Internet 2.0 – Challenges for the Future Internet

Henning Schulzrinne

(with Victoria Beltran, Omer Boyaci, Jae Woo Lee, Arezu Moghadam, Suman Srinivasan and others)

Dept. of Computer Science Columbia University New York, NY

- * The Internet as core civilizational infrastructure
- * Challenges
 - * Network address exhaustion
 - Routing table explosion
 - * Network ossification
 - * Securing the network infrastructure
 - * Usability & towards self-managed networks
- * Opportunistic networks
 - Future Internet MIA (Minimal Internet Architecture)

Pasa core civil (izational) infrastructure interface

The great infrastructures

- * Technical structures that support a society \rightarrow "civil infrastructure"
 - * Large
 - * Constructed over generations
 - * Not often replaced as a whole system
 - * Continual refurbishment of components
 - Interdependent components with well-defined interfaces *
 - * High initial cost

water

energy

transportation

The Internet as core civil infrastructure

- * Involved in all information exchange
 * (in a few years)
- * Crucial to
 - * commerce
 - * governance
 - * coordination
 - inter-personal communication
- * Assumed to just be there* "plumbing", "pipes", ...

Interfaces: Energy

1904

Lots of other (niche) interfacesReplaced in a few applications

1901

Interfaces: Paper-based information

Interfaces: transportation

1435 mm

1830 (Stephenson) 1846 UK Gauge Act

INTERSTATE

About 60% of world railroad mileage

What makes interfaces permanent?

Widely distributed, uncoordinated participants
Capital-intensive

depreciated over 5+ years
see Y2K problem

Allocation of cost vs. savings

e.g., ISP saves money, end user pays

Hard to have multiple at once

"natural monopoly"

Extrapolating from history

* IP now the data interface

- Unclear that any packet-based system can be
 - $* \geq 10$ times cheaper
 - $* \geq 10$ times more functionality
 - $* \geq 10$ times more secure
 - Replacing phone system due to generality, not performance
 - * IP offers general channel
 - \rightarrow We're stuck with IPv4/IPv6
 - * except for niche applications (car networks, BlueTooth, USB, ...)

Technology evolution

- * Early technology stages:
 - * make it work
 - * make it cheap
 - * make it fashionable
 - * This happened in the auto industry. Early cars barely worked at all, every journey was an adventure. In the 1920s Ford broke the automobile patent and built a car for the common man, a car that did not need the skills of a mechanic to drive. Reliability improved gradually until the 1970s when there was a sudden realization that consumers would pay more for a car that was not designed to rust. Today most cars will go 10,000 miles between services and not need major repairs beyond a clutch plate for 50,000 or even 100,000 miles
- Completion of conversion from analog to digital/ packet media
- * Patterson: Security, Privacy, Usability, Reliability
 - * phishing attacks, DDOS
 - * cost of purchase vs. cost of ownership
 - * dependability (crashes & reboots)

What defines the Internet?

Basic IP service model

* Unchanged since 1978
* Send without signaling
* Receive at provisioned address, without signaling
* but: permission-based sending
* Variable-sized packets < ≈ 1,500 bytes
* Packets may be lost, duplicated, reordered

More than just Internet Classic

Network	wireless	mobility	path stability	data units
Internet ''classic''	last hop	end systems	> hours	
mesh networks	all links	end systems	> hours	IP
mobile ad- hoc	all links	all nodes, random	minutes	datagrams
opportunistic	typical	single node	≈ minute	
delay- tolerant	all links	some predictable	some predictable	bundles
store-carry- forward	all nodes	all nodes	no path	application data units

Addressing assumptions

A host has only one address & one interface
apps resolve name and use first one returned
address used to identify users and machines
machine-wide DHCP options
Failing
multi-homing on hosts (WiFi + Ethernet + BlueTooth + 3G)
Attempts to restore
MIP: attachment-independent address

* HIP: cryptographic host identify

Myth #2: Connectivity commutes, associates

- Referals, call-backs, redirects
- * Assumptions:
 - * A connects to B \rightarrow B can connect to A
 - * A connects to B, B to $C \rightarrow C$ can connect to A
- May be time-dependent

This is not your text book's Internet any more...

