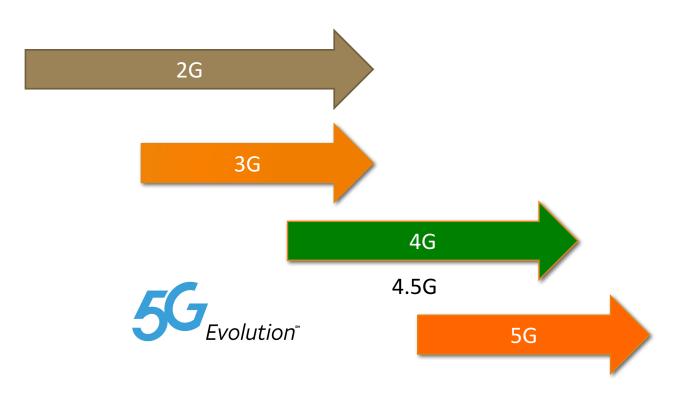

5G: Enabled by technology, with Public Policy Assist

HENNING SCHULZRINNE

The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the official policy or position of any agency of the U.S. government. Any resemblance to actual policies, living or dead, or actual events is purely coincidental.


Design for 20 years

Generations are distinct

Talking a diff	erent language		-			
Formative experiences	Maturists (pre-1945) Wartime rationing Rock'n'roll Nuclear families Defined gender roles - particularly for women	Baby boomers (1945-1960) Cold War 'Swinging Sixties' Moon landings Youth culture Woodstock Family-orientated	Generation X (1961-1980) Fall of Berlin Wall Reagan/Gorbachev/ Thatcherism Live Aid Early mobile technology Divorce rate rises	Generation Y (1981-1995) 9/11 terrorists attacks Social media Invasion of Iraq Reality TV Google Earth	Generation Z (Born after 1995) Economic downturn Global warming Mobile devices Cloud computing Wiki-leaks	
Percentage in UK workforce	3%	33%	35%	29%	Employed in either part-time jobs or apprenticeships	
Attitude toward career	Jobs for life	Organisational - "Portfolio" careers - careers are defined loyal to profession, by employees not to employer		Digital entrepreneurs – work "with" organisations	Multitaskers – will move seamlessly between organisations and "pop-up" businesses	
Signature product	Automobile	Television	Personal computer	Tablet/smartphone	Google glass, 3-D printing	
Communication media	Formal letter	Telephone	E-mail and text message	Text or social media	Hand-held communication devices	
Preference when making financial decisions	Face-to-face meetings	Face-to-face ideally but increasingly will go online	Online - would prefer face-to-face if time permitting	Face-to-face	Solutions will be digitally crowd-sourced	
		land	2G	3G	Source: Barclays, University of Liverpool	

Generations overlap

Generational surprises

Generation	Expectation	Surprise
2G	better voice quality ("digital!")	SMS
3G	WAP	web
4G	IMS	YouTube, WhatsApp, notifications
5G	IoT (low latency)	?

