25 years of quality of service research - where next?

Henning Schulzrinne Columbia University (with Omer Boyaci, Andrea Forte, Kyung-Hwa Kim)

Prologue

 Most keynotes are prospective – this one is (partially) retrospective and introspective

* Foil for reflection

- * applies just as well to P2P, mobility, multicast, sensor networks, social networks, ...
 - but they are still (too) active to reflect
- * How effective is our collective research?
- * How do we choose and solve problems?
 - When do we move on?

Preview

* What can we learn from 25+ years of QoS research?

* Some of my group's (semi-) QoS research
* how good is industrial practice?

- * how can we diagnose QoS (and other problems) in the consumer Internet?
- * Thoughts on QoS going forward

About (networking) research

My assumptions

* We're an engineering discipline

- * "Engineering is the discipline, art and profession of acquiring and applying technical, scientific, and mathematical knowledge to design and implement materials, structures, machines, devices, systems, and processes that safely realize a desired objective or invention."
- Other (good) possibilities: * we train future engineers * we train future researchers

Pasteur's quadrant

VWIC 2010 & IWQoS 2010

Pasteur's Quadrant: Basic Science and Technological Innovation, Stokes 1997 (modified)

The \$1B question

How big a problem does your proposal solve?
* Does it create new ones?

financial, management, ...

Can it be integrated into the existing Internet
or a plausible successor?
or 802.11, 802.16, ...

* ... without everybody changing their ways
* the secret: **nobody** is in charge of the Internet

Can it be understood by Cisco CNAs?
 * see IP multicast, PIM-SM

Useful research outcomes

Standards
unfortunately, rarely cite papers

Get Cisco, Google, Microsoft, ... to adopt it
 * 3-4 QoS papers?

Show what doesn't work

- * counteract industry shills
- e.g., recently web site privacy
- Understand the Internet better
 * but not just your campus network
- Prior art in patent disputes
 * patents don't have a 90% rejection rate...

CS research to reality

CS as science

CS as engineering

<u>CS as a soccer league</u>

A physical map of the mouse genome

PAMELA EVANS 145 Tahquitz Canyon · Palas Springs, California 92262 · 760–555-1212 · support@r

PROFILE · Award-winning, multilingual Business Student with entrepresentation experience. Awarded 2001 Student Leader for exemplary service in student government. Received 2001 Service Award for outstanding contributions to campus activities Huency in Englishis Spanish, and Portuguess: Enclinically proficient in MS Wore Excel, and PowerPoint; programming in Visual Basic and HTML; Web design.

TRANSLATOR, Orange County, California ivate Contractor. Team with two secretarial assistants to provide or mediation services to non-English speaking busing the second services and the second ners and employees Awarded Hispanic Business Community recognition for a

TTMXV. LLC. Santa Ana. California MAY, LLC: Shina endy camorina reign Currency Trader, Intern Handlod \$50,000+ monthly in trades and investment, spe Dollars, and Yen transactions; investigated trends and iss . 12/01 - 2/02 in Euros, increased profitability by exploiting Euro-to-Dollar exchange i

complishment: Built revenues through direct student recruitment and cooperative local n

compliahment: Boosted student enrollment; won Employee of the Month Award.

SEDA Y FIBRAS, S.R.L., Hernandarias, Alto Parana, Paraguay Assistant Business Translator Conducted English Spanish Portuguese translations of business docu person-to-person conversations for global textle exporter. . 2/97 - 12/98

EDUCATION CALIFORNIA COMMUNITY COLLEGE, Irvine, California & Busines Administration Major. 2000 - Present 4.00 GPA, President's List, Alpha Camma Sigma, Phi Alpha Mu, Mu Alpha Theta. 2001 Associated Board of Trustees Member. DOLASSOCIATED FOUND OF TRUSTEES MEMORY.
 Student Representative to Academic Senate, Spring 2001.
 Student Advisor to Business Club, Fall 2001.

Network tech transfer, mode 1

"I think you should be more explicit here in step two." **GeBIT**

somebody else just waiting for your results

Network tech transfer, mode 2

<page-header>

Or just measure citations

be sure to create enough conferences and workshops...

