

Columbia University

Unified Heterogeneous
Networking Middleware
Spring 2015 Project Report

Lingyuan He / Dhruv Kuchhal

5-19-2015

1

CONTENTS

1 Introduction ... 2

2 Architecture ... 2

2.1 Linux ... 2

2.2 Android (Proposed) ... 3

3 Protocols ... 4

3.1 MIH - ODTONE ... 4

3.2 HIP - HIP for Linux .. 5

3.3 MIPv6 - UMIP .. 6

3.4 Middleware ... 6

4 Development Environment ... 7

4.1 Linux Development .. 7

4.2 Android Development ... 7

5 Code Repository .. 7

6 Installation ... 8

6.1 Linux ... 8

6.2 Android ... 9

7 Linux Demo Construction ... 10

8 Linux Interface Switching ... 12

8.1 Method 0: Bring Interface Up and Down ... 12

8.2 Method 1: Modify Routing Table Default Route - Current Solution .. 12

8.3 Method 2: Modify Interface Metric .. 15

9 Android Kernel Compilation .. 19

10 Android Cross Compilation .. 24

11 Android Java Framework .. 26

11.1 Introduction ... 26

11.2 Downloading the source code of Android .. 27

11.3 Java Framework .. 27

12 How WiFi works on Android devices ... 37

13 Static vs Dynamic Linking .. 38

13.1 Dynamic Linking .. 38

13.2 Differences between Bionic libc and glibc ... 39

14 Additional Documentations .. 39

15 Future Work .. 40

2

1 INTRODUCTION

The goal of the project, is to build a unified policy-based networking middleware for a Linux mobile

node. The previous focus of the project is Linux host, but concentration is currently shifting to Android.

Over the year, the project has two nicknames: Open Multiple Network Interface (OMNI) and Smart

Internet (SINE). These names, together with the title of this report, often appear interchangeably

throughout the project.

The middleware aims to support a seamless handover across multiple connections, including WiFi,

Ethernet and Mobile Broadband (LTE), base on a custom policy that is written in a specific syntax, where

the policy covers factors like location, cost, connection type, bandwidth and signal strength. Obviously,

we usually have a combination of two network interface, namely Ethernet/WiFi for Linux and

WiFi/Broadband for Android. However, it is possible to add Broadband to Linux using a LTE dongle.

The basic structure of the project is consist of four components: (1) a middleware overseeing interface

and switching, based on a defined policy; and also take incoming traffic and wrap them as custom socket

object (SOCK server), (2) a protocol (Media Independent Handover) that monitors network interfaces and

listen to network events (3) protocol(s) (Host Identity Protocol and Mobile IPv6) to provide a universal

presence in terms of network address (tag), and (4) code that handles switching (in C for Linux, and could

reside in Java framework for Android).

The project started in 2012 in IRT lab. From 2012 to 2013, the basis of the project has been solidly

founded. After a period of inactivity, in Spring 2015, the project was restarted and brought up to date.

Currently, the project mainly include a Linux implementation. It has multiple network interface (and

multi-homing) support, socket wrapping / SOCK server, network handover functionality, security / web

authentication support, and a simple policy engine (for now, it primarily use hand-input location to

determine which interface to use).

Android development is relatively in early stage. There are porting scripts to port the Linux components

to Android, as well as documentation on Android Framework.

In this report, we will first cover software architecture, code repository structure and development

environment, before we continue on to individual topics in Android and Linux.

2 ARCHITECTURE

2.1 LINUX
On the following page is an illustration of the software components and their socket communication via

UDP ports, on Linux:

Summary:

● Middleware is the center of the action that support the core functionalities (policy analysis,

interface decision, network security/authentication etc.).

● MIH oversees network interface, answers interface inquiry (from Network Manager), and pass

interface switch command to HIP (and MIP in the past) to conduct switch.

3

● HIP (and MIP in the past) are our protocols to handle multi-homing, by supplying a unique/stable

presence for each host (HIT for HIP and IPv6 for MIP). Currently, custom modification in HIP is

applied when compile in Linux, which handles IPv4 interface switch in a separate process forked

from the main process.

● MIP is currently disabled due to lack of update and related kernel patches, so an alternative

implementation is needed.

Note:

● Although normally there will be two interfaces, on Linux or Android. There can be multiple

link_sap configured on a single host, so by adding link_sap configuration and execute a third

link_sap instance, a host can monitor a third network interface.

● The reason we put IPv4 switching in HIP instead of MIH is to preserve universality for MIH to

work on both Android and Linux host. In this way, we can instead use Android Framework

modification plus clean HIP to work with MIH and middleware.

Previous architecture documentation see:

https://wiki.cs.columbia.edu/display/sine/Implementation+Design

2.2 ANDROID (PROPOSED)

We don’t currently have a working Android architecture, but we have a proposed architecture that we

believe will be well suited:

Summary:

● Middleware and MIH could largely (or entirely) stay the same.

● Use Android Framework’s native methods to perform switching, leaving HIP running

independently.

https://wiki.cs.columbia.edu/display/sine/Implementation+Design

4

Note that a MIP implementation may be be able to work in Android.

Alternatively, the method of switching in Linux could work in Android (as the ip command is provided in

Android, and many missing Linux utilities can be installed using busybox), but the way it works may not

be preferable comparing to the method in Android framework. The method on Linux is untested as for

now on Android.

3 PROTOCOLS

3.1 MIH - ODTONE
Media Independent Handover (802.21), we use ODTONE / Open 802.21 as our implementation.

MIH is used as a mean to monitor network interface event (link up and down) to help middleware to

make decision on switching. In our project, we modified the mih_usr code significantly, so it can be

queried on interface status by the middleware, and also issue command to switch (for now to our

modification in HIP).

ODTONE website and mailing list:

http://atnog.github.io/ODTONE/

https://atnog.av.it.pt/cgi-bin/mailman/listinfo

http://atnog.github.io/ODTONE/
https://atnog.av.it.pt/cgi-bin/mailman/listinfo

5

Documentation:

http://atnog.github.io/ODTONE/documentation/index.html

Components:

ODTONE consists of three components, executables in protocol/mih/odtone/odtone-0.6/dist

● link_sap: three link_sap's monitor ethernet/wireless/LTE (LTE is not used for Linux, Ethernet is

not used for Android)

● odtone-mihf: main ODTONE program

● mih_usr: the user program to listen to events, heavily modified to provide interface monitoring

and switch issuing, see protocol/mih/mih_usr.c

● A shell script (protocol/mih/mih) is used to streamline the execution of these components.

3.2 HIP - HIP FOR LINUX

Host Identity Protocol, we use HIP for Linux as our implementation

HIP is used to provide a universal address presence (multi-homing) of a mobile node by supplying a

global unique address (Host Identity Tag, HIT). HIT is similar to IPv6, and it is in fact globally unique,

but without a DNS-like service to look up HIT, we always need an initial IP mapping before using HIT as

an network address to work (e.g. streaming video).

In our project, we modified HIP and added a separate process on Linux. This piece of code listens to

command issued by mih_usr in MIH, and perform IPv4 switching. See below for details.

HIPL website and mailing lists:

http://infrahip.hiit.fi/

http://www.freelists.org/list/hipl-users

http://www.freelists.org/list/hipl-dev

How HIP works:

http://infrahip.hiit.fi/index.php?index=how

http://infrahip.hiit.fi/data/archive/InfraHIP_overview_slides.pdf

How to check your HIT:

When hipd is running, execute

$ hipconf daemon get hi default

Or look for dummy0 interface IPv6 address (global one) in:

$ ifconfig

http://atnog.github.io/ODTONE/documentation/index.html
http://infrahip.hiit.fi/
http://www.freelists.org/list/hipl-users
http://www.freelists.org/list/hipl-dev
http://infrahip.hiit.fi/index.php?index=how
http://infrahip.hiit.fi/data/archive/InfraHIP_overview_slides.pdf

6

How to add an initial mapping of HIT to IP (to get the "server" to initiate connection to "client"):

When hipd is running, execute:

$ hipconf daemon add map <PEER_HIT> <PEER_IP>

Linux modification of HIP:

A separate forked process is when HIP is used on Linux host, this process listens for command from

mih_usr (at port 7776) to switch IPv4 interface. This part of modification include patches and

hip_omni.c/.h in protocol/hip. This modification is currently only applied on Linux.

Unlike old version, there is no several routing table. We keep all interface alive, so all the subnet routes

stay the same, so the routing table will be the same except the default route, which we will modify.

The modification only supports interface switching (e.g. "pref wlan0"), encryption mode change is not

supported ("eon", "eoff").

The reason why we choose to include this piece of code with HIP is to keep middleware universal in case

Android and Linux will use different native way to switch interface in the future.

3.3 MIPV6 - UMIP

MIPv6 is an alternative way of providing multi-homing (unique presence).

UMIP was the implementation choice, but it is not currently in use, reason:

● UMIP has not been updated, repository unreachable: http://umip.org/

● Kernel patch required is unavailable for newer kernel (www.mobile-ipv6.org unavailable, and

other archives found not up-to-date)

Viable alternative to look into:

http://www.mip6d-ng.net/

3.4 MIDDLEWARE

Middleware largely remain unchanged, other than stability changes and compile warnings fixes.

