The Internet at (around) 50 - Mid-life crisis or New Realism?

HENNING SCHULZRINNE

Overview

Economics – what can the Internet realistically accomplish (and not)?

- age 5-15: "You can be president/movie star/astronaut when you grow up"
- age 15-25: "You have so much promise!"
- age 25+: "What pays the rent?"

Internet economics drives the architecture & constraints

Predicting the next ten years

Thoughts on Internet architecture

Innovation = Internet

"It's finally happened. They've replaced the nightly news with cat videos."

Internet as the consensus answer

Health care costs \rightarrow Internet-based EHR! Tele medicine!

Income inequality \rightarrow Internet for job searches! Learn coding!

Cost of education \rightarrow MOOCs!

Global warming \rightarrow Replace business travel by video conferencing!

Political oppression \rightarrow Twitter & FB as citizen organizers!

Natural disasters & terrorism \rightarrow Change FB profile picture!

Global conflict \rightarrow Get to know your (former) enemy via social media!

Traffic congestion \rightarrow Smart cities!

Any difficult problem \rightarrow Internet app!

 \rightarrow Positive effects often not quantified or shown

Lots of talk about innovation...

Copyright 1947, Chesley Bonestell from "The Conquest of Space

In 2000, rocket passengers may arch through space from New York to San Francisco in less than two hours

for cutting tools and for massive machinery. The light metals have largely displaced it. Ways have been found to change the granular structure so that a metal is ultrastrong in a desired direction and weaker in other directions. As a result, the framework of an industrial or office building or apartment house is an almost lacelike lattice.

Thanks to these alloys, to plastics and to other artificial materials, houses differ from those of our own time. The Dobson house has light-metal walls only four inches thick. There is a sheet of insulating material an inch or two thick with a casing of sheet metal on both sides.

This Dobson air-conditioned house is not a prefabricated structure, though all its parts are mass-produced. Metal, sheets of

FEBRUARY 1950

plastic and aerated clay (clay filled with bubbles so that it resembles petrified sponge) are cut to size on the spot. In the center of this eight-room house is a unit that contains all the utilities—air-conditioning apparatus, plumbing, bathrooms, showers, electric range, electric outlets. Around this central unit the house has been pieced together. Some of it is poured plastic—the floors, for instance. By 2000, wood, brick and stone are ruled out because they are too expensive.

It is a cheap house. With all its furnishings, Joe Dobson paid only \$5000 for it. Though it is galeproof and weatherproof, it is built to last only about 25 years. Nobody in 2000 sees any sense in building a house that will last a century.

Everything about the Dobson house is

POPULAR MECHANICS GI 2016

A Declaration of the Independence of Cyberspace 1996 BY JOHN PERRY BARLOW

Governments of the Industrial World, you weary giants of flesh and steel, I come from Cyberspace, the new home of Mind. On behalf of the future, I ask you of the past to leave us alone. You are not welcome among us. You have no sovereignty where we gather.

We have no elected government, nor are we likely to have one, so I address you with no greater authority than that with which liberty itself always speaks. I declare the global social space we are building to be naturally independent of the tyrannies you seek to impose on us. You have no moral right to rule us nor do you possess any methods of enforcement we have true reason to fear.

Why Learning To Code Won't Save Your Job

Brushing up on your tech skills might only make for temporary job security at best.

"Andrew Keen has written a very powerful and daring manifesto questioning whether the Internet lives up to its own espoused values. He is not an opponent of Internet culture: he is its conscience, and must be heard."-THE INTERNET IS THE ANSWER ANDREW KEEN

The Internet increases citizen engagement (if you don't care what kind)

Donald Trump	Bernie Sanders	
		Donald J. Trump 🥝
Hillary Clinton	Ben Carson Ted Cruz	It all begins today - WE WILL FINALLY TAKE OUR COUNTRY BACK AND MAKE AMERICA GREAT AGAIN! 8:25 AM - 1 Feb 2016 ♠ € 9,470 € 22,060
	Marco Rubio	

Interactive by Andrew Kahn

Follow

Industrial revolutions

Classical economics: Labor (\$ output/hour worked) & total factor (includes capital invested) productivity

- \rightarrow higher income (on average)
- Improved quality of life (health, education, opportunities, ...)