underestimated cost and fixed-equivalence as drivers

Lessons, in brief

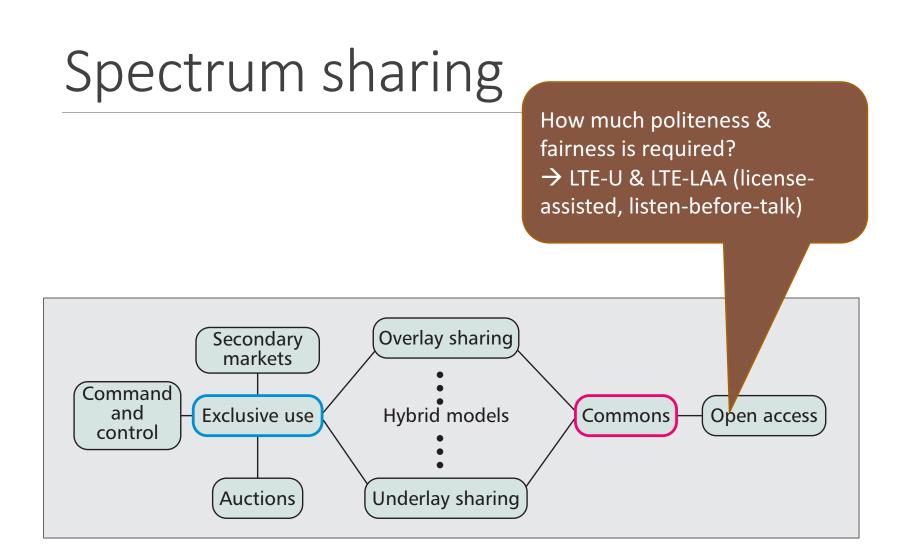
Experience	Lessons
VoLTE, IMS	avoid complexity avoid entanglement plan intercarrier interfaces
Wi-Fi	don't trust the RAN/AP
disaggregation of functions	clear & simple interfaces don't assume trust between elements
app stores	keep it application-neutral
FTTH, backhaul cost	re-use backhaul where you can find it

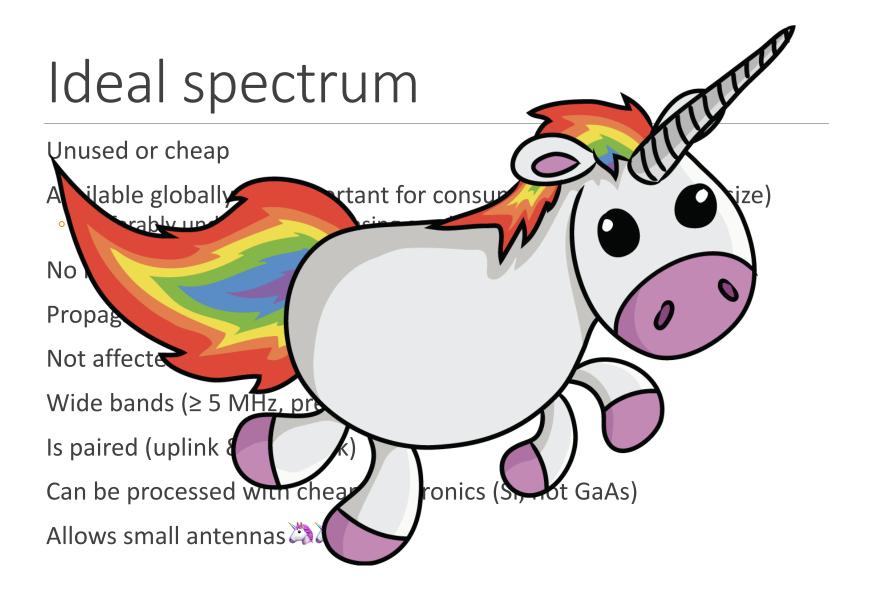
 $2G \rightarrow 3G \rightarrow 4G \rightarrow 5G \rightarrow$ increasing number of technology components

5G is a systems standard

Technology component	Proposed application	Less exciting, but likely
mmWave	10 Gb/s user rates	capacity in stadiums fixed wireless?
edge computing	ΙοΤ	video caching
M2M	billions & billions of devices! autonomous vehicles!	electric meters
1 ms latency	autonomous vehicles!	keep it application-neutral
slicing	QoS	test networks, VPNs

Changing spectrum environment


Except at highest frequencies, all new spectrum likely to be shared


- e.g., 3.5 GHz
- in time & space

 \rightarrow need frequency-agile systems that can shift capacity to different bands, quickly

 \rightarrow few common bands for consulting spectrum database

- **now**: scan, pray & wait
- 5G: shared band \rightarrow database

Spectrum management

UNTIL THE 2000S

Single purpose

Fixed technology (modulation)

Exclusive use

Narrow bands (except TV)

Assume single radio per device

Worry mostly about OOB to like

Spectral efficiency secondary

Single-country

"MODERN"