Some features not implemented yet are commented out in the code, namely:

● Code about interface cost and bandwidth are commented out, around 410th-440th line in

PolicyModel.cpp:

https://github.com/lingyuan-he/OMNI-Columbia-

IRT/blob/master/middleware/policyMgr/PolicyModel.cpp

● In network manager, 97th to 126th line, where bandwidth and cost are fetched from MIH.

Currently mih_usr does not respond to these request.

https://github.com/lingyuan-he/OMNI-Columbia-

IRT/blob/master/middleware/networkMgr/nm.cpp

http://umip.org/
http://www.mobile-ipv6.org/
http://www.mip6d-ng.net/
https://github.com/lingyuan-he/OMNI-Columbia-IRT/blob/master/middleware/policyMgr/PolicyModel.cpp
https://github.com/lingyuan-he/OMNI-Columbia-IRT/blob/master/middleware/policyMgr/PolicyModel.cpp
https://github.com/lingyuan-he/OMNI-Columbia-IRT/blob/master/middleware/networkMgr/nm.cpp
https://github.com/lingyuan-he/OMNI-Columbia-IRT/blob/master/middleware/networkMgr/nm.cpp

7

4 DEVELOPMENT ENVIRONMENT

4.1 LINUX DEVELOPMENT
● Operating System: a mixture of Ubuntu 12.04 64-bit and 32-bit environments, demo is performed

on 32-bit machines in the lab.

● Compiler: gcc/g++ 4.6.3 that come with Ubuntu 12.04

● Development Dependencies: fetched through apt-get in configure script

● Note:

○ Upgrading to Ubuntu 14.04 may cause compiling warnings and errors in some of the

older software components

○ Running some of the components on a 64-bit machine may require 32-bit libs on Ubuntu

12.04, which is not automatically installed:
$ sudo apt-get install ia32-libs

4.2 ANDROID DEVELOPMENT
Android development we did focused on cross-compilation and executable testing. Native interface

switching has not been implemented, and the Linux method of switching has not been fully tested.

● Host: A Nexus 7 Device with Stock Android 4.4 Kitkat on a custom Kernel version 3.4

● Toolchain: arm-linux-androideabi-4.9 provided by Android NDK 10d (32-bit) version for cross-

compile, and arm-gcc-eabi-4.6 from Google repository for Kernel compilation

● Note:

○ Dependencies on Linux can be obtained by apt-get, simply run

android_porting/dependency.sh

5 CODE REPOSITORY

Code repository is located at:

https://github.com/lingyuan-he/OMNI-Columbia-IRT

Relevant folders:

● android_porting: android porting scripts and files

○ install: installation folder of cross compilation

○ kernel: instruction and utility on custom kernel of Android

○ patches: the patches to applied to libraries and NDK header for cross-compilation

○ test: place for test programs, now only include a short static query test on MIH

○ work: working folder that will be filled with software downloads and builds

● middleware: control middleware and policy engine

○ connectionMgr: manage a table of different connection on the host

○ locationMgr: location manager module

○ policyMgr: policy engine module

○ networkMgr: manage network interfaces

○ protocolMgr: socket wrapper

○ securityMgr: authentication module

https://github.com/lingyuan-he/OMNI-Columbia-IRT
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/android_porting
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/android_porting/install/
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/android_porting/kernel
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/android_porting/patches
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/android_porting/test
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/android_porting/work
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware/connectionMgr
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware/locationMgr
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware/policyMgr
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware/networkMgr
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware/protocolMgr
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware/securityMgr

8

○ srelay: socket relay / SOCKS server, and middleware main function

○ locationSwitch: location switching utility locsw, used to manually assign location

● protocols: protocol components

○ hip: Host Identity Protocol (HIP for Linux) and related modifications

○ mih: Media Independent Handover Protocol (ODTONE) and related modifications

○ umip: old Mobile IPv6 protocol (UMIP), not in use now due to lack of kernel patch and

new software update

Legacy folders:

● include

● experiments

● libsine

● sined

● ssm

● middleware/sine

See old documentation: https://wiki.cs.columbia.edu/display/sine/Code+Repository, for detailed

information on the legacy folders.

Previous code repository can be found at: https://github.com/columbia-irt/manhattan.

6 INSTALLATION

6.1 LINUX

$./configure

● Need sudo to install required libraries

● Will take a while to complete in the first run
$ make

$ sudo make install

After installation, you have those action available:

● Start HIPL
$ sudo hipd

● Start ODTONE
$ sudo mih

● Start location swither
$ locsw

● Start middleware
$ sudo sined -f

Note that you will always need MIH running first to launch middleware, otherwise middleware will run

briefly and halt. It is not really important on when HIPL should be launched.

https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware/srelay
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware/locationSwitch
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/protocols
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/protocols/hip
http://infrahip.hiit.fi/
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/protocols/mih
http://atnog.github.io/ODTONE/
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/protocols/umip
http://umip.org/
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/include
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/experiments
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/libsine
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/sined
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/ssm
https://github.com/lingyuan-he/OMNI-Columbia-IRT/tree/master/middleware/sine
https://wiki.cs.columbia.edu/display/sine/Code+Repository
https://github.com/columbia-irt/manhattan

9

6.2 ANDROID
While there is no working demo or example on Android, we have guide to device preparation, kernel

configuration and cross-compilation to start with.

Prepare Device

Before continue to cross-compile, the device need to be prepared:

● Get adb and fastboot working with your device, here are some reference link if you are unfamiliar

with the process:

 http://developer.android.com/tools/help/adb.html#Enabling

 http://developer.android.com/tools/device.html

● Root the device, an example tutorial: http://www.ibtimes.co.uk/root-nexus-5-nexus-7-2012-wi-fi-

android-5-1-lmy47d-lollipop-firmware-1491474

 (You also need to enable su in adb shell)

● Install busybox to have a full set of utilities, such as awk and patch:

https://play.google.com/store/apps/details?id=stericson.busybox&hl=en

(Note that there might exist a complete Android version of BusyBox, which can work better)

Kernel Compilation

You will need your device to boot with a custom kernel (and kernel modules) in order to experiment with

HIP (or other component in the future).

Instructions on how to prepare and compile a custom kernel, and information on booting Android with

custom kernel, can all be found in ‘Android Kernel Compilation’ below.

Cross Compilation

Cross-compilation is done entirely with script, using toolchain arm-linux-androideabi from NDK. We

will cover the work of cross-compilation in details later in the report.

On Linux:

$ cd android_porting

$./dependency.sh

This will install standalone adb and fastboot, and also libncurses needed by kernel compilation.

$./compile

This script will download Google NDK, build toolchain inside toolchain folder, and use the toolchain to

cross-compile all software components (except the switching support on Linux). It will take a period of

time to cross-compile everything.

Before pushing files, change interface MAC addresses inside install/odtone/lte/link_sap.conf and

install/odtone/802_11/link_sap.conf to addresses of LTE and WiFi interface on Android device.

Note that MAC addresses can be checked on Android using netcfg.

http://developer.android.com/tools/help/adb.html#Enabling
http://developer.android.com/tools/device.html
http://www.ibtimes.co.uk/root-nexus-5-nexus-7-2012-wi-fi-android-5-1-lmy47d-lollipop-firmware-1491474
http://www.ibtimes.co.uk/root-nexus-5-nexus-7-2012-wi-fi-android-5-1-lmy47d-lollipop-firmware-1491474
https://play.google.com/store/apps/details?id=stericson.busybox&hl=en

10

Then push all relevant files. The following script will push the executables onto android on rightful place

$./push.sh

Now you should have the same contents of odtone/hipl/sine folders on Android in /data/misc/install,

with a few exception that configuration files being uploaded to somewhere else.

7 LINUX DEMO CONSTRUCTION

Below we will cover a demo based on Linux: Video streaming between two hosts using VLC

The setup:

server is located on Wireless, client on Ethernet and wireless, they are connected using HIT identifier

(initial HIT-IP mapping needed at server side). Client moves between eth0 and wlan0 according to the

location policy (triggered by a switcher), and the video streaming will not disconnect (continue with a

delay).

7.1.1.1 Server: on Ethernet (eth0)

Step 0: install HIPL

You can either install the whole stack of the middleware, or simply install HIP for Linux, since it is all we

need.

Step 1: run HIPL

$ sudo hipd

Step 2: initial IP mapping of the client

$ hipconf daemon add map <client HIP identifier - HIT> <client wireless IPv4

address>

We use wireless (wlan0) address here since our control middleware will default to wlan0 (location

‘columbia’) when starting up.

Note that initial mapping could also be done by adding entry to /usr/local/etc/hip/host, but since IP is

dynamic, we do it manually each time. On the other hand, HIT should stay the same for one host all the

time.