IR#1: 1760-1830

Spinning jenny (1764), steam engine (1770), power loom (1780), Fulton steam boat, Liverpool rail road (1830), Macadam road (1820), Bessemer steel (1850)

IR#2: 1875-1900

• Telephone, radio, automobile, record player, air craft, ...

IR#3: 1985-2010

• Mainly information technology: personal computers & Internet

Growth in GDP per capita (~productivity)

Robert Gordon 2014

Robert Gordon 2014

How Did Innovation in the Past Compare with the Past 40 Years?

10-Year Average Annual Growth in Total Factor Productivity, 1900-2012

Robert Gordon 2014

Let's Think About How Minor the Progress Was in IR #2 vs. IR #3.

- The introduction of GPS navigation screens on autos compared to the invention of the auto itself.
- The introduction of the cell phone compared to the invention of the phone itself and the telegraph.
- The invention of home-streaming of movies to the invention of the motion picture itself.
- The invention of the ipod to the invention of the phonograph.
- The invention of the microwave oven to the replacement of cooking on the open hearth by the enclosed cast iron stove and later the kitchen range.
- Icemakers in refrigerators compared to the invention of the refrigerator or even the icebox.
- The conversion of card catalogues in libraries to electronic screens with the invention of electric light that made it possible to read books at night.

Transition in the labor force

Notes

White collar includes professional and technical, managerial, sales and clerical jobs. Blue collar includes machine operators, assembly, manual labor and construction jobs. Service includes food service, health care and personal service jobs

Source: IPUMS-USA, University Of Minnesota Credit: Quoctrung Bui/NPR

Employment –old vs. new social network

UNITED STATES POSTAL SERVICE.	Revenue (2015, \$B)	evenue (2015, \$B) Employees Revenue	
	\$68.9	491,863	\$0.14M
f	\$17.9	12,691	\$1.4M

Innovation did not disappear

Clearly, nobody would trade 2016 computer + smartphone for 1990 versions

- or a 1990s car
- or forego Amazon, FB, Google search & maps

But impact of Internet-related innovation did not fundamentally change work place

- for most occupations, at least
 - we still use LaTeX (*1985)!

Hunch: networks & IT are often just needed to compete for the same output

- e.g., high-speed trading (& overall financial sector)
- college applications

or to enable higher-complexity systems

• health insurance, taxes, advertising, ...

Change may seem sudden, but is visible

Early lab prototypes

• see "mother of all demos" (Doug Engelbart, 1968)

IPv6:

- discussion started in 1992
- standardized in 1996
- 10-25% deployment 20 years later

VoIP:

- tech demos 1978, revived early 1990s
- standards mid-1990s
- 2014: 40% deployment

Smartphone:

- first version 1994
- iPhone 2007

"The future has arrived — it's just not evenly distributed yet." (attributed to W. Gibson, 1992)

"We wanted flying cars, instead we got 140 characters"

Innovation on the cheap

- "we can't build a transcontinental railroad any more, so we'll write an app"
 - that tells you how late Amtrak will be today

What tends to improve productivity

- reduce transportation lag (& cost)
- reduce labor for agriculture & manufacturing at scale
- reduce processing & coordination overhead for information-centric jobs

Economic impact

- tends to amplify differences in productivity
- Can the Internet (or a better Internet) address
- global climate change?
- income inequality?
- chronic health conditions (obesity, dementia)

Some Internet economics

The great infrastructures

Technical structures that support a society \rightarrow "civil infrastructure"

- Large
- Constructed over generations
- Not often replaced as a whole system
- Interdependent components with well-defined interfaces

Mostly noticed if absent

transportation

communication

Innovations matter when they become infrastructure

Many of the fundamental advances matter only at scale

- public health & sanitation
- clean drinking water
- roads & railroads
- electricity
- telephone service

Not for all: medical, military, research tools, 3D printing, ...