Cisco's traffic prediction

Table 3.Global Consumer Internet Traffic, 2008–2013

Consumer Internet Traffic, 2008–2013

	2008	2009	2010	2011	2012	2013			
By Sub-Segment (PB per month)									
Web/Email	1,239	1,595	2,040	2,610	3,377	3,965			
File Sharing	3,345	4,083	5,022	6,248	7,722	9,629			
Internet Gaming	47	87	135	166	217	239			
Internet Voice	103	129	152	174	183	190			
Internet Video Communications	36	57	94	160	239	354			
Internet Video to PC	1,112	2,431	4,268	6,906	9,630	12,442			
Internet Video to TV	29	149	381	1,004	1,711	2,594			
Ambient Video	110	224	634	1,332	2,089	2,715			

nannycams, petcams, home security cams, and other persistent video streams

Cisco traffic prediction

The old Internet

A denser Internet

Tampere 2010

New network providers

Rank	2007 Top Ten	%	Rank	2009 Top Ten	%
1	ISP A	5.77	1	ISP A	9.41
2	ISP B	4.55	2	ISP B	5.7
3	ISP C	3.35	3	Google	5.2
4	ISP D	3.2	4	-	
5	ISP E	2.77	5	-	
6	ISP F	2.6	6	Comcast	3.12
7	ISP G	2.24	7	-	
8	ISP H	1.82	8	-	
9	ISP I	1.35	9	-	
10	ISP J	1.23	10	-	

Based on analysis of anonymous ASN (origin/transit) data (as a weighted average % of all Internet Traffic). Top ten has NO direct relationship to study participation.

Tampere 2010

P2P declining

Graph of weighted average traffic using well-known P2P ports

- In 2006, P2P one of largest threats facing carriers
 - Significant protocol, engineering and regulatory effort / debate
- In 2010, P2P fastest declining application group
 - Trend in both well-known ports and payload based analysis
 - Still significant volumes
 - Slight differences in rate of decline by region (i.e. Asia is slower)

Tampere 2010

Network ossification Chalenges

Why is the Internet ossifying?

Lack of network transparency

- * NATs
 - ★ → only UDP + TCP
 - * \rightarrow only client-server
- * Firewalls
 - only HTTP
- * Standardization delays
 - * No major new application-layer protocol since 1998
 - * Protocols routinely take 5+ years
 - Deployed base
 - * Major OS upgrade every 7-8 years
 - * But: automatic software updates
 - encourages proprietary application protocols

Network challenges

The end of IP(v4) as we know it Challengeges

Regional Internet Registries

Miwa Fujii, Thailand IPv6 Summit, January 2009

IPv4 consumption – Projection

The transition to IPv6

- * IPv4 needed for at least a decade
- Dual stack transition
 - but IPv6 server + non-IPv6 network + dual-stack server fail annoyingly
- * NAT IPv4 ↔ IPv6
 - * longer term, RFC 1918 (192.168.*.*) + global IPv6 address
- Decreasing IPv4 address demand
 - * multi-layer ("carrier-grade") NATs →
 - limited effectiveness (hundreds of ports for BitTorrent or web page)
 - reliability problems
- Increasing IPv4 address supply
 - * recycle unused $/8s \rightarrow$ few months supply
 - * address auctions \rightarrow router table size 7

The IPv6 choke points

Pervasive multihoming Challengeges

Network of the sear) future

ZA

Telco

Homes passed by multiple networks \rightarrow increase reliability by connecting to all ("reliable system out of unreliable components")

3G, 4G, WiMax
Multihoming (& mobility)

★ Current IPv4 address →

- * identifier = unique host
 or interface
- * locator = network that
 serves host (provider)
- * One system, multiple addresses:
 - multihoming: at the same time
 - * mobility: sequentially
 - Multihoming:
 - connections need to be aware of network

path

 socket interface makes it hard to program

Solutions:

- * HIP: cryptographic host identifier
- * SHIM6
- * LISP: two network addresses
- * DNS: SRV, NAPTR

http://bgp.potaroo.net/

What about security?

Technologies (mostly) available, but use & deployment hard

What about security?