Step 3: stream video to the client

In VLC, stream a video to RTP via port 5000:

rtp://[<client HIT>]:5000

Follow the wiki here to do it:

https://wiki.videolan.org/Documentation:Streaming_HowTo_New/

In short, you have to follow this sequence:

Media Menu -> Stream -> Select File -> Select Protocol -> Input Address and Port -> Stream

https://wiki.videolan.org/Documentation:Streaming_HowTo_New/

11

7.1.1.2 Client: on both eth0 and wlan0

Step 0: install the whole stack

This is covered in ‘Installation’, in short:

$./configure

$ make

$ sudo make install

Step 1: setup wireshark

Open two wireshark instances to monitor wlan0 and eth0.

$ sudo wireshark

For ease of discriminating UDP packets (RTP uses UDP), on both wireshark instances, using View ->

Coloring Rules to color UDP to pink.

Step 2: start the server, as we stated above

$ sudo kill_sined

Just in case the previous one is still running.

Step 3: start MIH in terminal tab 1

$ sudo mih

Step 4: start HIPL in terminal tab 2

$ sudo hipd

Step 5: start location switcher in terminal tab 3

$ locsw

It will start with default location ‘columbia’ (wlan0).

Step 6: starts control middleware in terminal tab 4

$ sudo sined -f

Wait a few moment for everything to stabilize. And you will be on wlan0 if you check:

$ netstat -ren.

Step 7: use VLC to play video streaming

In VLC, play network video stream from:

rtp://[client’s own HIT]:5000

You can do that at:

Media Menu -> Open Network Stream

Now you should have the video playing.

12

Step 8: use locsw to switch location and interface

(1) switch to home (eth0):

At terminal tab 3, type "home", which means eth0 is preferred.

Video will lag for around 20 seconds, then it resumes on eth0.

To verify this, on wireshark you will find now a lot of pink UDP packets (carrying RTP payload) flowing

on eth0. Alternatively, $ netstat -ren can also help you to find the default interface.

(1) switch to columbia (wlan0):

At terminal tab 3, type "columbia", which means wlan0 is preferred.

Video will lag for around 20 seconds, then it resumes on wlan0.

To verify this, on wireshark you will find now a lot of pink UDP packets (carrying RTP payload) flowing

on wlan0. Alternatively, $ netstat -ren can also help you to find the default interface

8 LINUX INTERFACE SWITCHING

A reliable and efficient way of switching network interface on Linux has been the top topic for this

project in Spring 2015, this section is a summary of all the experiments around this issue.

Current solution is described in Method 1 with sub-solution 1 on obtaining router’s address, all other

methods are listed here for reference, with red font indicating failure reason.

8.1 METHOD 0: BRING INTERFACE UP AND DOWN

We call it method 0 because it is obvious.

$ sudo ifconfig <interface> <up/down>

Of course this does the job, but with two significant shortcomings:

● You cannot continue to monitor an interface via MIH if it is turned off

● Bring an interface online takes seconds

8.2 METHOD 1: MODIFY ROUTING TABLE DEFAULT ROUTE - CURRENT

SOLUTION

Syntax (in terminal):

$ sudo ip route replace default via <gateway ip> dev <interface name>

An example:

$ netstat -rne

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 128.59.16.1 0.0.0.0 UG 0 0 0 eth0

1.0.0.0 0.0.0.0 255.255.255.0 U 0 0 0 dummy0

13

128.59.16.0 0.0.0.0 255.255.248.0 U 1 0 0 eth0

160.39.192.0 0.0.0.0 255.255.254.0 U 2 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0

$ sudo ip route replace default via 160.39.192.2 dev wlan0

$ netstat -rne

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 160.39.192.2 0.0.0.0 UG 0 0 0 wlan0

1.0.0.0 0.0.0.0 255.255.255.0 U 0 0 0 dummy0

128.59.16.0 0.0.0.0 255.255.248.0 U 1 0 0 eth0

160.39.192.0 0.0.0.0 255.255.254.0 U 2 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0

This method easily redirect all IP traffic through a new device by using a new default routing route, react

speed is also good, but how to get gateway/router IP is the main issue here.

How to get gateway/router IP address?

1. Current solution: one-hop ping

The workaround is to (1) switch default gateway using only interface name (2) do a one-hop ping

to fetch router's address (3) change default gateway again, supplying the gateway IP.

This solution works well for now at both home and lab setup, but will be troublesome if the first-

hop router does not reply to such ping (similar to traceroute where multiple routers may not

respond).

If we leave gateway IP as 0.0.0.0, the host will issue an ARP request for every IP we want to

reach (and answers will always be our router address). Technically the network still works, but

rather in an inefficient way.

Example (ping a google server):

$ sudo ip route replace default dev <wlan0/eth0>

$ ping -t 1 -c 1 74.125.226.78

PING 74.125.226.78 (74.125.226.78) 56(84) bytes of data.

From 192.168.1.1 icmp_seq=1 Time to live exceeded

$ sudo ip route replace default via 192.168.1.1 dev <wlan0/eth0>

2. Using local ARP result

Not working, reason: arp result may contain more than the router's address in a corporate/school

network setting, since the machine may not behind a typical DHCP router and thus have several

direct peers.

On home router:

$ sudo ip route replace default dev <wlan0/eth0>

14

Address HWtype HWaddress Flags Mask Iface

192.168.1.1 ether c8:d7:19:33:52:95 C wlan0

But in the lab, there are several result for each interface, we have no one to determine which is

the router:

$ arp -n

Address HWtype HWaddress Flags Mask Iface

160.39.192.2 ether b0:fa:eb:63:00:3f C wlan0

74.125.224.48 ether 00:00:0c:07:ac:00 C wlan0

128.59.16.38 ether 00:50:56:82:5d:ef C eth0

74.125.224.48 ether d0:c7:89:a9:c7:40 C eth0

160.39.192.3 ether 7c:ad:74:68:5e:8f C wlan0

128.59.21.104 ether 00:26:ab:bb:c8:24 C eth0

128.59.16.1 ether d0:c7:89:a9:c7:40 C eth0

3. Using local DHCP lease

Not working, reason: not all machine is behind DHCP (no lease), and the lease may not be active.

On home router:

$ sudo cat /var/lib/dhcp/dhclient.leases

lease {

 interface "wlan0";

 fixed-address 192.168.1.115;

 server-name "ecosystem.home.cisco.com";

 option subnet-mask 255.255.255.0;

 option routers 192.168.1.1;

 option dhcp-lease-time 86400;

 option dhcp-message-type 5;

 option domain-name-servers 192.168.1.1;

 option dhcp-server-identifier 192.168.1.1;

 option dhcp-renewal-time 43200;

 option broadcast-address 192.168.1.255;

 option dhcp-rebinding-time 75600;

 option host-name "lingyuan-HP";

 option domain-name "nyc.rr.com";

 renew 5 2015/04/10 10:51:15;

 rebind 5 2015/04/10 22:21:30;

 expire 6 2015/04/11 01:21:30;

http://abbbc8:24/

15

}

But in the lab, the lease has long expired, or there is no leases:

One lab machine:

$ sudo cat /var/lib/dhcp/dhclient.leases

lease {

 interface "wlan0";

 fixed-address 192.168.1.66;

 option subnet-mask 255.255.255.0;

 option dhcp-lease-time 7200;

 option routers 192.168.1.1;

 option dhcp-message-type 5;

 option dhcp-server-identifier 192.168.1.1;

 option domain-name-servers 128.59.59.70;

 option broadcast-address 192.168.1.255;

 option domain-name "mip6test.com";

 renew 3 2013/04/24 19:01:28;

 rebind 3 2013/04/24 19:57:47;

 expire 3 2013/04/24 20:12:47;

}

On another lab machine:

$ sudo cat /var/lib/dhcp/dhclient.leases

(nothing...)

8.3 METHOD 2: MODIFY INTERFACE METRIC

The basic thinking behind this method is to: (1) choose the order of preference of the interfaces (2) refresh

or restart network service to let it pick the new preference.

Interface Preference

By modifying interface metric, we can change the "order" of the interface used. In routing table, the

default interface (gateway) comes with metric 0, with others larger that 0.

A handy tool to change interface metric is ifmetric:

http://0pointer.de/lennart/projects/ifmetric/

There is a bug in ifmetric, download the source, change line 47 in src/nlrequest.c to "char

replybuf[4096];" before make and sudo make install.

Example of ifmetric:

$ netstat -ren

http://0pointer.de/lennart/projects/ifmetric/

16

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 128.59.16.1 0.0.0.0 UG 0 0 0 eth0

1.0.0.0 0.0.0.0 255.255.255.0 U 0 0 0 dummy0

128.59.16.0 0.0.0.0 255.255.248.0 U 1 0 0 eth0

160.39.192.0 0.0.0.0 255.255.254.0 U 2 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0

$ sudo ifmetric wlan0 0

$ sudo ifmetric eth0 10

$ netstat -ren

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 128.59.16.1 0.0.0.0 UG 10 0 0 eth0

128.59.16.0 0.0.0.0 255.255.248.0 U 10 0 0 eth0

160.39.192.0 0.0.0.0 255.255.254.0 U 0 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 10 0 0 eth0

One thing noted is that after changing metrics, network often begin to act weirdly and result in losing

connection. It will go back to normal if you restore the old metrics.

We refer to the previous way the soft/temporary way to set interface metric.