QoS research

Why is QoS attractive?

allows for sophisticated math

extends to web, P2P, sensor networks, ad-hoc networks, 802.x, ...

real problem /

quality sounds good

well-contained problem

can build lab prototypes

next workshop: QoS for social networks

Old, old joke

On the faults of wrong research:

"We have all herd the adage about people who' use research as a drunk uses a lamppost – for support rather than illumination"

"Yet there is a better story about drunks and lampposts that David Ogilvy used to tell. A drunk had lost his keys on the street and was frantically searching for them under a streetlamp. 'Where did you dop them?' asked a concerned passer by. 'Over there' he replied, indicating a spot 30 yards away. 'So why are you looking here under the lamp?' 'The light is better here'.

- Lifted from an article by Rory Sutherland in the Book A Master 🔥 is in

research funding, math, ...

Almost 25100 years of QoS

Toll Telephone Traffic

Experiments are described to determine the relationship between telephone circuit loads and the corresponding delay to traffic. The operating methods employed and the number of circuits available determine in general the number of messages per day which can be handled over a single toll circuit. The average delay to traffic obviously depends upon the number of messages per circuit per day, or the circuit loads. With a given load factor, increase in the circuit loads will increase the average delay to traffic. At the same time the revenue per circuit mile will correspondingly increase. The practical limit, however, is approached when the delays to traffic reach a point where the service is unsatisfactory. The results of the experiments described illustrate the fact that increasing circuit loads increase the delay to traffic, and vice versa. The revenue per circuit mile is directly proportional to the product of the circuit load and the toll rate per minute-mile; consequently the relationship between the **quality of service** and the toll rate is generally obvious, assuming a certain rate of return on the plant investment.

WWIC 2010 & IWQoS 2010

Frank Fowle, Transactions of the American Institute of Electrical Engineers, June 1914

More early QoS work

Second generation computer control procedures for dial-a-ride

Based on operational experience with initial computer control procedures, more sophisticated procedures have been developed designed to provide a greater variety of services simultaneously and to allow the operator more discretion in the quality of service provided. This paper describes these second generation control procedures and analyses their effectiveness in the light of previous operational experience and in a simulation context.

/WIC 2010 & IWQoS 2010

Nigel H. M. Wilson, Decision and Control including the 14th Symposium on Adaptive Processes, 1975

First (?) QoS (+ security) paper

386 ABBOTT : TELEPHONIC STATUS QUO. [March 28,

depreciation and maintenance, \$10 per year per station each against two-party line and \$8 per year per station against each four-party line, and that a charge of one cent was made for each time the central office was called up and one-half cent for each minute of actual time that the telephone was in use. Large business houses and the best class of residences would take oneparty lines. Smaller business houses and medium residences two-party lines, while the bulk of subscribers would use fourparty lines; all of these being arranged with selective signals and lock-outs to secure the best quality of service. Simply to illustrate the effect of this system of tariff, assume one-party lines to average ten calls per day, two-party lines seven and

Abbott, Arthur Vaughan, "The Telephonic Status Quo," American Institute of Electrical Engineers, Transactions of the, vol.XIX, pp. 373-388, Jan. 1902

DiffServ v0: IP 791 (1981)

Bits 0-2:	Precedence.
Bit 3:	0 = Normal Delay, 1 = Low Delay.
Bits 4:	0 = Normal Throughput, 1 = High Throughput.
Bits 5:	0 = Normal Relibility, 1 = High Relibility.
Bit 6-7:	Reserved for Future Use.

0	1	2		3		4		5		6		7	
 +	+		+		+		+		+		-+-		-+
			L		1		I.		1		1		T
PRECE	DENCE			D	I.	т	I.	R	I.	0	L	0	I
			L		I.		L		1		I.		I
 +	+		+		-+		+		+		-+		-+

Precedence

- 111 Network Control
- 110 Internetwork Control
- 101 CRITIC/ECP
- 100 Flash Override
- 011 Flash
- 010 Immediate
- 001 Priority

QoS and energy - 1984

Energy Saving the "Record" System

A study is presently being conducted at the French Telecommunications Research Centre (CNET) in order to optimize the power consumption of air conditioning equipment in timedivision exchanges. It is conducted within the frame of an "Energy Saving" campaign started by the French Administration. The socalled RECORD system (research for continuous optimal conditions of the air-conditioning system) was developed. This system enables the following functions to be performed: acceptance and maintenance operations in air conditioning systems, - checking of power consumption, - evaluation of possible energy savings, provided the regulation instructions are modified within limits giving the same quality of service and reliability of the exchange.

