
SipCloud: Dynamically Scalable
SIP Proxies in the Cloud

Jong Yul Kim, Henning Schulzrinne
Internet Real-Time Lab

Columbia University, USA

Contents
1. Dynamically scalable SIP services (~30 slides)

 What is the problem we’re addressing?
 Our context and approach
 Architecture implementation and design
 Test results

2. Failures and how to recover from them (work-in-
progress, 4 slides)

3. Messaging system (1 slide)

4am 8am 12pm 4pm 8pm 12am 4am 8am 12pm 4pm 8pm 12am 4am 8am
Jan 17 Jan 18 Jan 19

Earthquake happened at
5:46am, Jan. 17, 1995

Capacity of

NTT facility

200

400

600

800

•  Traffic increased rapidly just after the earthquake at
5:50

•  about 20 times higher than normal day of average
calls in an hour to Kobe from nation-wide

•  < 50 calls/hour → 800 calls/hour in 4 hours

 = Compounded 2x increase per hour

Nation-wide => Kobe Earthquake of Jan.
 17, 1995
 regular day

legend

About
20times
of
normal
day

(max usage of
normal days)

About 7 times
of normal day

Courtesy of NTT

10am

That’s a problem

Capacity planning is not ideal because of:
– Overprovisioning for normal operation

Smooth operation but some resources are idle

– Underprovisioning for unexpected events
Hard to predict how much traffic to expect

Can we do better?

4am 8am 12pm 4pm 8pm 12am 4am 8am 12pm 4pm 8pm 12am 4am 8am
Jan 17 Jan 18 Jan 19

Capacity of

NTT facility

200

400

600

800

•  Traffic increased rapidly just after the earthquake at
5:50

•  about 20 times higher than normal day of average
calls in an hour to Kobe from nation-wide

•  < 50 calls/hour → 800 calls/hour in 4 hours

 = Compounded 2x increase per hour

Nation-wide => Kobe Earthquake of Jan.
 17, 1995
 regular day

legend

10am

Courtesy of NTT

4am 8am 12pm 4pm 8pm 12am 4am 8am 12pm 4pm 8pm 12am 4am 8am
Jan 17 Jan 18 Jan 19

Earthquake happened at
5:46am, Jan. 17, 1995

200

400

600

800

•  Traffic increased rapidly just after the earthquake at
5:50

•  about 20 times higher than normal day of average
calls in an hour to Kobe from nation-wide

•  < 50 calls/hour → 800 calls/hour in 4 hours

 = Compounded 2x increase per hour

Nation-wide => Kobe Earthquake of Jan.
 17, 1995
 regular day

legend

About
20times
of
normal
day

(max usage of
normal days)

About 7 times
of normal day

Courtesy of NTT

10am

Capacity of

NTT facility

If we can do that…
The system can become more :

Reliable
 Users are not disrupted by overload situations.

Economical
 There are less idle resources.

Energy efficient
 Resources are used only as much as needed.

Context of our research

An internet-based voice service provider
– No PSTN interconnection
– Uses SIP for signaling

Study on the scalability of signaling plane
 “How do we automatically scale the system

based on incoming load?”

Our approach
Use Infrastructure-as-a-Service (IaaS) cloud

platforms as enabling technology.

•  Allows clients to add or remove VM instances on
demand using the service provider’s API.

•  Platform users can pre-configure an appliance (OS +
application) and run it as a VM instance.

•  “Auto-scaling” is only for HTTP traffic.
Let’s apply it to SIP traffic as well.

SipCloud Architecture

!"#$%&'()
*!+,-

!"#$%&'()
*!+,-

!"#$%&'()
*!+,-

./01&/23145$.6
*7800895&8-

./01&/23145$.6
*7800895&8-

./01&/23145$.6
*7800895&8-

!"#$%&'()
*!+,-

:'85$68;89<4&
*!+,-

:'85$68;89<4&
*!+,-

.=!

>04&

$.
=!
$;'
'?
3%

$!"#$0/@98;/9@

:'85$!<8;/9@$A898@4&

Load Scaling Manager (LSM)
•  Has global knowledge of the cluster

•  Monitors load

•  Creates / terminates VM instances

•  Configures VM instance as either a load balancer,
proxy, or a Cassandra node
–  Handles reconfiguration of running nodes as well.