Alternatively, by assigning an interface up event in /etc/network/interfaces, we can set a hard/long-term

metric.

$ cat /etc/network/interfaces

auto lo

iface lo inet loopback

iface eth0 inet dhcp

 up ifmetric eth0 10

iface wlan0 inet dhcp

 up ifmetric wlan0 0z

Obviously, we need restart (not only refresh) network service afterwards to put these into effect.

And it is also not a good practice to assume that the configuration file is empty (default only with the first

two lines) and write it on the fly.

Put the Method into Trial

1. Soft/temporary ifmetric setup + restarting network daemon

Restarting network daemon is deprecated and does not re-pick interface (nor changing the metrics):

(Assume changing metrics like we showed above - wlan0 0, eth0 10)

17

$ sudo /etc/init.d/networking restart

 * Running /etc/init.d/networking restart is deprecated because it may not enable

again some interfaces

 * Reconfiguring network interfaces... [OK]

(Routing table stays the same, no switching interface)

2. Soft/temporary ifmetric setup + bring interface down and immediately up

Bringing interfaces down and up will reset metric:

(Assume changing metrics like we showed above - wlan0 0, eth0 10)

$ sudo ifconfig eth0 down && sudo ifconfig wlan0 down

$ sudo ifconfig eth0 up && sudo ifconfig wlan0 up

$ netstat -ren

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 128.59.16.1 0.0.0.0 UG 0 0 0 eth0

128.59.16.0 0.0.0.0 255.255.248.0 U 1 0 0 eth0

160.39.192.0 0.0.0.0 255.255.254.0 U 2 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0

3. Soft/temporary ifmetric setup + network-manager restart

network-manager service restart is the new preferred way to restart network service

This method will also reset the metrics:

(Assume changing metrics like we showed above - wlan0 0, eth0 10)

$ sudo service network-manager restart

$ netstat -ren

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 128.59.16.1 0.0.0.0 UG 0 0 0 eth0

128.59.16.0 0.0.0.0 255.255.248.0 U 1 0 0 eth0

160.39.192.0 0.0.0.0 255.255.254.0 U 2 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0

4. Hard/long-term ifmetric setup + restart network-manager

This method does work, but not in a preferable way:

(Assume changing metrics like we showed above - wlan0 0, eth0 10)

$ sudo service network-manager restart

network-manager stop/waiting

network-manager start/running, process 3205

18

$ netstat -ren

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 160.39.192.1 0.0.0.0 UG 0 0 0 wlan0

160.39.192.0 0.0.0.0 255.255.254.0 U 2 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 wlan0

$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:21:86:52:7b:3e

 inet6 addr: fe80::221:86ff:fe52:7b3e/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:57173 errors:0 dropped:98 overruns:0 frame:0

 TX packets:1501 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:7026984 (7.0 MB) TX bytes:499503 (499.5 KB)

 Interrupt:20 Memory:fe000000-fe020000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:904 errors:0 dropped:0 overruns:0 frame:0

 TX packets:904 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:78798 (78.7 KB) TX bytes:78798 (78.7 KB)

wlan0 Link encap:Ethernet HWaddr 00:1f:3c:73:51:11

 inet addr:160.39.192.46 Bcast:160.39.193.255 Mask:255.255.254.0

 inet6 addr: fe80::21f:3cff:fe73:5111/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:17264 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1992 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:1846034 (1.8 MB) TX bytes:900656 (900.6 KB)

The main interface does switch to WiFi, but Ethernet remains in a unconnected stage without an IP

address. This will makes MIH unable to monitor Ethernet.

http://packets:57173/
http://packets:57173/
http://packets:1501/
http://packets:1501/
http://txqueuelen:1000/
http://txqueuelen:1000/
http://bytes:7026984
http://bytes:7026984
http://bytes:499503
http://bytes:499503
http://packets:904/
http://packets:904/
http://packets:904/
http://packets:904/
http://bytes:78798
http://bytes:78798
http://bytes:78798
http://bytes:78798
http://fe73:5111/64
http://packets:17264/
http://packets:1992/
http://txqueuelen:1000/
http://bytes:1846034
http://bytes:900656

19

Also, it takes a couple of seconds to reset network and re-connect.

Overall, this method remains unfavoured.

Summary

As all the above observations, the current solution is default gateway switching with one-hop ping.

Default gateway switching is currently favoured, because:

● There is no time wasted on bringing interface up/down or restarting network services

● All connections remain active and open, ready for next switch

● No need to touch network configuration, like /etc/network/interfaces

However, more work could be done into the preference of interfaces:

● There could be a way to soft set metric setting and then refresh network

● There could be more way to set interface preference, other than metric

● Maybe a better metric changing tool is available

9 ANDROID KERNEL COMPILATION

In order for HIP to work on Android, several kernel module need to be in place, which are not included in

Android normally. Therefore we need to compile a custom kernel for Android.

Below we will show how to build custom kernel for HIP on Android. While kernel configuration is

specifically for HIP, the instructions are generally good for building custom kernel and install it on

Android.

All instructions are also detailed in android_porting/kernel/README.

Step 1: prepare for the Work

First install the dependencies in android_porting, including adb and fastboot:
$ cd android_porting

$./dependency

Then Add device USB rules, clone the repo and follow the Readme to add rules to udev:
$ git clone https://code.google.com/p/51-android/

$ cd 51-android

Make sure your device is connected to your host with both adb and fastboot. Remember to enable USB

debug in Developer option, and plug in your device.

Accept RSA fingerprint if prompted (on the device), and device should show:
$ adb devices

Proceed to fastboot mode:
$ adb reboot bootloader

Should show device:
$ fastboot devices

20

Step 2: download correct kernel source

First check your Android device codename:

http://www.droidviews.com/list-of-android-device-codenames/

(Example: Nexus 7 is flo)

Reference Google 'Building Kernel' guidelines:

https://source.android.com/source/building-kernels.html

Here is an example of Nexus 7 (flo):
$ cd ../

(back to ‘kernel’)
$ git clone https://android.googlesource.com/kernel/msm

(kernel/msm is in 'source location')
$ cd msm

(initially empty, need to checkout a branch)
$ git branch -a

(list all branches)
$ git checkout android-msm-flo-3.4-kitkat-mr2

(choose the branch of the correct Android version kitkat and codename flo)

Step 3: obtain Toolchain

We will need the bare-metal arm-eabi toolcahin, which Google prebuilt for us.

$ cd ../

(now you are back to 'kernel' folder)
$ git clone https://android.googlesource.com/platform/prebuilts/gcc/linux-

x86/arm/arm-eabi-4.6/

(toolchain in 'arm-eabi-4.6' folder)

In the development, a newer toolchain 4.8 does not work with the kernel version, emitting errors.

Step 4: environment Variables

Note you need to use the full path for CROSS_COMPILE:
$ cd msm
$ export ARCH=arm

$ export SUBARCH=arm

$ export CROSS_COMPILE=/path/to/OMNI-Columbia-IRT/android_porting/kernel/arm-

eabi-4.6/bin/arm-eabi-

These are essential for kernel configuration and building.

Step 5: configure kernel

We need to select configuration, and add kernel modules as required.

$ make flo_defconfig

21

(kernel pre-config, flo_defconfig is indicated in 'build configuration' on Google webpage)
$ make menuconfig

(this will start interactive kernel configuration)

In the configuration menu, enable the following (taken from HIPL document) as modules (click ‘m’):

- Enable loadable module support

- Networking support > Networking options > IP: IPsec BEET mode

- Device drivers > Network device support > Dummy net driver support

- Cryptographic API > Null algorithms

Select Exit and answer Yes to save configuration.

Step 6: make kernel

$ make

Kernel image will be compiled to: msm/arch/arm/boot/zImage

Step 7: prepare boot image tools

Before we head into the steps, first we would like to explain why we leverage boot image.

Android image (ROM if you are familiar with it) consists of five components:

● boot.img: kernel and ramdisk (initial file system)

● recovery.img: kernel and recovery system

● system.img: Android framework

● userdata.img: userdata

● cache.img: user cache

fastboot utility, which is used in Android bootloader, is cable to replace one of these five images on

demand. By substituting the kernel of a boot image (unpacking and repacking), we can boot the device

with a custom kernel without modifying any user content and the OS.

A side note is that by substituting system image with an image with custom Java code, it should be

possible to boot a device with modified Android OS.

Then, compile boot image packing tool from Google. Many commands reference to:

https://gist.github.com/jberkel/1087757.

$ cd ../

(to 'kernel' folder)
$ git clone https://android.googlesource.com/platform/system/core.git

(getting core android lib and utils)
$ cd core/libmincrypt/
$ gcc -c *.c -I../include
$ ar rcs libmincrypt.a *.o
$ cd ../mkbootimg
$ gcc mkbootimg.c -o mkbootimg -std=c99 -I../include

../libmincrypt/libmincrypt.a

Now you have mkbootimg utility in core/mkbootimg

22

We include an unpack tool, 'unmkbootimg' from a third-party source, which is pre-packed in boot_img

folder. The source of this tool: http://whiteboard.ping.se/Android/Unmkbootimg

Step 8: extract original boot image

Nexus factory image can be found at:

https://developers.google.com/android/nexus/images

In the archive, open the zip image file, and extract boot.img to 'boot_img' folder.

