Jae Woo Lee, Jan Janak, Roberto Francescangeli, Suman
Srinivasan, Salman A. Baset, Eric W. Liu, Michael S. Kester and
Henning Schulzrinne

Internet Real-Time Laboratory, Columbia University

In collaboration with Wolfgang Kellerer and Zoran Despotovic at DOCOMO
Euro-Labs,

Volker Hilt at Bell Labs/Alcatel-Lucent and Srini Seetharaman at Deutsche
Telekom

NETSERV: PROGRAMMING
NETWORKS (AGAIN)

What 1s NetServ?

In-network service container
Java-programmable, signal-driven router
"GENI Lite” — deploy modules, not VMs
Active networking that works ™

Overview

= Old world

(computation, storage) € - forwarding

" 1990s: active networking
no good isolation infrastructure
limited applications

= Exploring new opportunities

providing additional services in the current
Internet > NetServ

future Internet architecture

Two worlds

10+ interfaces
o GB disk
1 low-end processor

1 interface
TB disk
1-32 multi-core processors

| Storage

Hard Drive Cost per Gigabyte
1980 - 2009

http://www.mkomo.com/cost-per-gigabyte

Bandwidth costs

Amazon EC2

$100/TB in, $100/TB out
CDN (Internet radio)

$600/TB (2007)

$100/TB (Qa 2009 —CDNpricing.com)
NetFlix (7 GB DVD)

postage $0.70 round-trip = $100/TB

FedEx — 2 Ib disk

5 business days: $6.55
Standard overnight: $43.68
Barracuda disk: $91 - $116/TB

amazon
web services

NETELIX

Il Software: from floppy to autonomous

.
Microsoft. Windows. 2 Microsoft Update - Microsoft Internet Explorer

!_\iiggsofl.Windows,

Sewch Favorkes 4

8] hetp: fhupdate micresoft comvcresoftupdste/vE(del sk

vicirosoft

| Microsoft Update
Welcome

Review your update history
mputer up to date
you d updates for Windows, your programs, your
Change settings ¥ your devices
FAQ
re Get hagh-frarty Lgdates
Get help and support (recomen ed)

Use administr stor options

vicrosoit
® Interrnt

-1llROGERS 3G 7:37 AM

Adobe Acrobat

Version 1.1 10/11/08

VLC Multimedia Plug-in

The Blimp Pilots
Koi Pond
Version 2.2.1 25/07/08

ttp deolan.org, ‘ : g
Q Jraratr . ~5 | Super Monkey Ball
Shockwave Flash M Super Monkey E
TLA Systems Ltd.

. . . PCalc RPN Calculator
QuickTime Plug-in 7.6.4 Version 1.2 17/11/08

Robert Chin

Wikipanion

Version 1.5a 14/08/08

NetServ overview

Extensible architecture for core network services

Application

B-Block II

Figure 3: Instantiation of services over tunable building blocks.

Modularization
Building Blocks
Service Modules

Virtual services framework
Security
Portability

NSF FIND four-year project
Columbia University
Bell Labs
Deutsche Telekom
DOCOMO Euro-Labs

Architecture overview

Module download

Signaling message
to install module
________________>

NetServ controller

Signaling message
forwarded to next hop
________________>

[l \ Module install

Service modules

Service modules

Service modules

000008000,

Building block layer

Building block layer

Building block layer

Virtual execution
environment

Virtual execution
environment

Virtual execution
environment

I

Data packets processed
by service modules

NetServ packet transport

Network node example

multiple computation
& storage providers

Different from active
networks?

= Active networks

Example: Packet contains executable code or pre-installed capsules
Can modify router states and behavior
Mostly stateless
Not successful
Per-packet processing too expensive
Limited storage (memory expensive)

Security concerns
No compelling killer app to warrant such a big shift

Notable work: ANTS, Janos, Switchware

= NetServ

Virtualized services on current, passive networks
Service invocation is signaling driven, not packet driven
Some flows & packets, not all of them
Emphasis on storage

Service modules are stand-alone, addressable entities
Separate from packet forwarding plane
Extensible plug-in architecture

How about GENI?