WWIC 2010 & IWQoS 2010 Telecommunications Energy Conference, 1984. INTELEC '84.

Early packet QoS paper: 1986

This paper first examines quality of service as it applies to the Transport Service of the Open Systems Interconnection (OSI) Reference Model. Quality of service and some of the quality of service parameters applicable to the Transport Service are discussed. Also presented is a new concept concerning the "building-up" of **quality of service**. These ideas are then used to discuss the concept of robustness.

and the second	Layers of the Transport Service - Performance								
	PERFORMANCE								
		SP	EED	>	ACCURACY		RELU	ABILITY	
			- DELAY -						
TRANSF	ORT THROUGHPUT	CONNECTION ESTABLISH- MENT DELAY	TRANSIT	CONNECTION RELEASE DELAY	RESIDUAL ERROR RATE	CONNECTION ESTABLISH MENT FAGURE PROBABLITY	TRANSFER FALURE PROBABLITY	CONNECTION RELEASE FALURE PROBABLIEY	CONNECTION
NETWO	RK THROUGHPUT	CONNECTION ESTABLISH- MENT DELAY	TRANSIT DELAY	CONNECTION RELEASE DELAY	RESIDUAL ERROR RATE	CONNECTION ESTABLISH MENT FAILURE PROBABILITY	TRANSFER FAILURE PROBABUTY	CONNECTION RELEASE FAILURE PROBABILITY	CONNECTION
DATA	UNK THROUGHPUT	*CONNECTION ESTABLISH- MENT DELAY	DELAY	*CONNECTION RELEASE DELAY	RESIDUAL ERROR RATE	*CONNECTION ESTABLISH- MENT FALLIRE PROBABLIEY	"TRANSFER FAILURE PROBABLITY	*CONNECTION RELEASE PAILURE PROBABILITY	CONNECTION RESILIENCE
РНУЗІС	AL TRANSMISSION	CONNECTION ACTIVATION DELAY	TRANSIT DELAY	CONNECTION DEACTIVATION DELAY	ERROR BATE	CONNECTION ACTIVATION FALURE PROBABILITY	*TRANSFER FAILURE PROBABILITY	CONNECTION DEACTIVATION FALURE PROBABILITY	*CONNECTION RESULENCE
	0-0010			A CONTRACTOR					

a Auglitu of Somulas Dependence for the Individual

Pardue, M. D.; Harvey, J. A.; Haupt, K. D.; Orlando, T. A., MILCOM 1985

QoS research activity

QoS research

- IEEE: 25,583 papers with "QoS" in metadata through 5/2010
 - * 84,257 with QoS in meta data or text
- * 2 papers/PhD year
- * \$50,000/PhD year
- $* \rightarrow$ \$640M in QoS research

What might we learn?

Cause of death for the next big thing

	QoS	multi- cast	mobile IP	active networks	IPsec	IPv6
not manageable across competing domains	Ŷ	Ŷ	ť	Ŷ		
not configurable by normal users (or apps writers)	÷			ት	÷	
no business model for ISPs	ť	÷	ት	t	÷	ት
no initial gain	ť	Ŷ	Ŷ	t		ተ
80% solution in existing system	Ŷ	Ŷ	Ŷ	ተ	Ŷ	(NAT)
increase system vulnerability	÷	ዮ	ዮ	Ŷ		

Why did e2e QoS fail?

Trivial issue: No uniform DiffServ code points
 manual configuration of applications and home gateways

* No clearing house or end-to-end identity

No economic model

- * flat, peak-rate based charging common
- interesting model: metro pricing
- Lots of factors outside carrier control
 home & enterprise network

Users don't care about QoS

* not even QoE

* they do care about service reliability:

- * consumer grade ~ electricity (99%?)
 - * 99.5% \rightarrow 43.8 hours outage/year

* commercial grade

- * e.g., web server
- * Google Apps: 99.9% uptime SLA
- * Verizon business DSL SLA: 99%
- * critical grade
 - * e.g., tele-surgery
 - typical by redundancy

QoS problems are real

Companies									
WORLD	U.S.	N.Y. / REGION	BUSINESS	TECHNOLOGY	SCIENCE	HEALTH	SPORTS	OPI	NION
Search Technology Inside Technology E Go Internet Start-Ups Business Computing Companies								Bits Blog	

Customers Angered as iPhones Overload AT&T

By JENNA WORTHAM Published: September 2, 2009

Slim and sleek as it is, the iPhone is really the Hummer of cellphones.