Then use unmkbootimg to extract it.
$ cd ../boot_img
$./unmkbootimg boot.img

Now you will have 'initramfs.cpio.gz' (ramdisk) and zImage (kernel), zImage it the one we will replace.

In the process of unpacking, you will see information similar to the following :

unmkbootimg version 1.2 - Mikael Q Kuisma <kuisma@ping.se>

Kernel size 6722240

Kernel address 0x80208000

Ramdisk size 492556

Ramdisk address 0x82200000

Secondary size 0

Secondary address 0x81100000

Kernel tags address 0x80200100

Flash page size 2048

Board name is ""

Command line "console=ttyHSL0,115200,n8 androidboot.hardware=flo user_debug=31

msm_rtb.filter=0x3F ehci-hcd.park=3"

*** WARNING ****

This image is built using NON-standard mkbootimg!

OFF_RAMDISK_ADDR is 0x02000000

Please modify mkbootimg.c using the above values to build your image.

Extracting kernel to file zImage ...

Extracting root filesystem to file initramfs.cpio.gz ...

All done.

To recompile this image, use:

 mkbootimg --kernel zImage --ramdisk initramfs.cpio.gz --base 0x80200000 --cmdline

'console=ttyHSL0,115200,n8 androidboot.hardware=flo user_debug=31 msm_rtb.filter=0x3F ehci-

hcd.park=3' -o new_boot.img

23

By using the command it provides, plus consideration of the WARNING (despite it saying we need to

recompile, there is a command option of --ramdisk_offset 0x02000000), we can have the full command

we will show.

Note that there are many similar tools to unpack boot.img, e.g. on XDA forum, but this is the only one

emit the warning message and instruction to repack.

Step 9: pack new boot image

Since the boot.img is split into kernel and ramdisk, we need to replace the kernel (zImage), which located

in 'msm' folder, and repack boot.img.

$../core/mkbootimg/mkbootimg --kernel ../msm/arch/arm/boot/zImage --ramdisk

initramfs.cpio.gz --base 0x80200000 --ramdisk_offset 0x02000000 --cmdline

'console=ttyHSL0,115200,n8 androidboot.hardware=flo user_debug=31

msm_rtb.filter=0x3F ehci-hcd.park=3' -o new_boot.img

Now you have new_boog.img in 'boot_img' folder.

Step 10: boot the new image

Boot the device into bootloader:
$ adb reboot bootloader

(boot the device into bootloader)
$ fastboot boot new_boot.img

(boot with the new boot image)

If the device boots, and in Setting-About you can see your kernel version with your computer name and

recent kernel build time, you have the newly built kernel running.

Additional Information

(1) Load Kernel Modules Manually

While there should be a way for HIPL to correctly utilize 'modprobe' to load kernel modules dynamically,

this section is on how to load a kernel module manually.

Back in the step of kernel compilation, you can recall modules being compiled like this:

 CC crypto/crypto_null.mod.o

 LD [M] crypto/crypto_null.ko

You need to push the .ko modules to Android, and then load them using 'insmod' utility.

Example

On Linux:

$ adb push crypto_null.ko /data/misc

24

On Android

$ su

insmod /data/misc/crypto_null.ko

(2) HIPL on Android

Documentation on Android is available on HIPL website:

http://infrahip.hiit.fi/hipl/manual/HOWTO.html#android

For now, HIPL keeps complaining on "The modprobe tool is not installed, will not load modules",

although there is a version installed in busybox.

But modprobe in busybox is also emitting error, "modprobe: can't change directory to '/lib/modules': No

such file or directory", indicating further problem.

A possible solution is to find an Android specific 'modprobe', one reference link:

https://github.com/sherpya/android-busybox/blob/master/modutils/modprobe.c

Alternatively, it is also possible that we need a complete Android version of BusyBox afterall.

10 ANDROID CROSS COMPILATION

General

Here is a graph illustrating the basic idea of cross-compilation, in case you are not familiar with it:

In short, cross-compilation is the process of using a cross-compile toolchain turn all code into executables

run on that different architecture (e.g. compile on x86 Linux to create executables for arm).

This is just like a process of compilation/linking on Linux. But without utility to automatically take care

the dependency structure for you (like in apt-get), you will need to discover and tackle the dependencies,

http://infrahip.hiit.fi/hipl/manual/HOWTO.html#android
https://github.com/sherpya/android-busybox/blob/master/modutils/modprobe.c

25

i.e. adding a software on the top of the stack when a dependency is discovered, and work downwards until

the stack is empty.

Toolchain Selection

We have gone through a process of picking and experimenting with different toolchain, before we were

able to finish cross compilation.

First, arm-none-linux-gnueabi, an universal ARM-Linux toolchain. It was the choice in 2013. Although

it is last updated in 2010, and no longer being maintained by Mentor Graphics / Codesourcery, it still

receives wide coverage among developers. However, it is not a good future-proof choice.

Second, arm-linux-gnueabi, another ARM-Linux toolchain. It is offered in Ubuntu software repository

(apt-get), and has been used earlier in the term. But a later discovery show that it hardcodes Linux

interpreter, and thus cannot work in Android.

In readelf:

“[Requesting program interpreter: /lib/ld-linux.so.3]”

Both these two general purpose toolchains requires static linking, since they rely on a different set of

libraries (glibc) and does not include the correct library path (/system/lib and /vendor/lib in Android, not

/usr/lib). When static linking is used, the linker in the toolchain will include any library code required in

the executable by literally copy them from archive files (.a libraries). On the other hand, in dynamic

linking, the linker in the toolchain will assume that the shared libraries (.so libraries) will exist in

execution environment to be dynamically linked, therefore only naming the libraries required in the

executables.

Third, arm-linux-androideabi, toolchain offered by Google in NDK, along with Android library. It is the

natural and native toolchain to work with when dealing with Android, however there are major factors

that increase the amount of patching work:

● Android uses a strip-down version of C library (Bionic) with different headers

● Android default libraries are different, lack Linux-like support

Dependencies

Here is a graph showing all the dependencies and their relationships.

26

List of cross compile scripts:

● compile.sh: main script to cross-compile

● dependency.sh: install dependencies for cross-compilation and kernel building

● push.sh: script to push the compield executables and configuration files

● scripts/common_build.sh: compile shared dependencies, OpenSSL and Libz

● scripts/ndk_config.sh: download and patch NDK, prepare toolchain

● scripts/middlware_build.sh: build middleware

● scripts/hipl_build.sh: build HIPL

● scripts/odtone_build.sh: build ODTONE

See ‘Installation’ on how to use these scripts.

Executable Testing

The result of executable testing on Android is not quite good as for now:

● ODTONE: mih_usr stuck somewhere in the code without useful information, possibly missing

kernel and library support.

● HIPL: cannot successfully load kernel modules although they exist.

● Middleware: cannot test since ODTONEis not working

11 ANDROID JAVA FRAMEWORK

11.1 INTRODUCTION

We started with the notion to research how the Android makes the decision to switch the data

networks and how it sets priority of wifi over the usual data network. Our strategy was to look

into the source code of the wifi and java framework packages to look for the source code that

makes the decision to do so. This would enable us to modify the source code to query our middle

ware binaries instead and then port it back to the device. In the next few sections is described the

work that has been done to try and achieve this goal.

Challenges faced: During the research on the Java framework it was realized that there were a

lot more interconnected instances between several classes of wifi than originally envisaged. To

map out all such instances and figuring out the entire structure of the flow of the information to

decide when to bring up a certain connection and turn down the other one would take a lot more

time than originally envisaged and could be allocated. Also, the absence of a ready

documentation made it quite arduous to map out the exact functionalities and the relations

between the different classes and we had to resort to go through many lines of code in the java

framework. In this report we have tried to be as explanatory as possible in the field of Java

framework in Android networking.

27

11.2 DOWNLOADING THE SOURCE CODE OF ANDROID

The first step to looking into the source code of Android was to download it onto the PC. The

following steps are followed to do so:

$ mkdir ~/bin

$ PATH=~/bin:$PATH

$ curl https://storage.googleapis.com/git-repo-downloads > ~/bin/repo

$ sudo chmod a+x ~/bin/repo

$ mkdir WORKDIR

The directory WORKDIR can be at any location of your choice.

$ cd WORKDIR

$ repo init –u https://Android.googlesource.com/platform/manifest

$ repo sync

This command is finally used to download the entire source code from the git repo. A portion of

the code can also be downloaded (if that is all is needed) by modifying the previous command

but we are not following that. After the download is over we need to build the code on the

machine to work in it. The following command details how to (assuming we are already in

WORKDIR):

$ source build/envsetup.sh

This command, along with a few subsequent ones can also be used to build the source code after

the modifications are made to it and the code needs to be ported back to the device. But since we

have not been able to reach that stage, we are not enlisting those commands in this document.