- * "The future Internet must be secure"
- Most security-related problems are **not** network problems
 - * spam: identity and access, not SMTP
 - web: (mostly) not TLS, but distinguishing real bank from fake one
 - * web: cross-domain scripting, code injection
 - * browser vulnerabilities & keyboard sniffers
- * Restrict generality
 - < Black list ightarrow white list
 - * virus checker \rightarrow app store
 - Automated tools
 - * better languages, taint tracking, automated input checking, stack protection, memory randomization, ...
- Probably need more trust mediation

Usability: Email configuration

- Application configuration for (mobile) devices painful
- * SMTP port 25 vs. 587
- IMAP vs. POP
- * TLS vs. SSL vs. "secure authentication"
 - Worse for SIP...

/ hgs@cs.columbia.edu	Server Type:	IMAP Mail Server			
Server Settings	Server Name:	mail.columbia.edu	Port:	993	Default: 993
Copies & Folders Composition & Addres Offline & Disk Space Return Receipts Security ♥ Local Folders Disk Space Outgoing Server (SMTP)	User Name:	hgs10			
	Security Settings Use secure connection:				
	 Never TLS, if available TLS SSL Use secure authentication 				
	Server Settings				
	Check fo When I dele	or new messages at startu or new messages every 1 te a message: Move it o ("Expunge") Inbox on Ex rash on Exit	0 minu to the Tras		r 🗘
	Local director	y:			
	/Users/hgs/L	ibrary/Thunderbird/Prof	files/9r3p0i	iuh.def	ault/Ima Browse
Add Account					
Set as Default					
Remove Account					

Usability: SIP configuration partially explains

- highly technical parameters, with differing names
- inconsistent conventions for user and realm
- made worse by limited end systems (configure by multitap)
- usually fails with some cryptic error message and no indication which parameter
- out-of-box experience not good

[Default]	
	Enabled: Yes
	Display Name: Henning Schulzrinne (<- keine Umlaute)
	User Name: 5551672
	Authorization User: 5551672
	Password: 100,000
	Domain/Realm: sipgate.de
	SIP Proxy: sipgate.de
	Out Bound Proxy:sipgate.de
8 1	Use Outbound Proxy: Default
//	Send Internal IP: Default <- falls Sie ein einseitiges Audiosignal haben, tragen Sie hier * Never / Off // ein. Forward SIP URL

Usability: Interconnected devices

DYSWIS = Do You See What I See?

What about "the mobile Internet?"

- * Same & different:
 - * same
 - * expect same services, applications (and speed)
 - * fixed devices may acquire "app" model
 - * task-focused, rather than file-focused
 - * defined interfaces \rightarrow easier to secure
 - * reliability & predictability
 - * Different
 - user interaction
 - * secondary attention
 - context and sensing
 - disruption tolerant

Disruption-tolerant networking

(@®=\$

missed the chance. I will send my email next stop

0

COLH

We have a connection. We only have 20 seconds to download the webpage. Hurry up.

Opportunistic Networks

In the absence of the Internet, nodes can for an ad-hoc 802.11 wireless network and exchange data

NA10

Internet

7DS

- * Application suite: allows users to exchange data in disconnected networks
 - * Distributed query and search
 - * Mail Transfer Agent (MTA)
 - * Automatic file synchronization

7DS Add Query	àS [₽]
Your query: Keep-alive: 20 minutes	
Submit	
	form above. The query is not limited by word shorter and more general queries should fetch
The default timeout for the que "keep-alive" field. If you would i the "keepalive" field to a value i	7DS Query List and Results
	Add a new query
	Query: university Time of query: Mon Oct 17 15:11:03 2005
	Query: columbia Time of query: Tue Aug 9 14:54:41 2005
	Columbia University in the City of New York
	URL: (null) Peer: 128.59.23.121 Date: Mon Aug 8 14:31:20 2005 <u>CS@CU Home</u>
	URL: (null) Peer: 128.59.18.191 Date: Tue Aug 9 14:52:14 2005 The Fu Foundation School of Engineering and Applied Science
	URL: (null) Peer: 128.59.18.191 Date: Tue Aug 9 14:53:11 2005 The New York Times - Breaking News, World News and Multimedia
	URL: (null) Peer: 128.59.18.191 Date: Tue Aug 9 14:56:57 2005

