# VolP – not your grandmother's phone any more

Henning Schulzrinne Columbia University



- ★ VoIP as black phone replacement → interactive communications enabler
- \* Presence as a service enabler
- \* Peer-to-peer VoIP
- \* Integrating VoIP with cellular
- \* Fax-over-IP

### Outline

\* VoIP maturing: vision vs. reality
\* overview of protocol zoo
\* presence and location-based services
\* user-programmable services

New VoIP challenges
emergency calling
peer-to-peer systems

The state of SIP standardization
trouble in standards land
interoperability

#### The three Cs of Internet applications

grossly simplified)..



### **Killer** Application

- Carriers looking for killer application
   iustify huge infrastructure investment
   "video conferencing" (\*1950 †2000)
   2
- \* "There is no killer application"
  - \* Network television block buster  $\rightarrow$  YouTube hit
  - \* "Army of one"
  - Users create their own custom applications that are important to them
  - Little historical evidence that carriers (or equipment vendors) will find that application if it exists
- Killer app = application that kills the carrier

### Collaboration in transition

*inter*-organization multiple technology generations diverse end points

intraorganization; small number of systems (meeting rooms)

standardsbased solutions

proprietary (singlevendor) systems

## **Evolution of VolP**



### IETF VoIP & presence efforts



### Old vs. new

|                     | old reality                                         | new idea                                            | new reality                                                                            |
|---------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------|
| service<br>provider | ILEC, CLEC                                          | email-like, run by<br>enterprise, homes             | E.164-driven; MSOs, some<br>ILECs, Skype, European SIP<br>providers, Vonage, SunRocket |
| media               | 4 kHz audio                                         | wideband audio,<br>video, IM, shared<br>apps,       | 4 kHz audio                                                                            |
| services            | CLASS (CLID, call<br>forwarding, 3-way<br>calling,) | user-created<br>services<br>(web model)<br>presence | still CLASS<br>GrandCentral<br>The New Way to Use Your Phones                          |
| user IDs            | E.164                                               | email-like                                          | E.164<br>IM handles                                                                    |

# **SIP overview**

#### Internet services – the missing entry

| Service/<br>delivery | synchronous                                                                             | asynchronous                 |
|----------------------|-----------------------------------------------------------------------------------------|------------------------------|
| push                 | instant messaging<br>presence<br>event notification<br>session setup<br>media-on-demand | messaging                    |
| pull                 | data retrieval<br>file download<br>remote procedure<br>call                             | peer-to-peer file<br>sharing |

## Filling in the protocol gap

| Service/<br>delivery | synchronous                           | asynchronous           |
|----------------------|---------------------------------------|------------------------|
| push                 | SIP<br>RTSP, RTP                      | SMTP                   |
| pull                 | HTTP<br>ftp<br>SunRPC, Corba,<br>SOAP | (not yet standardized) |

### SIP as service enabler

- \* Rendezvous protocol
  - lets users find each other by only knowing a permanent identifier
- \* Mobility enabler:
  - \* personal mobility
    - \* one person, multiple terminals
  - \* terminal mobility
    - one terminal, multiple IP addresses
  - \* session mobility
    - one user, multiple terminals in sequence or in parallel
  - service mobility
    - services move with user





alice@columbia.edu (also used by bob@columbia.edu)



## What is SIP?

- Session Initiation Protocol → protocol that establishes, manages (multimedia) sessions
  - also used for IM, presence & event notification



- uses SDP to describe multimedia sessions
- Developed at Columbia U. (with others)
- Standardized by
  - IETF (RFC 3261-3265 et al)
  - 3GPP (for 3G wireless)
  - PacketCable
- About 100 companies produce SIP products
- Microsoft's Windows Messenger (≥4.7) includes SIP

## Philosophy

- \* Session establishment & event notification
- \* Any session type, from audio to circuit emulation
- Provides application-layer anycast service
- \* Provides terminal and session mobility
- Based on HTTP in syntax, but different in protocol operation
- \* Peer-to-peer system, with optional support by proxies
  - \* even stateful proxies only keep transaction state, not call (session, dialogue) state
  - \* transaction: single request + retransmissions
  - \* proxies can be completely stateless