11.3 JAVA FRAMEWORK

The following are the crucial Java framework codes that have been looked into. Since there is

not a single instance of network switch in a single code, the following descriptions contain the

important properties and methods describing as to what their purpose is. This is meant to make it

easier for a future researcher in this project to find the code required to be modified.

https://storage.googleapis.com/git-repo-downloads
https://android.googlesource.com/platform/manifest

28

1. ConnectivityManager

It is used to keep the record for the state of network connectivity for Android.

Applications use this class’ API to check and track the changes in network connectivity.

It monitors the wireless connections of Android (GPRS, Wifi etc) and broadcasts the

intents notifying the change in network connectivity. It also allows the applications to

select the networks for the data traffic. It defines several variables that can be used to

keep a track of all the different kinds of data networks that are supported and the one (i.e.

the interface) which is active. The default network attributes are defined in the

networkAttributes array in the config.xml file

(/frameworks/base/core/res/res/values/config.xml). It maintains a list which should be

overwritten by the device to present a list of network attributes. This list can be used by

the connectivity manager to decide which networks can coexist based on the hardware.

The restore-time in this array for wifi is ‘-1’ which indicates that it will not wait for any

other connection to be set up and the preference is set to ‘1’. If we change these values in

this particular array, it will change the network preferences.

Location: /frameworks/base/core/java/android/net/

Important features:

(i) Includes the method setNetworkPreference() to specify the preferred network type

to use the network when more than one are available.

(ii) Defines a method setRadio() to turn the radio on for a particular network.

(iii) Includes the method called requestNetworkTransitionWakelock() to ensure the

device does not go to sleep until it connects to the next available default network.

It holds a wakelock for a specified duration in seconds.

(iv) This class also has a method to check if an active particular network is metered or

not. This can be particularly useful in developing the policy language in which the

user can also specify the switch to the alternate data network depending upon the

data usage statistics. The method is called isActiveNetworkMetered() and returns

a boolean true/false.

(v) It uses the method getActiveLinkQualityInfo() of the return type

LinkQualityInfo.java to get the information of the active network link. This

information can also be useful while defining the policy of network switch. This

particular class maintains the link attributes viz. upload and download throughput,

packet error rate and signal strength.

(vi) Another method called getAllLinkQualityInfo() to return the link quality of all the

network links and stores the information in an array of the type

LinkQualityInfo.java.

2. ConnectivityService

It is the service responsible for tracking the data connections and establish and maintain

connections. It receives the instance from the wifi state tracker that the wifi is down, so it

tries to establish the data connection. It checks for the various network parameters to do

so like signal strength (and if the data speeds are good or not) assign preferences to the

networks. It utilizes an internal wakelock and clears it when a transition is being made

from one state to another. It inherits variables and methods from IConnectivityManager.

Location: /frameworks/base/core/java/android/server/

29

Important features:

(i) It defines the duration after which the device will switch back to its default

network.

(ii) It stores the added the routes to an arraylist called “Collection<>”. It is used to

check to see if any routes are left in the list. If not, then the routes are deleted

from the route table.

(iii) Its constructor ConnectivityService() sets up the connection by setting up the

device’s hostname and reading the default DNS server’s IP.

(iv) It reads in the values from the config.xml file, mentioned in the previous part and

load the values (network attributes) into a local array and is used to determine if

the device is a wifi only device or not.

(v) It creates an interface called NetworkFactory which is used to create

NetworkStateTracker instances. NetworkStateTracker provides the

ConnectivityService with services like change notifications, an API for

controlling the network and storage service for network specific information.

(vi) It takes the network configuration information from the class called

NetworkConfig.java (/frameworks/base/core/java/android/net/). The constructor

of this class is used to read the values in from the config.xml file that was

mentioned before and stores every value in a separate string. The objects of this

class can then be used in the ConnectivityService.

(vii) It checks for a network route’s existence to the host via the specified network

interface using the method requestRouteToHostAddress().

(viii) This class modifies, add and deletes the routes from the device’s route table using

the methods: addRoute(), removeRoute(), addrouteToAddress(),

removeRouteToAddress(), modifyRouteToAddress() and modifyRoute().

(ix) Its handleDisconnect() method is used to handle a disconnect event. For a non-

active network, it can be ignored (this may happen because of explicitly disabling

a network in accordance with network preference policies) but for an active

network a broadcast is sent first and then checked to see if any other network can

be connected to. If not, then it goes ahead with disconnection of an interface. So it

clears the routing table and DNS server entries.

(x) In the event of a new network attempting to connect to the device, the method

named handleConnect() will first check if it is one of the default networks. If yes,

then the other default network that was running is checked for preference and the

one with higher preferences is connected to and the other one is killed. To connect

to the new network, it first has to release the transition wakelock. This process

causes the device to temporarily disconnect from all networks. It then uses a

method handleConnectivityChange() to ensure the device is then connected to the

correct DNS servers and the correct routing table entries exist.

http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/core/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/core/java/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/core/java/android/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/core/java/android/net/

30

3. WiFiManager

It provides the primary API for managing the WiFi connectivity. It keeps a list of

configured networks which can be viewed and updated as and when required and settings

for the currently active wifi network. Connectivity to this network can be established and

torn down and the network state information can be queried using this class. It also

includes methods to return detailed information about access point scans to decide which

one to connect to.

Location: /frameworks/base/wifi/java/android/net/wifi/

Important Features:

(i) It uses an internal method named getConfiguredNetworks() to fetch the list of all

the wifi networks (and their properties) configured in the supplicant. The list is in

the form of WifiConfiguration objects.

(ii) Contains the API methods addNetwork() to add a new network description to the

list of configured networks and returns a network ID; and updateNetwork() to

update the network description for a particular configured network. These

methods take as input parameter the object of class WifiConfiguration which

holds the data to be updated for the particular network. The method

removeNetwork() is used to remove a network from the list of configured

networks. Its input parameter is the integer network ID of that particular network

to the supplicant.

(iii) setWifiEnabled() is used to enable the or disable the wifi based on a boolean input

parameter to it and the method enableNetwork() is used to enable the association

with a particular previously configured network by initiating connection to it. It

takes as input the network ID from the list of the configured networks.

(iv) The method disconnect() is used to dissociate from the current active network. To

connect to an already configured network, the sequence of function calls is

addNetwork(), enableNetwork(), saveConfiguration() and reconnect(). But for a

http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/wifi/

31

new network, instead of this sequence, the standalone method called connect()

can be used which uses the configuration object (of class WifiConfiguration) as a

parameter input.

(v) It has method getDhcpInfo() to return the addresses assigned by the DHCP from

the last successful request for a connection.

(vi) The API can also request the signal strength of a network if it has to be shown to

the user using the calculateSignalLevel() function and can also compare the signal

strengths of two different networks in the vicinity by calling another method

compareSignalLevel().

(vii) The class WifiStateTracker in turn uses boolean inputs from the methods

startWifi() and stopWifi(), which are used to start or stop the wifi driver itself and

therefore connect or disconnect from a network. These methods override the

WifiLock and the idle state of the device. The driver will stay disabled after

calling stopWifi() until the method startWifi() is not called.

(viii) If an application needs the wifi to stay on (possibly for data transfer that needs

longer time), it needs to acquire a WifiLock over the radio (using acquire() of the

nested class WifiLock). Otherwise the radio will turn off if the device goes into

idle state (even if the wifi driver is running). The lock is held until the release() is

called.

4. WiFiMonitor

This class is used to listen to the events from the wpa_supplicant server and passes them

onto the StateMachine for handling. It runs in its own thread.

Location: /frameworks/base/wifi/java/android/net/wifi/

Important Features:

(i) It has methods viz startMonitoring(), stopMonitoring() which in turn call the

methods of the same name through a constructor of the nested class

WifiMonitorSingleton. The interface name is taken as input by WifiMonitor’s

parametrized constructor with the parameter of the type WifiNative. This name is

then passed through the aforementioned functions to the functions of the same

name of class WifiMonitorSingleton.

(ii) WifiMonitor’s stopSupplicant() method calls the method of the same name of the

WifiMonitorSingleton class which in turn uses the object of the WifiNative class

to call its method of the same name.

(iii) It has a nested class MonitorThread whose method run() runs infinitely to keep

monitoring the events from the supplicant. It has method

handleSupplicantStateChange() to handle the events related to the change of state

of the supplicant. It takes as input the new state of the supplicant.

http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/wifi/

32

(iv) MonitorThread has the method handleNetworkStateChange() which takes as input

from the NetworkInfo class the new state of the network and then checks for the

network ID of the old state. It then calls the notifyNetworkStateChange() by

sending the new state and the old network ID to it to send the notification of

change in network to the state machine.

5. WiFiNative

This class is used to bring up or down the wpa_supplicant daemon and for sending

instructions and requests to the wpa_supplicant.

Location: /frameworks/base/wifi/java/android/net/wifi/

Important Features:

(i) Contains the methods startSupplicant(), stopSupplicant() to control the operations

of the wpa supplicant.

(ii) removeNetwork() removes a network with a particular network ID from the

supplicant network list.

6. WifiStateMachine

It tracks the state of wifi connectivity. All the event handling related to wifi is done in

this class and all changes to connectivity are initiated in here. It supports the simple client

mode of operation and the access point mode of operation, wherein the device itself is

acting as an access point. It extends its properties and methods from the StateMachine

class. It handles the results of the wifi scans and checks if the underlying chipset supports

background scanning.