Flexible use

Flexible technology Shared, over/underlay At least 5 MHz, preferably 100 Multiple (> 4) XTR/RCV Receiver requirements? Spectral efficiency matters International coordination

Challenges for spectrum sharing

Unlicensed ~2000

- indoor home
- indoor enterprise
- campus
- --> natural separation
- only power rules (no listen-before-talk (CS) required)

Unlicensed now

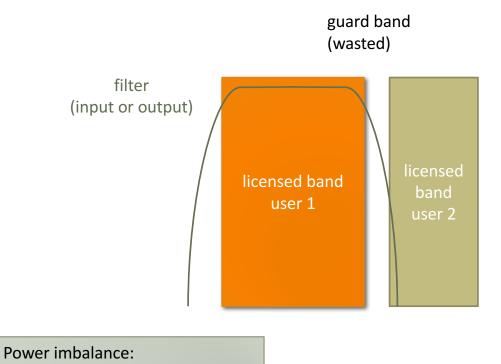
- secondary public SSID
 - e.g., CableWiFi
- re-use HFC/FTTH backhaul
- One band, one channel

Unlicensed emerging

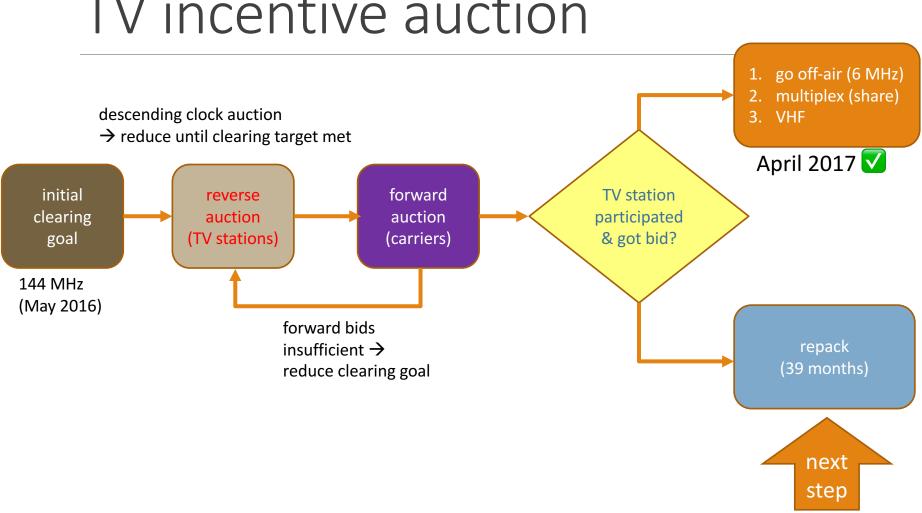
- LTE-U, LAA
- what are the "kindergarten" rules?

Spectrum co-existence

"high tower, high power" (TV, cellular downlink, radar transmitter)


- cellular uplink
- radar receiver
- GPS receiver

vs.


Spectrum roles

400 – 800 MHz	1 – 3 GHz	3-6 GHz	> 10 GHz
base-level coverage (particularly rural)	urban capacity	indoor & capacity	directional capacity
Digital dividend TV incentive auction	AWS-3	3.5 GHz	mmWave R&O