•  Even if LSM is killed, cluster continues operation.
–  But does not scale.

LSM adds a proxy
1 Monitor load

Load > threshold !!

2 Launch a VM
(2~3 mins),
configure proxy,
start proxy

3 Update LB’s
destination list

!"#$%&'()
*!+,-

.'/0$1/2/345&
*!+,-

.'/0$!4/2637$
8/3/75&

$9%0/:5$.1 ;
$$$$05;:63/:6'3$26;: <00/$

$$$$!"#$%&'()

$#'22$2'/0

LSM removes a proxy

!"#$%&'()
*!+,-

.'/0$1/2/345&
*!+,-

.'/0$!4/2637$
8/3/75&

$9%0/:5$.1;$
$$$$8/&<$%&'()$/=
$$$$$$63>/260

$?/6:$:622$:&/@@64$065=$
/30$&5A'>5$%&'()

$#'22$2'/0

$B525:5$%&'()$
$$$$@&'A$06=%/:4C5&$
$$$$26=:

1 Monitor load
Load < threshold !!

2 Select remove candidate &
update LB:
 mark proxy as
 invalid

3 Terminate proxy VM

4 Update LB:
 reconfigure
 destination file

SipCloud Architecture

!"#$%&'()
*!+,-

!"#$%&'()
*!+,-

!"#$%&'()
*!+,-

./01&/23145$.6
*7800895&8-

./01&/23145$.6
*7800895&8-

./01&/23145$.6
*7800895&8-

!"#$%&'()
*!+,-

:'85$68;89<4&
*!+,-

:'85$68;89<4&
*!+,-

.=!

>04&

$.
=!
$;'
'?
3%

$!"#$0/@98;/9@

:'85$!<8;/9@$A898@4&

Designed for scalability
SipCloud is designed to utilize dynamic

scalability to the fullest based on three
principles:

1.  Highly scalable tiers

2.  Independently scalable tiers

3.  Scalable database tier

Designed for scalability

1.  Highly scalable tiers

Each tier may be able to support an
unbounded* number of components if a
component does not rely on another in the
same tier to perform its function.

e.g. if load balancers use a hash function to
distribute load, it can operate independently
from other load balancers.

* has not been tested.

Designed for scalability

2.  Independently scalable tiers

Each tier scales independently from other tiers.
Proxy tier scales on incoming load.
DB tier scales on number of subscribers.

Scaling logic is simplified to a tier-local decision.

Designed for scalability

3.  Scalable database
•  Key-value store
•  Each node

–  is a single cassandra
instance

–  is a P2P node (simply
add/remove node)

–  contains keys < node ID
–  replicates to N-1

successive nodes
•  Key query: hash(key)

Node ID: 10
Range: 1~10

Node ID: 20
Range: 11~20

Node ID: 30
Range: 21~30

Node ID: 40
Range: 31~40

Node ID: 50
Range: 41~50

hash(key)

SQL vs. Key-value store
•  SQL

SELECT contact FROM db.location WHERE
user=‘jk’

•  Cassandra
Keyspace = ‘db’
ColumnFamily = ‘location’
Column = ‘contact’
Key = ‘jk’

– No query language. Only function call, e.g. get()

SQL vs. Key-value store
•  SQL

SELECT pw FROM db.credentials WHERE
user=‘jk’ and realm=‘cs.columbia.edu’

•  Cassandra
Keyspace = ‘db’
ColumnFamily = ‘credentials’
Column = ‘pw’
Key = ‘jk’  ‘jk@cs.columbia.edu’

– Design of ColumnFamily revolves around keys.

ColumnFamily for SER proxy

Credentials
username@realm password ha1 flags

Location
userID AOR contact expires received

Designed for scalability

Due to the three principles, it is easy to add
or remove components in the SipCloud
system.