Location: /frameworks/base/wifi/java/android/net/wifi/

Important Features:

(i) It defines the interval (in msecs) between the device polling for the signal strength

(in RSSI) and the linkspeed information.

(ii) It maintains the WakeLock that needs to be held while the wifi is starting (or

stopping) and the driver is loading (or unloading).

(iii) It keeps a log entry of the addresses that have been updated or removed using the

methods addressUpdated() and addressRemoved().

http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/wifi/
http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/wifi/

33

(iv) Its nested class DriverStartedState tracks the state of the supplicant and network

connection state events from the monitor connection to help the framework

synchronize with the current supplicant state.

7. WifiStateTracker

It tracks the state of wifi for connectivity service and sends the events to connectivity

service using the handler of that class.

Location: /frameworks/base/wifi/java/android/net/wifi/

Important Features:

(i) It uses startMonitoring() to monitor the wifi connectivity. It takes instance input

from the WifiManager.

(ii) It uses teardown() and reconnect() to disable and re-enable connectivity to a

network, respectively. They in turn call the methods stopWifi() and startWifi() of

the class WifiManager to handle these events. It also utilizes the function

setRadio() to call setWifiEnabled() of WifiManager to turn the wireless radio off

for a network.

(iii) The method isAvailable() calls the method of the same name of NetworkInfo

class to check the connectivity of the supplicant daemon and thereby return the

availability of the wifi as true or false.

(iv) It uses the LinkProperties class inside the method getLinkProperties() to fetch the

link properties of the network.

(v) The method getLinkQualityInfo() of the type LinkQualityInfo is used to check for

the quality of the network link. It then fetches the Tx packet count and Tx packet

error count from the methods of class SamplingDataTracker and the signal level

from the calculateSignalLevel() method of WifiManager.

http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/wifi/java/android/net/wifi/

34

8. DataConnection

This class represents a single cellular data connection. It extends from the state machine

class.

Location: /frameworks/opt/telephony/src/java/com/android/internal/telephony/dataconnection

Important Features:

(i) The nested class ConnectionParams is used to initialize the connecting parameters

and save internally. The parameters include the APN (access point name) details

and the RIL daemon’s radio technology. Similarly the nested DisconnectParams

saves the disconnecting parameters such as APN which it is disconnecting from

and the reason for disconnect.

(ii) As above, it uses the LinkProperties class to fetch the link properties through its

method getCopyLinkProperties().

(iii) The method onConnect() is used to start setting up the data connection by calling

the setupDataCall() method of the class PhoneBase and tearDownData() is used to

disconnect the data connection. It uses the method getRadioState() of the class

PhoneBase to check if the radio is still on or not for this purpose. On connection,

the method initConnection() is used to initialize the settings for the particular

network. It will check for the APN settings for doing so and if they happen to be

incompatible, will not let the connection proceed.

(iv) The notify methods viz. notifyConnectCompleted() and notifyDisconnect

Completed() are used to send the respective event notifications and the entries are

logged with a timestamp. They have the input parameters the objects of the nested

classes ConnectionParams and DisconnectParams respectively.

(v) Its nested classes maintain the different states of the data connection.

DcDefaultState is the parent state for all the other states. It uses the object of

classes PhoneBase and DcController to either register for DRS and add the

connection to the list of connections through their respective methods

getServiceStateTracker() and addDc() or vice versa.

(vi) The nested class DcInactiveState which maintains the information that the state

machine is currently inactive and is waiting for a connect event. It also informs all

other context that there was a failure in connecting to a data network and the

reason for it. Mainly it is because the device is unable to associate itself with an

APN. Another class DcActivatingState on the other hand maintains the

information that the state machine is trying to activate a connection and the class

DcActiveState tells the contexts that the state machine is connected and is waiting

for a disconnect event.

9. DcController

The DC controller is used to control multiple data connections. It can demultiplex any

incoming unexpected notification message to the appropriate data connection.

Location: /frameworks/opt/telephony/src/java/com/android/internal/telephony/dataconnection

Important Features:

(i) It maintains an arraylist of the object DataConnection type.

(ii) It defines variables used to track the physical link connection activity/inactivity of

the data connection by the class DcTracker.

http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/

35

(iii) It runs a separate thread for every data connection. The handler of every thread

will then handle the individual runnables and message queues for each individual

dc controller thread.

(iv) It has methods addDc(), removeDc() to add and remove the data connections to its

list.

(v) Its nested class DccDefaultState registers the handler of the thread for RIL

connect events and state change of the data network using the method

registerForRilConnected() of the class CommandsInterface.

10. DcTracker

It is used to track any changes to the APN. It extends its methods and properties from the

class DcTrackerBase.

Location: /frameworks/opt/telephony/src/java/com/android/internal/telephony/dataconnection

Important Features:

(i) Its method isApnTypeActive() is used to check if an APN is active or not by

querying the get() method of the class ApnContext.

(ii) It checks if the data flow is possible on a connection using a method

isDataPossible() in which it firstly checks if the APN context is enabled or not

and retrieves its current state. It then uses the method isDataAllowed() of the class

DcTrackerBase (which it can directly use since it is extending from that class) and

then combines the result of both to check and return a boolean value stating if the

data flow is possible or not.

(iii) It also needs to check the link properties (DNS, gateways etc) and the link

capabilities (bandwidth required and available) for the data connection for the

particular APN type. It does so using the methods of the classes LinkProperties

and LinkCapabilities.

(iv) To ensure that the device is connected to the APN of the specified type, we can

use the method enableApnType(). If it returns the status as “request started”, the

instance is broadcasted to the ConnectivityManager when the connection gets

established.

(v) We can check if the data connectivity has been enabled for an APN by using the

method getAnyDataEnabled().

(vi) The state of change in the data connection can be checked using the method

onDataStateChanged(). It takes the input parameter from the RIL daemon. It then

stores the changes to the details of the data connection in a separate arraylist. It

checks for the dormant or other active connections by starting polling.

(vii) The phone can check I multiple data connections can be supported (by carrier

policies, radio technology etc.) using the method isOnlySingleDcAllowed().

(viii) Data connection when roaming in another telecom circle can be enabled (and

configured) or disabled using the methods onRoamingOn() and onRoamingOff().

(ix) When the event for disconnect is received by the class, the method

onDisconnectDone() is called to disconnect from the APN (and turn the radio off

if airplane mode request was called originally).

http://androidxref.com/4.4.4_r1/xref/frameworks/

36

11. DataCallResponse

It is used in ril.h. It defines the variables used to store the details of a data connection.

Location: /frameworks/opt/telephony/src/java/com/android/internal/telephony/dataconnection

Important Features:

(i) It enumerates the different kinds of responses (and errors/failure causes) that are

returned on attempting a data connection by onSetupConnectionCompleted() like

“success”, “bad command error”, “ril error” etc.

(ii) It is used to set the link properties for a particular data connection (starting with

cleaning the previous data) like interface name of the link, IP address of the link,

DNS servers and gateways using the method setLinkProperties(). If an error

occurs, the link properties are cleared and the process is tried again. It returns the

particular response that were initially enumerated as a group.

12. NetworkInfo

It is used to describe the status of a network interface. It uses its method

getActiveNetworkInfo() to send an instance representing the current network connection

to the ConnectivityManager.

Location: /frameworks/base/core/java/android/net

Important Features:

(i) It maintains different states viz. IDLE, CONNECTING, DISCONNECTING etc

in a hashmap that can later be used to check the status of a connection in a

function call. This information can be set using the method setDetailedState().

(ii) Its method getType() returns the type of network that the class currently holds.

The network types are defined inside the ConnectivityManager class. It may be

mobile, wifi, Bluetooth or any other defined in the class.

(iii) The method isConnected() can be called to check if a network connectivity exists

and a data transfer is possible or not and isAvailable() is used to check if a

network connectivity is possible or not. This is especially useful in the cases

where the network is unavailable due to coverage area radio being off etc.

(iv) To check if the device on the current network is roaming or not (i.e. out of his

home network). This is used to keep in check the roaming charges that may incur

on the user due to this situation.

13. DataConnectionStats

It extends from BroadcastReceiver. It saves the statistics of the current data connection.

Location: /frameworks/base/services/java/com/android/server/connectivity

Important Features:

(i) It uses the method startMonitoring() to monitor the changes in the state of the

various parameters of a connection viz. service state, signal strength, data

connection state (whether up/down) using the constructor of the class

PhoneStateListener.

(ii) Its method notePhoneDataConnectionState() is used to check the state of the sim

and if it is GSM or CDMA and confirms the data network type associated with it.

http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/
http://androidxref.com/4.4.4_r1/xref/frameworks/
http://androidxref.com/4.4.4_r1/xref/frameworks/base/

37

14. SignalStrength

It contains the phone signal strength related information. The methods of this class can be

used by the external applications also in addition to the internal codes. It also checks if

the connected network is GSM or not using a Boolean variable.