### Basic SIP message flow



### SIP trapezoid



### SIP message format

#### <u>request</u>

**INVITE** sip:bob@there.com **SIP/2.0** 

Via: SIP/2.0/UDP here.com:5060 From: Alice <sip:alice@here.com> To: Bob <sip:bob@there.com> Call-ID: 1234@here.com CSeq: 1 INVITE Subject: just testing Contact: sip:alice@pc.here.com Content-Type: application/sdp Content-Length: 147

#### ∫ v=0

equest line

ader field

o=alice 2890844526 2890844526 IN IP4 here.com s=Session SDP c=IN IP4 100.101.102.103 t=0 0 m=audio 49172 RTP/AVP 0 a=rtpmap:0 PCMU/8000

#### SDP

IEEE DLT 2009

#### response

#### SIP/2.0 200 OK

Via: SIP/2.0/UDP here.com:5060 From: Alice <sip:alice@here.com> To: Bob <sip:bob@there.com> Call-ID: 1234@here.com CSeq: 1 INVITE Subject: just testing Contact: sip:alice@pc.here.com Content-Type: application/sdp Content-Length: 134

#### v=0

o=bob 2890844527 2890844527 IN IP4 there.com s=Session SDP c=IN IP4 110.111.112.113 t=0 0 m=audio 3456 RTP/AVP 0 a=rtpmap:0 PCMU/8000

### PSTN vs. Internet Telephony



## SIP addressing

- \* Users identified by SIP or tel URIs
  - \* sip:alice@example.com
- tel: URIs describe E.164 number, not dialed digits (RFC 2806bis)
- ★ tel URIs → SIP URIs by outbound proxy tel:110 → sip:sos@domain
- A person can have any number of SIP URIs
- \* The same SIP URI can reach many different phones, in different networks
  - \* sequential & parallel forking
- \* SIP URIs can be created dynamically:
  - \* GRUUs
  - conferences
  - \* device identifiers (sip:foo@128.59.16.15)
  - Registration binds SIP URIs (e.g., device addresses) to SIP "address-ofrecord" (AOR)





domain <del>></del> 128.59.16.17 via NAPTR + SRV

## 3G Architecture (Registration)



visited IM domain

# Presence & events

#### We need glue!

- k Lots of devices and services
  - \* cars
  - \* household
  - \* environment
- \* Generally, stand-alone
  - \* e.g., GPS can't talk to camera
  - Home
    - home control networks have generally failed
      - \* cost, complexity
  - Environment
    - \* "Internet of things"
    - \* tag bus stops, buildings, cars, ...





#### Left to do: event notification

- notify (small) group of users when something of interest happens
  - \* presence = change of communications state
  - \* email, voicemail alerts
  - environmental conditions
  - \* vehicle status
  - \* emergency alerts
- kludges
  - \* HTTP with pending response
  - \* inverse HTTP --> doesn't work

#### with NATs

Lots of research (e.g., SIENA)

- \* IETF efforts starting
  - \* SIP-based
  - \* XMPP

#### Context-aware communication

- \* context = "the interrelated conditions in which something exists or occurs"
- \* anything known about the participants in the (potential) communication relationship
- \* both at caller and callee

| time                    | CPL                                     |        |
|-------------------------|-----------------------------------------|--------|
| capabilities            | caller preferences                      |        |
| location                | location-based call routing             | N      |
|                         | location events                         |        |
| activity/availability   | presence                                |        |
| sensor data (mood, bio) | privacy issues similar to location data | İ      |
|                         |                                         | *1.230 |



## The role of presence

#### Guess-and-ring

- \* high probability of failure:
  - \* "telephone tag"
  - inappropriate time (call during meeting)
  - inappropriate media (audio in public place)
- \* current solutions:
  - voice mail → tedious, doesn't scale, hard to search and catalogue, no indication of when call might be returned
  - automated call back → rarely used, too inflexible
- ★ → most successful calls are now scheduled by email