= GENI = global-scale test bed for networking
research

parallel experiments in VMs

= =>» long-term, “heavy” services
= Demonstrated NetServ on GENI during GEC8

Related work

Cisco’s Programmable Overlay Router
Juniper’s JUNOS SDK

DaVinci project

OpenFlow

ShadowNet (AT&T) — virtual routers
MillionNode GENI (end systems)

NetServ service containers

= NetServ service container
User-level processes
Embeds a Java Virtual Machine
Runs OSGi
Service modules are dynamically installed and removed

= NetServ Service Modules
OSGi-compliant Java code
Can be stand-alone server (i.e., listens on a port)

Or can be packet processor

Packets are first routed from kernel to container using kernel
queue (Netfilter queue in Linux and pseudo-device in Click Router)

Packets are then passed to Java using Java Native Interface (JNI)

Service modules

= Full-fledged service implementations
Use building blocks and other service modules
Can be implemented across multiple nodes
Invoked by applications

= Examples:
Routing-related services
Multicast, anycast, QoS-based routing
Monitoring services
Link & system status, network topology
Identity services
Naming, security

Traffic engineering services
CDN, redundancy elimination, p2p network support

Deployment scenarios

Three actors

Content publisher (e.g. youtube.com)
Service provider (e.g. ISP)
End user

Model 1: Publisher-initiated deployment
Publisher rents router space from providers (or end users)

Model 2: Provider-initiated deployment
Publisher writes NetServ module
Provider sees lots of traffic, fetches and installs module
Predetermined module location (similar to robots.txt)

Model 3: User-initiated deployment
User installs NetServ module to own home router or PC
or on willing routers along the data path

Where does code run?

= All (or some?) nodes in a network
AS, enterprise LAN

= Some or all nodes along path

data path from source to destination

= Selected nodes by property
e.g., onein each AS

How does code get into

nodes? -
=<

—_—

! How does code get into

NAT/Firewall
NSLP

QoS NSLP

CXTP NSLP (?)

(General Internet Signaling Transport)

I I l |

Transport Layer Security

TCP SCTP

IP Layer Secufity

\....!.....T....

P |

NSIS

* Progress along data path
with RAO-based discovery

» Designed to transport large objects

supports TCP and UDP
= Security mechanisms

NetServ signaling daemons

= NetServsignaling daemons
NSIS (RFC 4080) compliant
Two layers: Generic GIST and NetServ-specific NSLP

Receive signaling packets to setup/remove/probe
modules

Command in signal packet handed to NetServ
Controller

Node can be on-path - signal forwarded to next hop
Currently based on FreeNSIS implementation

Module management: 0SGi1

= "Dynamic module system for Java”
originally for set top boxes

= Why OSGi? Why not just JAR files?

More than just JAR files
much richer encapsulation
metadata in manifest

Automatic dependency resolution
Version management

Provides systems services (logging, configuration, user
authentication, device access, ...)

~ Debian's apt-get or Apple's App Store methods of installation

0SG1i features

= Dynamic module system for Java
Modules loaded and unloaded at runtime
Bundle: self-contained JAR file with specific structure
Open-source implementations: Apache Felix, Eclipse Equinox

= Security and accounting

Security built on Java 2 Security model
Permission-based access control
No fine-grained control or accounting for CPU, storage, bandwidth
Can load native code with appropriate permission

Strict separation of bundles
Classpath set up by Bundle class loader
Inter-bundle communication only through published interfaces

0SG1i architecture

Application / Bundles

= Architecture |_Services |:

: :
Bundles: JAR files with manifest

Services: Connects bundles — Modules |
Services Registry: Management
of services Operating System

_ Hardware
Modules: Import/export interfaces image credit: Wikipedia

for bundles
= Possible to “wrap” existing Java apps and JARs
Add additional manifest info to create OSGi bundle

E.g.: Jetty web server now ships with OSGi manifest; now
extensively used with OSGi containers and custom bundles

For NetServ, we created a OSGi bundle for the Muffin HTTP
proxy server

H"OSGi implementation

« Many core frameworks
Eclipse Equinox, Apache Felix, Knoplerfish

« Real-world examples
Eclipse IDE uses OSGi for plugin architecture

« Mostly finds use in enterprise applications
needing plugin functionality

E.g.: IBM Websphere, SpringSource (now VMWare)
dm server, Red Hat's JBoss

Getting packets: Click router

Runs as a Linux kernel module or user-level program

Modules written in C++ (called Elements) are
configured in a text file

Elements are arranged in a directed graph, through
which packets traverse

Example:
Click router command:

sudo click print.click

Configuration file print.click:

FromDevice (en0) ->CheckIPHeader (14) ->IPPrint->Discard;

http://www.read.cs.ucla.edu/click/

15t prototype

* Proof-of-concept for dynamic network
service deployment

Open-source Click modular router
Java OSGi dynamic module system
* Promising initial measurement results

NetServ overhead acceptable compared to other
overhead

implementation

Registers an instance of
PktDispatchingService

Implements
PktProcessor

dispatcher.addPkt
Processor (this) ;