Thus, the Internet matters as infrastructure, not technology as such

Communication models – ca. 1980

Internet economic models - now

The residential Internet is still getting faster

Akamai

entrance of DOCSIS 2+ in several countries VDSL in others

Broadening participation: the problem

Reason for non-adoption

* Asked of those who do not currently get an Internet service at home and do not plan to subscribe in the next six months

Internet usage by income

Note: About 4.2 percent of all households reported household Internet use without a paid subscription. These households are not included in this figure.

Barriers to Internet adoption

Non-Internet users face four categories of barriers

(@?) Low incomes and Incentives •\$• User capability Infrastructure affordability Lack of awareness of Low income or Lack of mobile Lack of digital Internet or relevant consumer Internet coverage literacv use cases purchasing power or network access Lack of relevant (e.g., Lack of adjacent Lack of language Total cost of **Barriers** Ab local, localized) infrastructure (e.g., ownership for device literacy directly content and services arid electricity) affecting Cost of data plan consumers Lack of cultural or social acceptance Consumer taxes and fees High content and service Challenging national Under-resourced • Limited access to economic environment international bandwidth provider costs and educational system business model High device manufacturer Underdeveloped national constraints costs and business model core network, backhaul. Low awareness or interest constraints and access infrastructure **Root causes** from brands and High network operator Limited spectrum (e.g., advertisers costs and business model availability providers, Lack of a trusted logistics constraints National ICT strategy that government/ and payments system High provider taxes and doesn't effectively regulatory, Low ease of fees address issue of industrial) doing business broadband access Unfavorable market Limited Internet freedom Under-resourced structure and information security infrastructure development (e.g., FDI limits)

SOURCE: Literature review; expert interviews; McKinsey analysis

Internet industries have network effects

- \rightarrow new Internet industries dominated by one or two players
- was partially true for broadcasting ("The Big Switch")
- even more for Internet at all layers
 - government monopolies: intellectual property (copyright, patents), spectrum
 - scale effects (platforms)
 - network effects (social networks)
 - natural monopolies (infrastructure) \rightarrow rarely more than two competitors

\rightarrow rent seeking behavior

Broadband competition challenges

^{*} These data reflect speeds of 3 Mbps up / 768 kbps down, which the FCC uses as the best proxy for 4 Mbps / 1 Mbps . *See, e.g.*, FCC, *Eighth Broadband Progress Report*, FCC 12-90, ¶ 29 (2010).

Wired Broadband Speed Tiers

Competition models

Unbundled loops (asymmetric regulation)

- regulated pricing for dominant provider
- mainly for copper DSL (e.g., Germany, Italy, UK)

Two infrastructures \rightarrow duopoly

- historical accident: copper + cable (in urban areas)
- Netherlands, US, Canada, W Germany

Fiber sharing

- works well in countries with lots of MDUs
- e.g., Korea, Japan

No country with more than two PHY providers for wireline

- economics for 2nd and 3rd overbuilder very hard
- except maybe for municipal networks competing with DSL

US industry structure

US industry is dominated by ~12 providers Top Broadband Internet Providers in the U.S.