#### \* Presence-based

- \* facilitates unscheduled communications
- provide recipient-specific information
- \* only contact in real-time if destination is willing and able
- \* appropriately use synchronous vs. asynchronous communication
- \* guide media use (text vs. audio)
- predict availability in the near future (timed presence)

Prediction: almost all (professional) communication will be presence-initiated or pre-scheduled

#### **GEOPRIV** and **SIMPLE** architectures



### Presentity and Watchers



#### Basic presence

- Role of presence
  - initially: "can I send an instant message and expect a response?"
  - \* now: "should I use voice or IM? is my call going to interrupt a meeting? is the callee awake?"
- \* Yahoo, MSN, Skype presence services:
  - \* on-line & off-line
  - \* useful in modem days but many people are (technically) on-line 24x7
  - \* thus, need to provide more context
  - + simple status ("not at my desk")
- \* entered manually  $\rightarrow$  rarely correct
- does not provide enough context for directing interactive communications

#### Presence data architecture



#### Presence data architecture



#### Rich presence

- Provide watchers with better information about the what, where, how of presentities
- \* facilitate appropriate communications:
  - \* "wait until end of meeting"
  - \* "use text messaging instead of phone call"
  - \* "make quick call before flight takes off"
- designed to be derivable from calendar information
   \* or provided by sensors in the environment
- allow filtering by "sphere" the parts of our life
   don't show recreation details to colleagues

#### Rich presence

\* automatically derived from
 \* sensors: physical presence, movement
 \* electronic activity: calendars

\* Contains:

\* multiple contacts per presentity

- \* device (cell, PDA, phone, ...)
- \* service ("audio")
- \* activities, current and planned
- \* surroundings (noise, privacy, vehicle, ...)
- \* contact information
- \* composing (typing, recording audio/video IM, ...)

#### The role of presence for call routing

#### \* Two modes:

- watcher uses presence information to select suitable contacts
  - advisory caller may not adhere to suggestions and still call when you're in a meeting
- user call routing policy informed by presence
  - kely less flexible machine intelligence
  - "if activities indicate meeting, route to tuple indicating assistant"
  - "try most-recently-active contact first" (seq. forking)



#### Presence and privacy

- \* All presence data, particularly location, is highly sensitive
- \* Basic location object (PIDF-LO) describes
  \* distribution (binary)
  \* retention duration
- \* Policy rules for more detailed access control
  - \* who can subscribe to my presence
  - \* who can see what when

<tuple id="sq89ae"> <qp:qeopriv> <qp:location-info> <qml:location> <gml:Point gml:id="point1"</pre> srsName="epsg:4326"> <qml:coordinates>37:46:30N 122:25:10W </gml:coordinates> </gml:Point> </gml:location> </gp:location-info> <qp:usage-rules> <qp:retransmission-allowed>no </gp:retransmission-allowed> <qp:retention-expiry>2003-06-23T04:57:29Z </gp:retention-expiry> </gp:usage-rules> </gp:geopriv> <timestamp>2003-06-22T20:57:29Z</timestamp> </tuple>

## Privacy rules

#### \* Conditions

- \* identity, sphere
- \* time of day
- \* current location
- \* identity as <uri> or <domain> + <except>

#### \* Actions

- \* watcher confirmation
- Transformations
   include information
  - \* reduced accuracy

\* User gets maximum of permissions across all matching rules

- privacy-safe composition: removal of a rule can only reduce privileges
- \* Extendable to new presence data

- \* rich presence
- \* biological sensors
- \* mood sensors


# Example rules document

#### <rule id=1>

<id>user@example.com</id></identity>

<sub-handling>allow</sub-handling>

<provide-services>

<service-uri-scheme>sip</service-uri-scheme>

<service-uri-scheme>mailto</service-uri-scheme>

</provide-services>

convide-person>true</provide-person>

cprovide-activities>true</provide-activities>

<provide-user-input>bare</provide-user-input>

IEEE DLT 2009

# Location-based Services

# Location-based services



# Location-based SIP services

### \* Location-aware inbound routing

- \* do not forward call if time at callee location is [11 pm, 8 am]
- \* only forward time-for-lunch if destination is on campus
- \* do not ring phone if I'm in a theater