StaticlPLookup ChecklPHeader
element element

User-level Click router

Single process

Performance evaluation

= |nitial measurements on the first prototype

NetServ on user-level Click router
Maximum Loss Free Forward Rate (MLFFR)

= Future work on next-generation prototypes
NetServ on JUNOS, kernel-mode Click
Ping latency
Microbenchmarks
Throughput for non-trivial services

comparison

Bare Linux: 115.0 kilopackets/sec

Penalty from
kernel-user
transition

F orwardrate in kilopackets/sec

Plain Click: 36.5 kilopackets/sec

Penalty from
Click w/ NetServ: 27.9 kilopackets/sec trip to Java

L}] L ' I L} |ayer
40 60 80 100 120 140

Input rate in kilopackets/sec

For a modular architecture, kernel-user transition is unavoidable since putting a
module inside a kernel is not an option

Current NetServ

NSLP
daemon

UNIX
socket

GIST
daemon

Raw
socket

NetServ Control
Protocol (TCP)

iptables

command

OSGi control sockets

node architecture

Packet
processing
modules

Server
modules

Netfilter

- #1

[ﬁ

NFQUEUE #2

Transport layer

i

Linux kernel

Client-
Server
data
packets

Forwarded
data packets

Signaling
packets

Next Click architecture

Signaling NetServ Controller Daemon Signaling
eStart & stop NetServ Service Container ~ [~ -~ - - =TT T T T T T T T T T TS >
*Module install & removal

Service modules for
anonymous users

Service modules for Service modules for <>/\ m

user #1 user #2

Flow-based multiplexing

C o X X O o > XD ayer

Building Blocks Building Blocks Building Blocks

OSGi, Java 2 Security OSGi, Java 2 Security OSGi, Java 2 Security

OpenVZ container OpenVZ container OpenVZ container

/dev/toclicka...N

Kernel-mode Click

PollDevice Other Click NetServ Packet NetServ Packet Other Click ToDevice
element elements Filter Injector elements element

NetServ controller and kernel

= NetServ kernel
Pass packets to user-level service container processes
Currently Linux kernel with Netfilter queues
Click Router version under development
Juniper Router version planned

= NetServ controller

Coordinates between signaling daemons, kernel, and
service container processes

Receives setup/remove/probe commands from signaling
daemons

Insert/remove packet filters into/from the kernel
Start/stop service modules in service container processes

Packet intercept

= CLICK

more functionality than needed

" pcap

capture only

APIs needed!

= Avoid SNMP retrieval problems
all or nothing (typical)
hard to do selective triggers

* Flow management
counters, measurement

= System information

like system MIB: geo location, uptime, interface
speeds, ...

routing table

routing table changes (“tell me if route to X
changes”)

NetServ service (demo) examples

Media relay

08

&

*
Media lg.

Relay -

e Standard media relay e NetServ media relay
— Required due to NAT — Closer to users
— Out-of-path — Improved call quality
— Inefficient and Costly — Reduced cost for ITSP

Media relay

Screen 2

2 Add Callers < v Do More

Rich Tehrani

| Video started
Call Duration 00:51

|| A) Stop My Video Ot

@

- %o @ Call with Rich Tehrani 9,234,229 p...

Tell:

How VolIP calls are relayed today

= Mediarelay needed due to NAT
But relays are often out-of-path
Inefficient and high cost for ITSP

Eaﬁi

Show:

1.

2.

3.

Make a video call between screens 1 & 3
Call flow displayed on screen 2

Bad call quality due to far-away relay

Media relay

Add Callers v Do More

Rich Tehrani

4 This is High Quality video.
@ o the best video qualt... @

4 Barbara Anderson

| Video started

Call Duration 00:51 y
\ o @ Stop My Video Call Duration 01:07
i W \

) Stop My Video Ot

@

fa & Cal with Rich Tehrani 9,234,229 p... | @<~ R # Callwith Barbara Anderson

Tell:

Media relay running in NetServ : SIP server sends signal to install module

= Closerto user agents : Screen 2 displays module being installed (blue arrow)
Higher call quality for users , Make a new video call
Reduced cost for ITSP : Call flow through NetServ relay displayed on screen 2

Screen 1 & 3 show much better video quality

Media Relay Signaling

1. UAregisters with SIP server

| 2. SIP server detects NAT:
2.nsis \\ Sends NSIS signal towards UA

Install

TURN Netserv node close to UA is discovered
| Netserv node installs TURN module

% Request SIP server remembers to use the TURN module
Relaying | for the UA

|

5. INVITE w/ | 3. AnINVITE is received for UA

updated SDP |
| 4. SIP server sends relaying request to the
TURN server

5. INVITE with updated SDP is sent to UA

NetServ based TURN module is installed at registration time to speed-up processing of
INVITE signaling.