The filter problem

- cell downlink: 100 W ERP
- cell uplink: 0.05 2 W

TV incentive auction

IMS 2017

600 MHz incentive auction

																																			Fir	stNet
Paired	Reverse Auction	Forward Auction																																	sp	ectrun
Blocks	(MHz)	(MHz)										_	_	_	_			_	_		_			_	_		_	_	_	_	_	_	_	_		
12	144	120	21	22	23	24	25	26	7	Α	в	С	DE	E F	G	н	1	J 3	37	3	κι		11	А	в	С	D	E	F	G	н	1	J	K I	700	MHz UL
11	138	110	21	22	23	24	25	26	27	11	1	Α	в	D	E	F	G	Н 3	37	3	I J	K	1	1	Α	в	С	D	Е	F	G	н	1	J	< 700	MHz UL
10	128	100	21	22	23	24	25	26	27	28	29	9	ļ	A B	С	D	Е	F 3	37	3	G H	I I	J	1	1	Α	в	С	D	Е	F	G	Н	1.	700	MHz UL
9	114	90	21	22	23	24	25	26	27	28	29	30	31	7	А	в	С	D 3	37	3	E F	G	Н	1	11		А	в	С	D	Е	F	G	H	700	MHz UL
8	108	80	21	22	23	24	25	26	27	28	29	30	31	32	1	1	А	В 3	37	3	C D) E	F	G	н	11		А	в	С	D	Е	F	GH	1 700	MHz UL
7	84	70	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	3	A E	8 C	D	Е	F	G	11		А	в	С	D	Е	FG	∋ 700	MHz UL
6	78	60	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	7	A	в	С	D	Е	F	11		А	в	С	D	E F	700	MHz UL
5	72	50	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	1	1	A	в	С	DI	E	11		A	в	С	DE	700	MHz UL
4	60	40	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	9		А	в	0	D	11		А	в	C	700	MHz UL
3	48	30	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	-7		Ą	в	С	11		А	в	700	MHz UL
2	42	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	4	11		A	в	11		A E	3 700	MHz UL
TV Char	inels		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	4	5 4	46	47	48	49	5	51	A-BI	odk
			Sou		V Stat			lesea	-	uard B	Bands	s an	Dupk	ex Ga	aps		= P	aired	N r∈	eless E	Blocks			-				·								
Source: FCC and BTIG Research 5 MHz downlink blocks												adic edic											5 N		z u ocl	iplin ks	nk									

36 11 Incentive auction facts

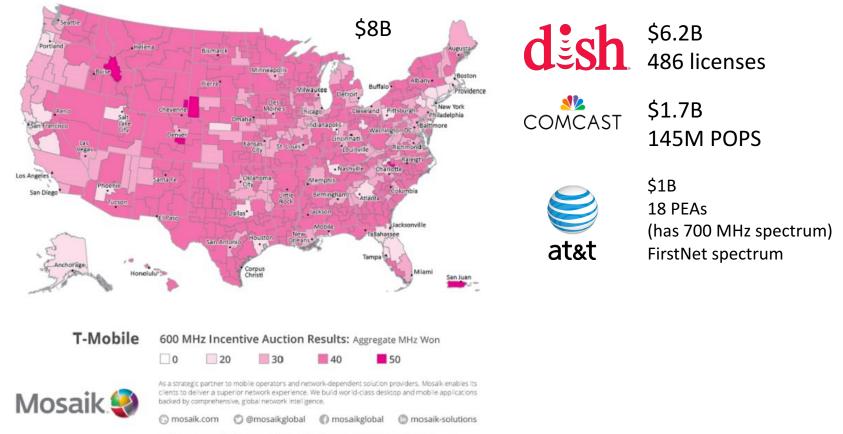
Forward Auction

23

\$19.8 billion Gross revenues (2nd largest in FCC auction history) \$19.3 billion Revenues net of requested bidding credits \$7.3 billion Auction proceeds for federal deficit reduction Largest amount of licensed low-band spectrum ever made available **70 MHz** at auction **14 MHz** Spectrum available for wireless mics and unlicensed use 2,776 License blocks sold (out of total of 2,912 offered) \$1.31 Average price/MHz-pop sold in Top 40 PEAs \$.93 Average price/MHz-pop sold nationwide 50

IMS 2017

Spectrum Needs And Values Are Changing


Prior to 2013, low-band routinely fetched 2x the amount of mid-band. The perceived value of mid-band vs lowband started to shift after VZ deployed LTE on 700MHz. By the AWS-3 auction in 2015, mid-band sold for more than 2x the last significant low-band transaction. The incentive auction was conceived in an era when low-band was the most valuable spectrum, and executed in an era when focus had shifted to higher bands.