#### \* outbound call routing

- \* contact nearest emergency call center
- \* send <u>delivery@pizza.com</u> to nearest branch

#### \* location-based events

- \* subscribe to locations, not people
- \* Alice has entered the meeting room
- \* subscriber may be device in room  $\rightarrow$  our lab stereo changes CDs for each person that enters the room

# Location delivery







# Location determination options

| Method     | CDP or LLDP-<br>MED                                                                                          | DHCP                                                                      | HELD                                                                                   | GPS                                                                                          | manual entry                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Layer      |                                                                                                              |                                                                           |                                                                                        |                                                                                              |                                                                                           |
| advantages | <ul> <li>simple to<br/>implement</li> <li>built into switch</li> <li>direct port/room<br/>mapping</li> </ul> | <ul> <li>simple to<br/>implement</li> <li>network<br/>locality</li> </ul> | <ul> <li>traverses<br/>NATs</li> <li>can be<br/>operated by<br/>L2 provider</li> </ul> | <ul> <li>accurate</li> <li>mobile<br/>devices</li> <li>no carrier<br/>cooperation</li> </ul> | <ul> <li>no<br/>infrastructure<br/>changes</li> <li>no carrier<br/>cooperation</li> </ul> |
| problems   | may be hard to<br>automate for large<br>enterprises                                                          | mapping MAC<br>address to<br>location?                                    | mapping IP<br>address to<br>switch port?                                               | <ul> <li>indoor<br/>coverage</li> <li>acquisition<br/>time</li> </ul>                        | <ul> <li>fails for<br/>mobile<br/>devices</li> <li>unreliable for<br/>nomadic</li> </ul>  |
| Use        | Ethernet LANs                                                                                                | Enterprise<br>LANs<br>Some ISPs                                           | DSL, cable                                                                             | mobile devices                                                                               | fall back                                                                                 |

## Program location-based services





# **Emergency calling**

## Modes of emergency communications



# Background on 9-1-1

### \* Established in Feb. 1968

- \* 1970s: selective call routing
- \* late 1990s: 93% of population/96% of area covered by 9-1-1
- \* 95% of 9-1-1 is Enhanced 9-1-1
- \* US and Canada
- Roughly 200 mio. calls a year (6 calls/second)
   \* 1/3 wireless
- \* 6146 PSAPs in 3135 counties
  - \* most are small (2-6 call takers)
  - \* 83.1% of population have some Phase II (April 2007)
- \* "12-15 million households will be using VoIP as either primary or secondary line by end of 2008" (NENA)

47



## What makes VoIP 112/911 hard?

| POTS                                                           |                                                             |                                                                    |  |
|----------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--|
| (landline) phone<br>number limited to<br>limited area          | landline phone<br>number anywhere in<br>US (cf. German 180) | no phone number or<br>phone number<br>anywhere around<br>the world |  |
| regional carrier                                               | national or<br>continent-wide<br>carrier                    | enterprise "carrier"<br>or anybody with a<br>peer-to-peer device   |  |
| voice provider = line<br>provider (~ business<br>relationship) | voice provider ≠ ISP                                        | voice provider ≠ ISP                                               |  |
| national protocols<br>and call routing                         | probably North<br>America + EU                              | international<br>protocols and<br>routing                          |  |
| location = line<br>location IEEE DLT 2009                      | mostly residential or small business                        | stationary, nomadic,<br>wireless                                   |  |

# **Emergency numbers**

\* Each country and region has their own
\* subject to change

### \* Want to enable

- traveler to use familiar home number
- good samaritan to pick up cell phone

 Some 3/4-digit numbers are used for non-emergency purposes (e.g., directory assistance)