Q@

NAT Keep-alive Responder

w/ Netserv

NAT Keep-alive responder off
— UA behind NAT must send keep-alive messages
— Major bottleneck for SIP server
NAT Keep-alive responder on
— Module responds on behalf of SIP server
— No traffic to server

NAT keep-alive responder

Screen 2

129.143.116.10 traffic - by day

Wed 00: 00 Wed 12:00

ur: 835.81M Min: 205.13M Avg: 673.20M Max: 953.90M
ur: 15.27M Min: 3.79M Avg: 19.66M Max: 53.55M
Last update: Wed May 14 19:55:11 2008

High cost for ITSP

Tell: Show:

= UA behind NAT must keep : Traffic generators send keep-alive
sending keep-alive message messages to SIP server

Major bottleneck on SIP : Packet flows shown on screen
server today High traffic volume, thus high cost for ITSP

NAT keep-alive responder

SIP server installs modules into
NetServ nodes closer to users

Modules respond to keep-alive
messages on behalf of SIP server

Keep-alive messages do not reach
SIP server

Screen 2

129.143.116.10 traffic - by day

Wed 00: 00 Wed 12:00

ur: 835.81M Min: 205.13M Avg: 673.20M Max: 953.90M
ur: 15.27M Min: 3.79M Avg: 19.66M Max: 53.55M
Last update: Wed May 14 19:55:11 2008

No keep-alive traffic

Show:

: Traffic generators keep sending keep-alive
messages to the SIP server

: Packet flows terminate at NetServ nodes

SIP server sees no keep-alive traffic, thus
no keep-alive cost to ITSP

I L < N
e d 1\ {\\ % .

Regular NetServ NetServ Regular Content
router router router router provider

>
(1) User requests http://youtube.com/getvideo?id=foo

<€

(2) YouTube sends video file

(3) YouTube sends on-path signal to deploy MicroCDN
module

(4) NetServ-enabled routers download the module

(5) NetServ routers notify that the module is
active

(6) Another user requests http://youtube.com/getvideo?id=foo
<€

(7) YouTube redirects user to nearest NetServ node running MicroCDN

>
(8) User requests http://netservi.verizon.com/youtube/foo.flv

< <
(9) NetServ router relays the video content, while fetching the file and caching it

MicroCDN - watermarking

Screen 2

ey
[

Watermark

User 1 downloads and
watches video content
from provider

Content server sends
on-path signal to install
MicroCDN module into
NetServ router

User 2’s request gets
redirected to NetServ
router, which serves
processed video

MicroCDN - module migration

Tell:

*PlanetLab nodes run scripts
fetching small files from the
web server

*MicroCDN modules with
short TTL keep getting P e,
installed and removed Screen2: 24 Screen 3:
*PlanetLab scripts are

NetServ nodes popping up Web traffic generated from
choreographed to make In the eastern region eastern PlanetLab nodes

modules migrate westward!

Screen 1: = Screen 2: Ly
Web traffic generated from (Flickering) NetServ nodes

western PlanetLab nodes migrating to the wild west!

Looking ahead

Future: NetServ everywhere

-rom big to small devices
Real router: Juniper’s JUNOS
Personal computer: Kernel-mode Click

Home router: Linux using iptables

Security and resource control
Enable various deployment scenarios
Support different economic incentives

The network services fallacy

= We tried adding network services as
protocols:

multicast
QoS
mobility
security

= All were, more-or-less, failures
(or underperformed expectations)
hard to secure, not quite right

Thoughts on architecture

Long-term constant: service model
equivalent of railroad track & road width

Identify core functions we need
routing
congestion control
name lookup
path state establishment

Learn from history

why didn‘t these get done “right"?
Need engineering principles
Requirement list doesn’t help

Future Internet architecture?

= Really closer to urban design

zoning, fire codes and infrastructure (rail, water)
plus oversight (fire marshal & building inspector)

architecture changes, urban designs stay
see Washington, DC & Berlin
= "Architecture” must be
expressible in one sentence
avoid limiting options (unknown unknowns)

avoid imposing unnecessary costs

Conclusion

e rapid on-path services, with storage
W= © moderate overhead

* Long-term
Full access, but not composable

rule-based packet handling
can be controlled by NetServ

e mainly packet processing
e fastest, least flexible