3 Enlarge This Image

AT&T monitors its network from its operations center in Bedminster, N.J. More Photos »

Multimedia

It's a data guzzler. Owners use them like minicomputers, which they are, and use them a lot. Not only do iPhone owners download applications, stream music and videos and browse the Web at higher rates than the average smartphone user, but the average iPhone owner can also use 10 times the network capacity used by the average smartphone user.

"They don't even realize how much

analyst with Piper Jaffray.

data they're using," said Gene Munster, a senior securities

E TWITTER COMMENTS (322)E-MAIL SEND TO PHONE 员 PRINT REPRINTS + SHARE

SIGN IN TO RECOMMEND

... but traditional QoS research unlikely to help

QoS: more than L2 + L3

DNS lookup IPv6/IPv4

20% of the problem, 80% of the effort

SMTP HTTP RTP... ethernet PPP... CSMA async sonet...

DNS delays

(b) Fraction of the Sum of Lookups Taking < X ms

Park, Pai, Peterson, Wang (OSDI04)

Jung et al (ToN 2002)

Google vs. OpenDNS

likely exceeds page transfer delay

WWIC 2010 & IWQoS 2010

Dec. 2009 -- http://blog.gadodia.net/performance-comparison-of-opendns-and-google-dns/

What happens to the QoS losers?

Deferring demand

Capacity need is driven by peak demand thus, useful to defer peak

Cf. electric utilities

* peak electricity costs >> baseload costs

* but peak bandwidth costs = average costs

Peak deferral

* µs to ms:

* node & router queues

* minutes:

* scheduling VoIP > TCP at home

Dad's phone call beats son's Hulu show

* hours:

download OS patches

k back-up

→ scavenger service WWIC 2010 & IWQoS 2010

Diurnal variation of traffic demand

Columbia University commercial Internet access (10 GigE), May 30, 2010

Electric Load Duration Curve

Electricity diurnal demand

WIC 2010 & IWQoS 2010

"Environmental Assessment of Plug-In Hybrid Electric Vehicles (PHEVs)", June 2009

QoS vs. flying business class

economy vs. business class	QoS
always more leg room and better (any) food	only during congestion
flights are mostly full (load factor 80%+)	networks are mostly empty (20-30%)
better food & nicer flight attendants	looks the same
airline doesn't get blamed for traffic jam on the way to the airport	packet loss at home looks just the same
more frequent flyer miles	there's an idea

ITU-T Y.1541 QoS classes

	0	1	2	3	4	5		
IPTD (transfer delay)	100 ms	400 ms	100 ms	400 ms	1 s	U		
IPDV (jitter)	50	ms	Unspecified					
IPLR (loss ratio)		doe	sn't vide					
IPER (error rate)			0.01%		nece rate wa mo	ssary e to tch U vies		
Usage	Vo	ice	Signaling	Interactive Data	Streaming video	Best-effort data		
	WWIC 20)10 & IWQoS 2010)					

Application changes

Applications

Rank	Application	2007	2009	Change
1	Web	41.68%	52.00%	24.76%
2	Video	1.58%	2.64%	67.09%
3	VPN	1.04%	1.41%	35.58%
4	Email	1.41%	1.38%	-2.13%
5	News	1.75%	0.97%	-44.57%
6	P2P (*)	2.96%	0.85%	-71.28%
7	Games	0.38%	0.49%	28.95%
8	SSH	0.19%	0.28%	47.37%
9	DNS	0.20%	0.17%	-15.00%
10	FTP	0.21%	0.14%	-33.33%
	Other	2.56%	2.67%	4.30%
	Unclassified	46.03%	37.00%	-19.62%

(*) 2009 P2P Value based on 18% Payload Inspection Weighted average percentage of all Internet traffic using well-known ports

- Growing volume of Internet traffic uses port 80 / 443 Includes significant video component and source of most growth
- Unclassified includes P2P and video
 - Payload matching suggests P2P at 18%
 P2P is fastest declining

Craig Labovitz, "Internet Traffic and Content Consolidation", IETF March 2010.

probably includes RT traffic

P2P declining

Graph of weighted average traffic using well-known P2P ports

- In 2006, P2P one of largest threats facing carriers
 - Significant protocol, engineering and regulatory effort / debate
- In 2010, P2P fastest declining application group
 - Trend in both well-known ports and payload based analysis
 - Still significant volumes
 - Slight differences in rate of decline by region (i.e. Asia is slower)

WWIC 2010 & IWQoS 2010

Craig Labovitz, "Internet Traffic and Content Consolidation", IETF March 2010.