Testing dynamic scaling

On Amazon EC2, M1.Large instance
One dual-core processor
7.5 GB memory
64-bit linux operating system

We could only perform a limited test on
Amazon EC2
1 load balancer, 1~4 proxies, 1 Cassandra
Up to 800 calls per second for the whole cluster

Abuse Case 13633844695

Hello,

We have detected that your instance(s):i-4aeda025 have been
behaving in the following way that is against our AWS Customer
Agreement:

Port Scanning

Please be aware that in terms of the Web Services License Agreement
http://aws.amazon.com/agreement/ if your instance(s) continue
such abusive behavior, your account may be subject to termination.

EC2 has taken the following administrative action(s) against your
instance(s):

BLOCKED OUTBOUND PORT 5060

!

"!!

#!!

$!!

%!!

&!!

'!!

(!!

)!!

!

"!!

#!!

$!!

%!!

&!!

'!!

!*!! !*"! !*#! !*$! !*%! !*&! "*!! "*"! "*#! "*$! "*%! "*&! #*!!

!"#$%&'$($)*#+&,)$%%-.-/)01
/#
2
"3
4&5
.6

&,7
+#
/-
0

8
*%%
*"
9-

!*:/&,;<::0
+,-./0-1-2345 65,78" 65,78# 65,78$ 65,78% 9-::-2.5- ;,<-1/9-=-3><8

Total cluster capacity (calls per second)
and

Network I/O (bytes) of each VM instance

!

"

#!

#"

$!

$"

%!

%"

&!

&"

!'!! !'#! !'$! !'%! !'&! !'"! #'!! #'#! #'$! #'%! #'&! #'"! $'!!

!"
#
$#
%&'
&(
)%
&*
+$
,-

.

/&01$,2300.
()*+,-*.*/012 32)45# 32)45$ 32)45% 32)45& 6*77*/+2*

CPU utilization of VM instances

Conclusion
IaaS platforms provide dynamic scaling, which can

be used by SIP service providers.

But using the feature properly requires a lot of work.
SIP level load monitoring
VM creation / termination
Configuration/reconfiguration on the fly

We’ve had success with limited proxy scaling tests,
but whether it can scale better still remains to be
seen.

Current work on
failures in the system

Failures
Why do they happen?

–  HW failures
CPU, memory, disk, motherboard, network card, etc.

–  SW failures
Parallelism (locks)
Missing input validation (malformed packets)
Cannot adapt to changes in environment (disk full)
Software update failures (introduce new bugs)

–  Infrastructure failures
Network failure, DNS failure
Power failure

Small scale
failure

Large scale
failure

Testing strategy
For small scale failures

–  terminate whole VMs component-wise
•  Load balancer, SER proxy, Cassandra etc.

–  collect data
•  from Load Scaling Manager’s monitoring subsystem
•  Types of data:

–  Changes in VM stats: CPU utilization, network I/O
–  Changes in application: DNS record changes, proxy load

changes

–  deduce correlation between component failures
and service failures

Example of a correlation result

This is a timing problem.

However,
99.999% = 5.26 minutes of down time in a year.

LB is down DNS record is stale Client cannot make call

Possible countermeasures
Failure monitoring

–  Need faster monitoring for 5-nines and beyond
–  Application monitoring vs. VM monitoring

Recovery mechanisms
–  Create new VM every time there’s a failure.

–  Create new VM every time there’s a failure?
Not helpful if a malformed packet is sent.

Long term management of the system
–  Deal with SW updates
–  Use of heterogeneous components to build system

Scalable and reliable
messaging system

Can we reuse SipCloud to build a
messaging system?

SIP INVITE
•  Stateful operation

–  Real-time text (RTP)
–  MSRP (TCP)

•  Will face the same
advantages and problems
as SipCloud for voice
service.
–  Will lose state if proxy fails.

SIP MESSAGE
•  Stateless operation

–  “Page mode” or “SMS
mode”

•  Will have better reliability
as long as proxies are
recovered quickly.

Either way, SipCloud can be a possible candidate.

Really, it’s the end

•  We’re looking at failures and how to
recover from them in a dynamically
scalable system.

•  A scalable, reliable messaging system
based on SIP will probably face similar
challenges as SipCloud.