Emergency number

# Service URN

- \* Idea: Identifiers to denote emergency calls \* and other generic (communication) services
- \* Described in IETF ECRIT RFC 5031
- \* Emergency service identifiers:

SOS sos.fire sos.gas sos.marine sos.mountain sos.physician sos.poison sos.police

General emergency services sos.animal-control Animal control Fire service Gas leaks and gas emergencies Maritime search and rescue Mountain rescue Physician referral service Poison control center Police, law enforcement

## LoST: Location-to-URL Mapping





The POC system is deployed in 5 real PSAPs and 3 labs across the USA. PSAP: Public Safety Answering Point (=Emergency call center)



IEEE DLT 2009



# Defining peer-to-peer systems

Each peer must act as both a client and a server.

Peers provide computational or storage resources for **other** peers.

Self-organizing and scaling.

 & 2 are not sufficient: DNS resolvers provide services to others Web proxies are both clients and servers SIP B2BUAs are both clients and servers

IEEE DLT 2009

# P2P systems are ...





P2P

## NETWORK ENGINEER'S WARNING

P2P systems may be

- inefficient
- \* slow
- \* unreliable
- based on faulty and short-term economics
- mainly used to route around copyright laws

IEEE DLT 2009

VS.

# Motivation for peer-to-peer systems

- Saves money for those offering services
  - \* addresses market failures
- \* Scales up automatically with service demand
- More reliable than clientserver (no single point of failure)
- \* No central point of control
  - mostly plausible deniability

- Networks without infrastructure (or system manager)
  - New services that can't be deployed in the ossified Internet \* e.g., RON, ALM

## P2P traffic is not devouring the Internet...



# Energy consumption



http://www.legitreviews.com/article/682/



## Bandwidth costs

## \* Transit bandwidth: \$40 Mb/s/month ~ \$0.125/GB

\* US colocation providers charge \$0.30 to \$1.75/GB
\* e.g., Amazon EC2 \$0.17/GB (outbound)
\* CDNs: \$0.08 to \$0.19/GB

IEEE DLT 2009

# **Economics of P2P**

\* Service provider view

save \$150/month for single rented server in colo, with 2 TB bandwidth

\* but can handle 100,000 VoIP users

\* But ignores externalities

- ★ home PCs can't hibernate → energy usage
  ★ about \$37/month
- \* less efficient network usage

\* bandwidth caps and charges for consumers

- \* common in the UK
- \* Australia: US\$3.20/GB

Home PCs may become rare
see Japan & Korea



bandwidth

IEEE DLT 2009

62

## Which is greener – P2P vs. server?

- \* Typically, P2P hosts only lightly used
  - \* energy efficiency/computation highest at full load
  - $* \rightarrow$  dynamic server pool most efficient
  - \* better for distributed computation (SETI@home)
- \* But:
  - \* CPU heat in home may lower heating bill in winter
    - but much less efficient than natural gas (< 60%)</li>
  - \* Data center CPUs always consume cooling energy
    - \* AC energy ≈ server electricity consumption
- \* Thus,
  - \* deploy P2P systems in Scandinavia and Alaska

# Reliability

## \* CW: "P2P systems are more reliable"

Catastrophic failure vs. partial failure
single data item vs. whole system

\* assumption of uncorrelated failures wrong

## \* Node reliability

- \* correlated failures of servers (power, access, DOS)
- \* lots of very unreliable servers (95%?)

 Natural vs. induced replication of data items Some of you may be having problems logging into Skype. Our engineering team has determined that it's a software issue. We expect this to be resolved within 12 to 24 hours. (Skype, 8/12/07)

# Security & privacy

\* Security much harder

- \* user authentication and credentialing
  - \* usually now centralized
- \* sybil attacks
- \* byzantine failures
- \* Privacy
  - \* storing user data on somebody else's machine
- \* Distributed nature doesn't help much
  - ★ same software → one attack likely to work everywhere

\* CALEA

IEEE DLT 2009

# M&AO

\* P2P systems are hard to debug

- No real peer-to-peer management systems
   system loading (CPU, bandwidth)
   automatic splitting of hot spots
   user experience (signaling delay, data path)
   call failures
- Later: P2PP & RELOAD add mechanisms to query nodes for characteristics
- \* Who gathers and evaluates the overall system health?