Cisco's traffic prediction

Table 3.Global Consumer Internet Traffic, 2008–2013

Consumer Internet Traffic, 2008–2013

	2008	2009	2010	2011	2012	2013				
By Sub-Segment (PB per month)										
Web/Email	1,239	1,595	2,040	2,610	3,377	3,965				
File Sharing	3,345	4,083	5,022	6,248	7,722	9,629				
Internet Gaming	47	87	135	166	217	239				
Internet Voice	103	129	152	174	183	190				
Internet Video Communications	36	57	94	160	239	354				
Internet Video to PC	1,112	2,431	4,268	6,906	9,630	12,442				
Internet Video to TV	29	149	381	1,004	1,711	2,594				
Ambient Video	110	224	634	1,332	2,089	2,715				

Ambient video =

nannycams, petcams, home security cams, and other persistent video streams

Cisco traffic prediction

The race against abundance

 ★ resource scarcity → QoS
 ★ Soviet model of economic planning: manage scarcity

- But turning away paying customers is not good business
- Few people will use unpredictable networks
 - * "sorry, the Internet is sold out today"

What did we end up with?

- * 1997: RFC 2205 (Resource ReSerVation Protocol (RSVP))
- 1998: RFC 2474 (An Architecture for Differentiated Services)
- biffServ
 - * typically, priority for VoIP
 - * access, transport to PSTN gateway
 - * RSVP for traffic engineering
- 802.11e
 - * essentially DiffServ
- Volume limits (Comcast = 250 GB/month) or per-MB charges (mobile)
- Works well as long as highest priority is small fraction of total

The mantra of TCP fairness

* TCP-friendly: non-TCP traffic needs to be TCP-fair

- * back off under loss
- * RFC XXXX

* Problematic:

- * RTT-sensitive
 - good may encourage local access
- it's per session but one web browser may open 4 connections
- * it's instantaneous only
 - what if I haven't sent for a week and you've been downloading 3 GB of YouTube?
- * assumes that all bits are worth the same to the user
- Bob Briscoe's work

Some QoS research issues

- * How can a user tell where things are breaking?
- Subscriber-level QoS measurements
 not just in academic networks
- What pricing models work for users?
 - * congestion pricing: too unpredictable
 - how many MB are in that web page?
 - nice phone call would you like to continue for \$3/minute?
 - * maybe content provider pays?
 - * per-minute pricing for VoIP service + QoS
 - see Skype Access
 - * tiered service, capturing 90% of customer group
 - see web server pricing
 - include some account of priority traffic

Performance of video chat clients under congestion

Residential area networks (DSL and cable)
* Limited uplink speeds (around 1Mbit/s)
* Big queues in the cable/DSL modem(600ms to 6sec)
* Shared more than one user/application
Investigate applications' behavior under congestion
* Whether they are increasing the overall congestion

* Or trying to maintain a fair share of bandwidth among flows

How good is industrial practice?

Experimental setup

Step 10 s, 100 kb/s

Step 10 s100 kb/s

Step 10 s100 kb/s

File Transfer

File Transfer

File Transfer

Eyebeam File Transfer

Bittorrent

Bittorrent

Eyebeam Bittorrent

Summary of results

- * Skype, Live Messenger, X-Lite and Eyebeam.
 - * Skype best:
 - * by adapting its codec parameters not only on packet loss but also on RTT and jitter.
 - * follow the changes in bandwidth without causing packet loss
 - * Eyebeam worst:
 - high fluctuations
 - * poor adaptation to bandwidth fluctuations

Due to limited upstream bandwidth, video clients must have bandwidth adaptation mechanisms and must be able to differentiate between wireless losses and congestion losses

Distributed diagnostics of QoS (and other) problems

Problems in VoIP systems

Implementation: system tray

Summary

- * QoS = our community's longest running network research topic
 - transition of field from classical performance and queuing theory to security and Internet systems
- Reflect on research role and outcomes
 are we distilling results or just adding to them?
- * How can we identify topics that
 - * matter to real users & operators AND
 - * are amenable to research?