Mid-Band Vs. Low-Band Values - Selected Transactions 1

https://law.duke.edu/innovationpolicy/spectrum-incentive-auction/

Forward auction: T-Mobile & others

COD17 Mosaik Solutions, LLC - Mosaik name and logo are registered trademarks of Mosaik Solutions, LLC. All rights reserved.

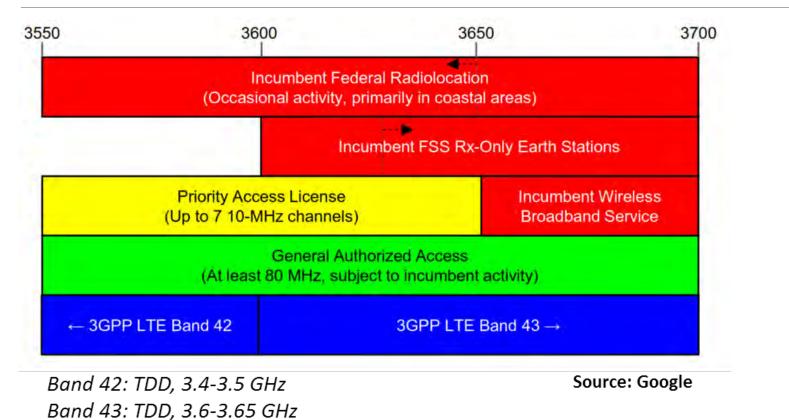
TV white spaces (US)

First large-scale spectrum database

But limited use in the US

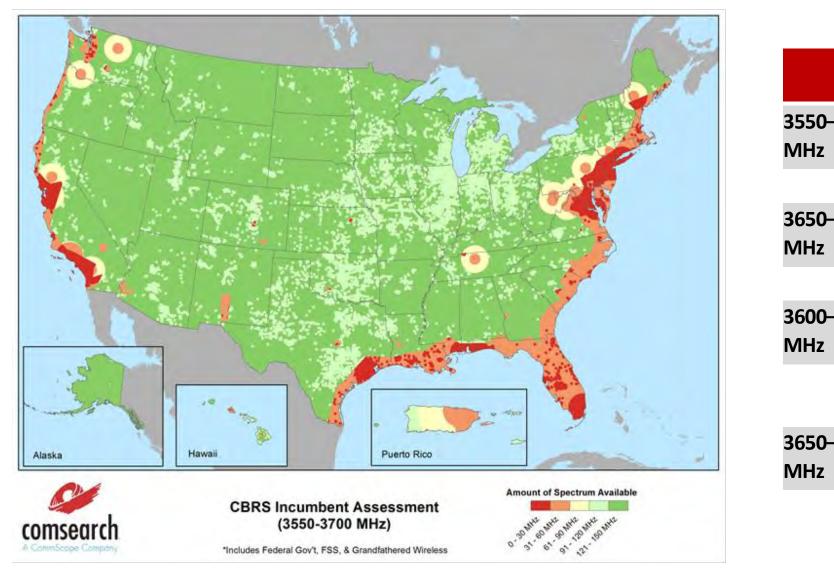
- number of channels
- power levels
- equipment
- available mostly in rural areas, not urban
- change after incentive auction

Channel Number	Frequency Range (MHz)	Allowable Antenna Height (meters AGL)
2	54-60	30
7	174-180	30
8	180-186	30
9	186-192	30
13	210-216	30
18	494-500	30
24	530-536	30
25	536-542	30
26	542-548	30