Location: /frameworks/base/telephony/java/android/telephony

12 HOW WIFI WORKS ON ANDROID DEVICES

The Wifi Architecture on Android can be divided into three parts: The Java Framework (name of

the codes mentioned above), the Hardware Abstraction Layer (wifi.c, wpa_supplicant), which is

also known as the native system library and the kernel space modules (wireless stack, driver).

The Java framework communicates with the wpa_supplicant using the native interface wifi.c and

uses the wireless extension to control the wifi driver.

File Locations:

1. Java framework: base/wifi/Java/Android/net/wifi

2. JNI Code (Android_net_wifi_Wifi.cpp): frameworks/base/core/jni/

3. wifi.c: hardware/libhardware_legacy/wifi

The JNI code communicates with the HAL layer. The HAL code is in wifi.c which

communicates with wpa_supplicant over the control interface.

38

TCP/IP
WEXT/ NL80211/CFG80211

mac80211

Wireless driver
Kernel Space

WifiStateTracker

WifiNative (JNI)

Java Framework

system/core

libnetutils.so

hardware/wifi.c

libwpa_client.so

dhcpd SQLite Keystore
wpa_supplicant/

driver_nl80211.c

Native Process

(HAL)

WifiManager

Wifi Service

WifiMonitor
WiFiWatchdog

Service

13 STATIC VS DYNAMIC LINKING

The runtime libraries provided by the Android compiler toolchain arm-Linux-Androideabi-,

(Android libc) is the Bionic libc rather than the GNU libc (glibc) i.e. arm-Linux-gnueabi-

and is therefore present on the NDK and all the Android devices. Even if we decide to build the

binaries using glibc on NDK, though it is possible to do so, the name will clash with the system

libc when trying to install it on the Android devices if we are in the process of building a

dynamic library but if we are building the glibc as a static library the above issue is skirted as we

never need to install a static library.

Now, to statically link against glibc (and other dependencies) while cross-compiling with the arm

toolchain (or ndk-build), if we decide to build the glibc using the NDK, then the Android.mk

uses the variable BUILD_STATIC_LIBRARY to build the static libraries. But in case we decide

not to use the NDK, it will be problematic since it is highly discouraged for mobile platforms.

During the start-up the statically compiled executables load faster than the dynamically linked

ones as the dynamic library loading is not involved. But on the other hand the disk requirement

and the memory requirement increases with the statically linked executables. This is because

when we link the Android app’s JNI libraries against the Bionic libc we can inherit only shared

read-only access to a copy already in the memory.

If we need to use any additional functionality of the bionic libc which is not there in it, we can

always provide our own implementation of the function if it is missing from the system libraries.

13.1 DYNAMIC LINKING

The following process details how to go about generating the dynamically linked executables:

1. Download the toolchains from CodeSourcery for ARM GNU Linux. The tool chain are

the legacy toolchains for which static compilation is also feasible.

39

2. We can then compile the source files as:

$ arm-none-Linux-gnueabi-gcc -c hello.c

$ arm-none-Linux-gnueabi-gcc -c start.c

$ arm-none-Linux-gnueabi-ld \

 --entry=_start \

 --dynamic-linker /system/bin/linker -nostdlib \

 -rpath /system/lib -rpath ~/tmp/Android/system/lib \

 -L ~/tmp/Android/system/lib -lc -o hello hello.o start.o

$ adb push hello /data/hello/

cd /data/hello

./hello Hello, world!

Here the files hello.c and start.c are any sample files being compiled using the toolchains

above. The following options are being used:

 --dynamic-linker: Gives the place of the dynamic linker.

 -rpath: location where the dynamic linker search libraries.

 -L: Location where the ld searches the library (option used to denote: -l at compile time).

3. The next step would be to try and run the binary and see if it works.

13.2 DIFFERENCES BETWEEN BIONIC LIBC AND GLIBC

1. The bionic libc does not handle C++ exceptions. Neither do its routines throw exceptions

themselves, nor do they pass exceptions from a called function back to their caller. Support

for C++ exceptions causes significant overhead to the function calls. And since Java, which

is Android’s primary language of implementation handles the exceptions within the run time

package, it is not required for C++ to do so as well.

2. The pthread implementation has been developed for Android. It is an implementation of

POSIX pthreads that are necessary for supporting threads in Dalvik JVM.

14 ADDITIONAL DOCUMENTATIONS

Below is a list of all the presentations throughout Spring 2015 semester:

● Unified Heteogenerous Network Middleware - Project Plan.pdf

● Unified Heteogenerous Network Middleware - Week 3 Presentation.pdf

● Unified Heteogenerous Network Middleware - Week 6 Presentation.pdf

● Unified Heteogenerous Network Middleware - Week 7 Presentation.pdf

● Unified Heteogenerous Network Middleware - Week 10 Presentaion.pdf

● Unified Heteogenerous Network Middleware - Week 13 Presentaion.pdf

● Unified Heteogenerous Network Middleware - Week 16 Presentaion.pdf

These presentations are all uploaded to the Wiki, and may help you understand what has been

accomplished in the semester.

Final presentations of the semester:

https://wiki.cs.columbia.edu/download/attachments/45350923/Unified+Heteogenerous+Network+Middleware+-+Project+Plan.pdf?version=2&modificationDate=1428944588000
https://wiki.cs.columbia.edu/download/attachments/45350923/Unified+Heteogenerous+Network+Middleware++-+Week+3+Presentation.pdf?version=1&modificationDate=1428944670000
https://wiki.cs.columbia.edu/download/attachments/45350923/Unified+Heteogenerous+Network+Middleware+-+Week+6+Presentation.pdf?version=2&modificationDate=1428944680000
https://wiki.cs.columbia.edu/download/attachments/45350923/Unified+Heteogenerous+Network+Middleware++-+Week+7+Presentation.pdf?version=1&modificationDate=1428944746000
https://wiki.cs.columbia.edu/download/attachments/45350923/Unified+Heteogenerous+Network+Middleware++-+Week+10+Presentaion.pdf?version=1&modificationDate=1428944756000
https://wiki.cs.columbia.edu:8443/download/attachments/17694765/Android+Heteogenerous+Network+Middleware+-+Week+13+Presentaion.pdf
https://wiki.cs.columbia.edu:8443/download/attachments/17694765/Android+Heteogenerous+Network+Middleware+-+Week+16+Presentaion.pdf
https://wiki.cs.columbia.edu:8443/download/attachments/17694765/Android+Heteogenerous+Network+Middleware+-+Week+16+Presentaion.pdf

40

Lingyuan He - Unified Heteogenerous Network Middleware - Final Presentation.pdf

Dhruv Kuchhal - Unified Heterogeneous Networking - Java Framework - Final presentation.pdf

There are also some additional previous documents in Wiki that we think are necessary to enhance the

understanding of how the project works:

● Network Manager Document

● Network Manager Presentation

● Policy Manager

● Policy Language

● Sock Proxy

● MIPv6

● Security Architecture

15 FUTURE WORK

Future tasks are available on both Android and Linux.

On Linux:

● Update and maintain the software components to newer Operating System

● Refactor middleware for higher standard and readability

● Continue to research a better way to switch interface

● Design and implement a new policy language

On Android:

● Continue to research Android Framework on modification

● Make use of Android Framework to write modifications, using the native method to switch

between interfaces. Then make the modification work with HIPL, ODTONE and the control

middleware.

● Continue to experiment with HIPL to make it work

● Work with cross-compiled middleware and ODTONE to debug and test them

Other side tasks that could be valuable:

● Restart using Mobile IPv6, looking into new implementations

● Looking into Android compilation, research the possibility of to modify Android framework and

quickly boot it without having to totally flash the target device.

https://wiki.cs.columbia.edu:8443/download/attachments/47153174/Android+Heteogenerous+Network+Middleware+-+Final+Presentation.pdf?version=1&modificationDate=1432061255249
https://wiki.cs.columbia.edu:8443/download/attachments/47153174/Android+Heteogenerous+Network+Middleware+-+Final+Presentation.pdf?version=1&modificationDate=1432061255249
https://wiki.cs.columbia.edu:8443/download/attachments/47153174/Android+Heterogeneous+Unified+Networking+-++Final+Project+presentation+-+Dhruv.pdf
https://wiki.cs.columbia.edu:8443/download/attachments/31982002/Network+Manager+Report.pdf?version=1&modificationDate=1377388202000
https://wiki.cs.columbia.edu:8443/download/attachments/31982002/Network+Manager.pptx?version=1&modificationDate=1377388234000
https://wiki.cs.columbia.edu:8443/download/attachments/18186484/Policy+Manager.pptx?version=1&modificationDate=1332517308000
https://wiki.cs.columbia.edu:8443/download/attachments/31982002/Policy+Language.pptx?version=1&modificationDate=1377388322000
https://wiki.cs.columbia.edu:8443/download/attachments/19038325/SOCKS+PROXY.pptx?version=1&modificationDate=1332517587000
https://wiki.cs.columbia.edu:8443/download/attachments/31982002/MIPv6.pptx?version=1&modificationDate=1377388197000
https://wiki.cs.columbia.edu:8443/download/attachments/31982002/security_architecture.pptx?version=1&modificationDate=1377388123000