Web Delivery Model

* 7DS core functionality: Emulation of web content access and e-mail delivery

Search Engine

- Provides ability to query self for results
- Searches the cache index using Swish-e library
- Presents results in any of three formats: HTML, XML and plain text
- * Similar in concept to

Email exchange

E-mail Accour	its	? 🔀	
	il Settings (IMAP) e settings is required to get yo	ur e-mail account working.	
User Informat	tion	Server Information	9377
Your Name:	arezu	Incoming mail server (IMAP): Iion.cs.columbia.edu	
E-mail Address:	arezu@columbia.com	Outgoing mail server (SMTP): / 127.0.0.1:5656	
Logon Inform	ation	~	
User Name:	arezu		
Password:	****		
	Remember password		
Log on using Authenticati	g Secure Password on (SPA)	More Settings	MTA
		< <u>B</u> ack <u>N</u> ext > Cancel	M

7DS architecture

Components

BonAHA service model

* Found a need for application framework for opportunistic networks: **BonAHA** * Responds to events on network * serviceUpdated() * serviceExited() Access node properties * node.get() * node.set()

Applications: Bulletin Board System

- Can create and share posts
 - Other users can browse your posts
- Similar to a real-world paper bulletin board
- Create and share information in opportunistic networks
 iPhone platform

Ded.	3:51 PM					
Pod 🛜	3:51 PM	_				
	Bulletin Boar	rd				
Updated on 2	2008-08-21 15:51:46 -	0400	C			
Notice in	Server	mbi	>			
Brooklyn When I was v	Bridge walking on this bridge,	blah	>			
	DOESXL Die-Cast tic machine; user regu		•	3:51 PM		þ
ForSale@ No descriptio	kwsung.mac.min	Back	kwsu	ing.mac.m	ini (2)	
iPhone3G Brand New 3	For Sale G 16GB Black iPhone)ESXL Die laker	-Cast	
	h Is Good y Multi-Touch interface	Semiaut	omatic i		regulates output	ċ
	sive Who Knows	of water				
Copyr	ight 2008 by Columbia Un	\$399.95				
		Sugges	ted Pri	ce		1
Peer	Repository	\$449.95				
	ta ann an 1	Descrip	otion			
		intuitive, make fu perfect o	easy-to Il-bodieo crema. 1	-use controls d espresso top	ow you to brew	

Bus model

- * Public transportation (bus-stop) model
- * Deterministic knowledge (temporal and spatial information)
 - * Location of next bus stations (stops)
 - Expected next opportunity: (calculated by average speed of the bus)

Manhattan 49th St, 6th Ave.

Bus station

Bus measurement

- * Measurement of bus dwell time (stop time) and travel time in Manhattan
 - * 2:30 PM 3:30 PM, Jan, 2010
 - * 116st, Broadway 42st, 1 Ave
- Average bus dwell time is 26 sec; average bus travel time is 65.4 sec

TCP goodput via IEEE 802.11g

- * TCP-upload only
- * Total network connection time: 25 sec
- * Bus dwell time: 11 sec

- Total network connection time: 46 sec
- Bus dwell time: 26.7 sec

Programmability Challengenge

Usage transition

Limited personal communication

- email
- static information retrieval (ftp → web)

• phone

• 3 core applications

Content-based

 large-scale distribution of popular content (entertainment video)

Personalized content and computation

- social networks
- context-based information
- millions of tiny apps

Two worlds

10+ interfaces0 GB disk1 low-end processor

1 interface TB disk 1-32 multi-core processors

Software: from floppy to autonomous

NetServ overview

Extensible architecture for core network services

Figure 3: Instantiation of services over tunable building blocks.

Modularization * Building Blocks * Service Modules Virtual services framework * Security * Portability NSF FIND four-year project * Columbia University * Bell Labs * Deutsche Telekom * DOCOMO Euro-Labs

Network node example

data center or POP

storage & computatio n

multiple computation& storage providers

Different from active networks?