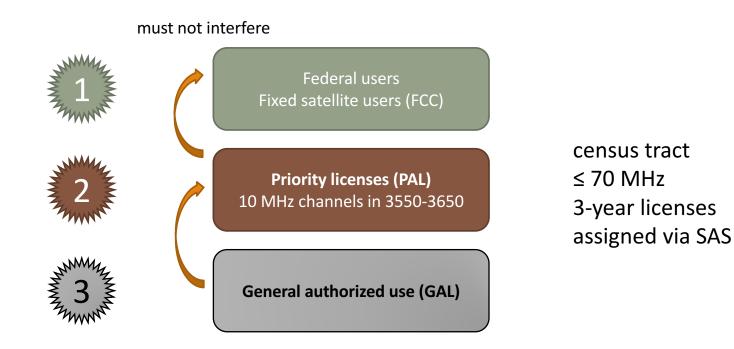

Channel Number	Frequency Range (MHz)	Allowable TX Power (mW)
42	638-644	40

Amherst, MA

Channel Number	Frequency Range (MHz)	Allowable TX Power (mW)
23	524-530	40
24	530-536	100
25	536-542	100
26	542-548	100
27	548-554	40
41	632-638	40
42	638-644	40
44	650-656	40
47	668-674	40
48	674-680	40
50	686-692	40

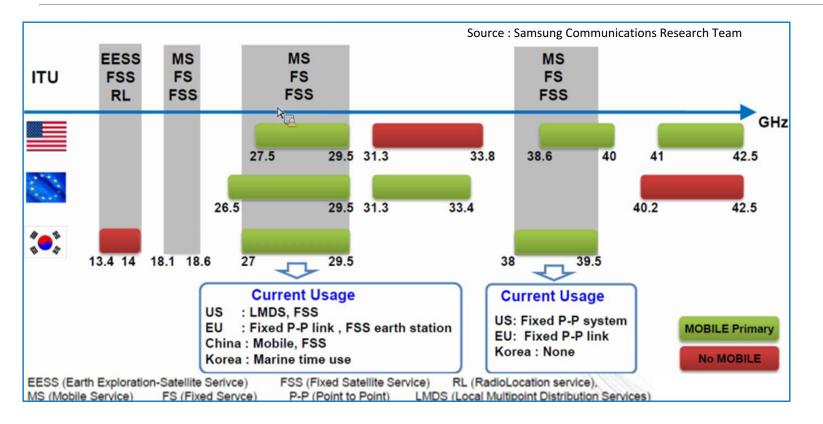

3.5 GHz band

FSS: C Band (3.625–4.200)



IMS 2017

CBRS availability



3.5 GHz user classes

ESC (environmental sensing capability) allows commercial use in coastal and Great Lakes region

30-40 GHz mmW overview

 Note: The Commission's Fixed Microwave (Part 101) and Satellite Communications (Part 25) service rules govern most of US mobile allocations shown above

MMW: Spectrum Frontiers R&O

Core Principles

- Identify substantial spectrum in MMW bands for new services
- Protect incumbent services against interference
- Flexible use: enable market to determine highest valued use
- Overlay auctions where no existing assignments
- Provide spectrum for both licensed and unlicensed use

<u>R&O</u> – 10.85 GHz added for mobile service (July 2016)

- Licensed bands (3.85 GHz): 27.5-28.35 GHz; 37-38.6 GHz; 38.6-40 GHz
- Unlicensed bands (7 GHz): 64-71 GHz

FNPRM – seeks comment on another 18 GHz & above 95 GHz

24.25-24.45 GHz; 24.75-25.25 GHz; 31.8-33.4 GHz; 42-42.5 GHz; 47.2-50.2 GHz; 50.4-52.6 GHz; 71-76 GHz; 81-86 GHz; bands above 95 GHz

Licensing, operating and regulatory rules

- Part 30: Upper Microwave Flexible Use Service (UMFUS)
- Geographic area licensing, area size, band plan, license term

Conclusions

5G is no one thing

- and some of the "things" may be secondary
- but reducing the cost per

New spectrum is one key differentiator for 5G

New bands may take 10+ years: policy negotiation + clearing/sharing + deployment

Each band has unique challenges, but some tools emerging

- reverse auctions for clearing
- spectrum databases, enabled by multiple radios and GPS