Cable Companies	Subscribers at End of 2015	Net Adds in 2015
Comcast	23,329,000	1,367,000
Time Warner Cable	13,313,000	1,060,000
Charter	5,572,000	497,000
Cablevision	2,809,000	49,000
Suddenlink	1,223,000	73,900
Mediacom	1,085,000	72,000
WOW (WideOpenWest)	712,500	(15,300)
Cable ONE	501,241	12,787
Other Major Private Companies*	6,725,000	190,000
Total Top Cable	55,269,741	3,306,387
Telephone Companies		
AT&T	15,778,000	(250,000)
Verizon	9,228,000	23,000
CenturyLink	6,048,000	(34,000)
Frontier^	2,444,000	101,500
Windstream	1,095,100	(36,500)
FairPoint	311,130	(8,785)
Cincinnati Bell	287,400	17,500
Total Top Phone	35,191,630	(187,285)
	90,461,371	3,119,102

Capital investment is roughly 15% of

revenues

Company	Revenue	Capital expenditures	%
Comcast (US) [3Q14]	\$11.04B	\$1.644B	14.9
Telekom (DE) [3Q14]	€15.6B	\$2.58B	16.5
Safaricom (KE) [H1FY15]	Ksh 79.34B	Ksh 12.37	15.5

Comcast's Q2 2014 Capital Spending Trends							
-	Growth	% of	Maintenance	% of	Total	% of	
Category	CapEx	Total	CapEx	Total	CapEx*	Total	
	(\$ mil.)	(%)	(\$ mil.)	(%)	(\$ mil.)	(%)	
Consumer Premises Equipment	668	65	72	16	740	50	
Network Infrastructure	107	10	287	64	394	27	
Support Capital	48	5	89	20	137	9	
Commercial	209	20	0	0	209	14	
Total*	1,032	-	448	-	1,480	-	
As of Aug. 2014. * Total excludes \$13 million in discretionary capital. Total including discretionary spending was \$1,493 mil. Source: Comcast. © 2014 SNL Kagan, a division of SNL Financial LC, estimates. All rights reserved.							

Broadband cost

C 🔍 why is the internet

- 9 why is the internet Google Search
- \circ , why is the internet **so slow**
- why is the internet not working
- ${}^{\bigcirc}$ why is the internet so slow today
- \circ why is the internet down
- why is the internet bad
- C vhy is the internet so slow
 - 9 why is the internet so slow Google Search
 - 9 why is the internet so slow today

 - 9 why is the internet so slow on my mac
 - 9 why is the internet so slow on my laptop
 - ${\tt Q}$ why is the internet so slow today 2016

Google

Internet architecture evolution

Networking is getting into middle years

	idea	current	age
IP	1969, 1980?	1981 (RFC 791)	35
ТСР	1974 (RFC 675)	1981 (RFC 793)	35
telnet	1969 (RFC15)	1983 (RFC 854)	33
ftp	1971 (RFC 114)	1985 (RFC 959)	31
http	1996 (RFC 1945)	1999 (RFC 2616)	20
SIP	1999 (RFC 2543)	2002 (RFC 3261)	17

Networks last a long time

What made the Internet successful?

Still mostly intranets at layer 7

Standards progression

• Adobe Flash \rightarrow HTML5, SVG, etc.

Standards regression

- instant messaging (SMS \rightarrow SIP/SIMPLE + XMPP \rightarrow WhatsApp)
- $^{\circ}$ two identifiers (E.164 + RFC822) →

Lacking (modern) standards for

- electronic health records
- interconnecting medical devices
- traffic data exchange ("this traffic light is red")
- financial data exchange (still "wires" and manual entry of credit card numbers)
- invoices (e.g., travel reimbursement)

Most common Electronic Health Record "System"

New Patient Intake Form

Date of Birth:

	appetite 🗆 Norm	al 🗆 Abnormal	Bones / Joints	🛛 Normal 🗆	Abnormal		
		al 🗆 Abnormal	Skin	Normal 🛛	Abnormal		
	Norm	al 🗆 Abnormal	Nervous system	Normal	Abnormal		
	Norm	al 🗆 Abnormal	Emotional/Behavior	al 🛛 Normal 🗆	Abnormal		
	Norm	al 🗆 Abnormal	Blood / Lymph syster	n Normal	Abnormal		
	Norm	al 🗆 Abnormal	Hormones / Glands	Normal	Abnormal		
Stomach /Digestion	Norm	al 🗆 Abnormal	Allergic /Immunolog	ic Normal	Abnormal		
Kidnevs /Bladder	Norm	al 🗆 Abnormal					
Allergies:							
-							
Yes None If Yes,	please list:						
Immunizations up to date	e: 🛛 Yes 🔅 No	Declined					
Past History:							
Hospitalizations, Surgeries	s, Major Illnesses:						
Problem:			Date / Pt age:	Date / Pt age:			
Problem:			Date / Pt age:				
Problem:			Date / Pt age:				
Problem:			Date / Pt age:				
Problem:			Date / Pt age:				
			Dule / 11 uge.				
Patient Medical Histo		Rheumatic fever	a Yee a Ne	G-tube			
ADHD Asthma	Yes No	Sickle cell anemi		Glenn	Yes N		
Cancer	Yes No	Trisomy 21	Yes No	Mitral valve replace	Yes N		
Chronic lung disease	Yes No	Tuberous sclerosi		Nissen fundoplication	Yes N		
Congenital heart disease		Turner syndrome	Yes No	Norwood	Yes N		
DiGeorge syndrome	Yes No	Arterial switch	Yes No	PDA ligation			
GERD	Yes No	AsD repair	Yes No	PE tubes			
Kawasaki disease	Yes No	AVR	Yes No	TOF repair	Yes N		
Muscular dystrophy	Yes No	BT shunt	Yes No	Tonsillectomy	Yes N		
Obesity	Ves No	CAVC repair	Yes No	Adenoidectomy	Yes N		
Sleep apnea	Ves No	Coarctation repo		VSD repair	Yes N		
Prematurity	Yes No	Fontan			_ 105 _ 14		
i iomaiom,	- 105 - 140	· oman	05 - 140				

What has been less than successful?

What can we learn from 40+ years of Internet research?

Network-layer functionality

- IP mobility
- IP multicast
 - beyond local network
- IPsec (cf. to TLS)
- QoS
 - beyond basic two-level priority
- CCN (predicting)
 - static content and deep network architecture

Goal of maintaining low complexity has faded

- only a handful of implementations of most network protocols
- 3 browsers, 3 web servers, 2 operating systems (Android = Linux here)

"dua	litv	of	service"	Int	ernet
quu		U 1	0011100		011101

About 404,000 results (0.11 sec)

Evolving towards a new architecture

Keep IPv6 as a substrate

• as well as eBGP, TCP, ...

Unlikely, but...: unified control protocols

- patterns: configuration, on-path control, route exchange
- share encoding, security, reliability, discovery, session

Generalize SDN + fog model + CCN

- any node can host (authorized) code
- some provides CDN functionality
- some control nearby switches
- provide generalized location-based discovery (rather than specialized CCN model) of resources

What's missing?

Increasing dominance of network operations costs (cf. to capacity costs)

→ Much better autonomous management systems at scale Network management without a human in the loop Automated discovery of failures & performance problems

More robust network support functions (AAA, DNS, DHCP)

My 2026 predictions

Still largely the same transmission technology

• fiber, OFDM

Still largely the same lower-layer protocols

- even for 5G
- but finally mostly IPv6

Similar applications

but scaled up & integrated

Lots of boring new applications

electric meter reading! finding parking spots!

Fewer cords (last mile & last foot)

Could things get worse?

Technology always gets better, but society doesn't

Risk factors:

- income stagnation \rightarrow limited mass-market deployment
- geographic fragmentation
- privacy risk by integration of carrier traffic data into advertising
- "cableization" fragmentation of Internet
- political fragmentation & tribalization increased by Internet personalization
- security risks Internet suitable only for cat pictures
- RF discovered to have significant health risks

Summary

As engineers, we should not overestimate the impact (and ignore the trade-offs) Internet as cheap substitute for larger changes that we are unable or unwilling to make Reflect more critically on what technical contributions have mattered and why What are plausible architecture options and what's missing?