* Active networks

- * Packet contains executable code or pre-installed capsules
 - Can modify router states and behavior
 - Mostly stateless

* Not successful

- * Per-packet processing too expensive
- * Security concerns
- * No compelling *killer* app to warrant such a big shift
- * Notable work: ANTS, Janos, Switchware

NetServ

- * Virtualized services on current, passive networks
 - * Service invocation is signaling driven, not packet driven
 - Some flows & packets, not all of them
 - Emphasis on storage
- * Service modules are stand-alone, addressable entities
 - Separate from packet forwarding plane
 - Extensible plug-in architecture

How about GENI?

- * GENI = global-scale test bed for networking research
 - * parallel experiments in VMs
- $* \rightarrow$ long-term, "heavy" services
- We'll be demonstrating use of NetServ on GENI this June during GEC8

Service modules

Full-fledged service implementations

- * Use building blocks and other service modules
- * Can be implemented across multiple nodes
- * Invoked by applications
- Examples:
 - * Routing-related services
 - Multicast, anycast, QoS-based routing
 - * Monitoring services
 - Link & system status, network topology
 - * Identity services
 - Naming, security
 - * Traffic engineering services
 - CDN, redundancy elimination, p2p network support

Deployment scenarios

* Three actors

- * Content publisher (e.g. youtube.com)
- * Service provider (e.g. ISP)
- * End user
- Model 1: Publisher-initiated deployment
 - * Publisher rents router space from providers (or end users)
- Model 2: Provider-initiated deployment
 - * Publisher writes NetServ module
 - * Provider sees lots of traffic, fetches and installs module
 - Predetermined module location (similar to robots.txt)
- Model 3: User-initiated deployment
 - * User installs NetServ module to own home router or PC
 - * or on willing routers along the data path

Tampere 2010

Where does code run?

* All (or some?) nodes in a network
* AS, enterprise LAN

* Some or all nodes along path
* data path from source to destination

* Selected nodes by property* e.g., one in each AS

How does code get into nodes? gossip X \mathbf{X} All nodes in (enterprise) network

OSGi

k Architecture

- **Bundles**: JAR files with manifest
- * Services: Connects bundles
- * Services Registry: Management of services
- Modules: Import/export interfaces for bundles

Image credit: Wikipedia

- Possible to "wrap" existing Java apps and JARs
 - * Add additional manifest info to create OSGi bundle
 - * E.g.: Jetty web server now ships with OSGi manifest; now extensively used with OSGi containers and custom bundles
 - For NetServ, we created a OSGi bundle for the Muffin HTTP proxy server

Current architecture

context →

SECE: Sense Everything, Control Everything

- SECE allows users to create services that combine
 - communication
 - calendaring
 - location
 - devices in the physical world
- SECE is an event-driven system
 - that uses a high-level language
 - to trigger action scripts, written in Tcl.

SECE: Examples of rules

every sunset { homelights on;

every week on WE at 6:00 PM{ email irt_list "Pizza talk at 6:00 PM today.";

if my stock.google > 14 {
 sms me "google stock:"+[stock google];

Tampere 2010

SECE: Event-triggered actions

Events

Presence updates
Incoming calls
Email
Calendar entries
Sensor inputs
Location updates

Actions

Controlling the delivery of email
Routing phone calls
Updating social network status
Controlling actuators such as lights
Reminders (email, voice call, SMS)
Interacting with Internet services

SECE: The glue for Internet applications

Towards a future Internet

- * Long-term constant = service model
 - * equivalent of railroad track & road width
- Identify core Internet functions we need
 - * routing
 - packet scheduling
 - congestion control
 - name lookup
 - * path state establishment
 - * ...
- Learn from history
 - * why didn't these get done "right"?
 - * which functions should be done as application
- Need engineering principles
- Requirement list doesn't help

Conclusion

- * Abandon notion of a clean-slate next-generation Internet
 * that magically fixes all of our problems
- Need for good engineering solutions
 with user needs, not (just) vendor needs
- Research driven by real, not imagined, problems
 * factor 10 problems: reliability & OpEx
 * more reliability and usability, less sensor networks
 - Build a 5-nines network out of unreliable components
 - Make network disruptions less visible
 - Transition to "self-service" networks * support non-technical users, not just NOCs running HP OpenView or Tivoli