
AWIC Spring 2014

Michael Ben-Ami - Graduate Researcher
Kyung-Hwa Kim - Mentor

Jae Woo Lee - Mentor

“A Walk in the Clouds”

Background Information

● Started as undergraduate project from the
previous semester (Fall 2013)
○ Etan Zapinsky and Alex Merkulov

● Examining container-based clouds
● M-to-N mapping of network addresses and

containers
● Container Management System

Original Goals
● Simplify the interface between cloud PaaS

providers and customers (developers).
○ Reduce dependency on provider-generated static

configuration files or environment variables
○ Allow applications to use their standard port

numbers
● Simplify policy configuration in provider

infrastructure
○ load balancers, firewalls, NAT gateways, etc.

Original Implementation
● Mapping: (public_ip, port) ⇒ private_ip

○ Single VM with multiple Docker containers
■ Containers attached to Open vSwitch

○ Pyretic OpenFlow controller does translation
○ Containers can’t act as clients, but can listen and

respond as servers to the outside world

● Container Lifecycle Management
○ HTTP API, CLI utility

My Tasks

● Implement forwarding based on mapping:
(public_ip, port) ⇒ destination MAC
○ No Layer 3 NAT

● Implement container-originated
communication

● Expand from single to multiple VMs

My Tasks (continued)

● Adapt to run on top of public cloud IaaS
● Contribute to HotCloud workshop paper
● Focus more on network, less on container

lifecycle management

New Mapping

● Implemented as Python dictionary at controller

● Keys are tuple (public_ip, port)
● Values are correct destination MAC

New Mapping (continued)

● Standard CAM table for layer 2 forwarding
○ Map MAC address to outgoing interface by learning
○ Checked after MAC address rewrite
○ Updated on received packet at the controller

○ Consulted before packet egress

Design Evolution - Phase 0

● Open vSwitch (OVS) is more like a layer 3 router or multilayer switch
● Performs special layer 3 rewrite (NAT)
● Performs normal layer 2 rewrite for next hop or final destination
● Default Gateway for containers provided by normal network infrastructure

○ Pyretic default controller code gives normal routing capabilities

OVS

C or
L2 or L3
Network

C

OVSNATNAT

ContainerC

OVS Open vSwitch

Host Interface

Outside World Subnet

Default Gateway

Host VM

Design Evolution - Phase 1

● Open vSwitch (OVS) is more like a layer 2 switch
○ Containers are in same broadcast domain as outside world

● Performs no layer 3 rewrite
● Performs special layer 2 rewrite for final destination
● Default Gateway for containers provided by special controller code

○ POX controller programmed with “fake” default gateway and dummy
ARP responses on behalf of “fake” default gateway

 OVS eth0

C

DG

I
Same MAC address,
different subnets

No IP addressTraffic Path

Container Subnet

DG

I

Host Interface

Outside World Subnet

Default Gateway

Container Subnet

Traffic Path

DG

I

Design Evolution - Phase 2

● Open vSwitch (OVS) is more like a layer 2 switch
○ Containers are in different broadcast domain than outside world

● Performs no layer 3 rewrite
● Performs special layer 2 rewrite for final destination
● Default Gateway for containers provided by container host machine (VM)

○ “ip_forward” turned on in host
○ OVS gives dummy ARP responses to gateway on behalf of containers

 OVS

C

DGHost VM

eth0

No IP address

I

Container-originated traffic

● Mapping table only contains static entries
(so far)
○ What happens when container wants to act as a

client using random source port?
■ e.g. software updates, container-to-container

traffic
○ If there is no entry in the table for the random source

port, traffic will be dropped!

Container-originated traffic (contd)

● Solution: dynamically update mapping table
on received packet at controller

Source IP Source TCP/UDP Port Source MAC

Container-originated traffic (contd)

● How do two containers with the same IP
address communicate?
○ Must force traffic out of the container even if

destination is self address
○ Manipulate policy routing database in container

■
Only use “local” routing table when
packet originates from outside (eth0)

Mutliple VMs, Multiple vSwitches
● Each VM is running one instance of OVS

○ Containers are directly attached to OVS
● All OVS instances talk to a centralized

OpenFlow controller (POX)
● Must add switch identifier (dpid) to

centralized CAM table

Switch ID Source MAC Ingress Interface

Multiple VMs (continued)
● What is the “fabric” that connects the “access

layer” OVS instances?
○ Must be a layer 2 network, to preserve destination

MAC address in transit (after rewrite)

○ Ideally all hops should be SDN-enabled and share the
same OpenFlow control plane

○ Traditional layer 2 learning switches may work, but
some may drop traffic because of advanced security
features (e.g. ARP inspection)

Multiple VMs (continued)

● Solution: VXLAN Tunnels
○ Layer 2 encapsulation preserves rewritten MAC

address
○ Intermediate network need not be SDN-enabled

■ More suitable for deploying on top of public Iaas

OVSC OVS CVXLAN

Deploying on Public IaaS

● Amazon AWS was the obvious choice
● Amazon-supplied public IP addresses for

prototype, but not optimal
○ Limited number of addresses
○ Forced NAT to private address
○ No IPv6

● VXLAN Tunnels across multiple VMs (EC2
instances)

Amazon Deployment

Logical Container
Network

Management/Control
Network

Physical Transit
Network

Default Gateway

Amazon Demo

Paper Contributions
● General editing

○ Kyung-Hwa did the bulk of initial writing
● Wrote section “Provider-independent

architectures”
○ Blueprint for running on top of Public IaaS like

Amazon

Time also spent on…

● Troubleshooting bugs
○ Version dependencies
○ 3rd party patches
○ Side-effects of cloning VMs on Amazon

● Learning Python and POX controller
○ I chose POX over Pyretic

■ Pyretic is for high-level policy
■ POX is for direct interaction with OpenFlow

Future Work

● Flesh out use cases
○ More generally contributions of SDN
○ Target specific applications

● Integrate container lifecycle management
○ Integrate with OpenStack

● Implement on public IaaS with distributed
highly-available gateways