# P2P for VolP

# The role of SIP proxies



#### tel:1-212-555-1234

#### sip:alice@example.com

Translation may depend on caller, time of day, busy status, ...



#### sip:line1@128.59.16.1



sip:6461234567@mobile.com

# P2P SIP

- k Why?
  - no infrastructure available: emergency coordination
  - \* don't want to set up infrastructure: small companies
  - \* Skype envy :-)

#### P2P technology for

- user location
  - only modest impact on expenses
  - but makes signaling encryption cheap
- NAT traversal
  - matters for relaying
- \* services (conferencing, transcoding, ...)
  - how prevalent?
- New IETF working group formed
  - multiple DHTs
  - \* common control and look-up protocol?



IEEE DLT 2009

# More than a DHT algorithm Routing-table stabilization Periodic recovery Parallel requests **Recursive routing** Bootstrapping Proximity neighbor selection Reactive recovery Proximity route selection Strict vs. surrogate routing Routing-table exploration

# P2P SIP -- components

 Multicast-DNS (zeroconf) SIP enhancements for LAN
 announce UAs and their capabilities

Client-P2P protocol
GET, PUT mappings
mapping: proxy or UA

\* P2P protocol
\* get routing table, join, leave, ...
\* independent of DHT
\* replaces DNS for SIP and basic proxy






### IETF peer-to-peer efforts

- K Originally, effort to perform SIP lookups in p2p network
- Initial proposals based on SIP itself
   use SIP messages to query and update entries
   required minor header additions
- \* P2PSIP working group formed
  \* now SIP just one usage
- Several protocol proposals (ASP, RELOAD, P2PP) merged
  - \* still in "squishy" stage most details can change

### RELOAD

Generic overlay lookup (store & fetch) mechanism
 any DHT + unstructured

Routed based on node identifiers, not IP addresses

- Multiple instances of one DHT, identified by DNS name
- Multiple overlays on one node

Structured data in each node
without prior definition of data types
PHP-like: scalar, array, dictionary
protected by creator public key
with policy limits (size, count, privileges)

Maybe: tunneling other protocol messages

### Typical residential access





#### ICE (Interactive Connectivity Establishment)



### <u>OpenVoIP snapshots</u>



### **OpenVoIP** snapshots



## OpenVoIP snapshots \* Tracing lookup request on Google Maps

X

Operations Hotmetrics Results

#### Result:

SIPLookup: unhashed-id: test\_call To: <u>160.193.163.102:10080</u> 302 response: Next hop: <u>128.112.139.75:7080</u> 302 response: Next hop: <u>143.107.111.194:10080</u> 302 response: Next hop: <u>169.229.50.14:9080</u> OnSIPLookup: 200 sip:test\_call@128.59.19.152:5060

Query time taken: 474.631 ms

A1:9080

## Integrating cellular and 802.11





### Experiments

Total Call Setup Delay



| Type of call (A $\rightarrow$ B) | Forwarding delay | Call-setup delay |
|----------------------------------|------------------|------------------|
| Cell-to-cell *                   | 6.7 s            | 9.6 s            |
| Cell-to-IP **                    | 3.1 s            | 6.2 s            |





### Fax pass-through

\* Uses G.711 over RTP
\* fax signaling events (RFC 3665)
\* other codecs may not reproduce modem tones

May be sensitive to packet-specific distortions
∗ bit errors → packet loss bursts
∗ jitter → delay adaptation gaps

\* Fixes:

- \* PLC in terminal adapter
- \* FEC in RTP stream
- \* T.38 in gateway?

# Standards & interoperability

### Interoperability

- Generally no interoperability problems for basic SIP functionality
  - \* basic call, digest registration (mostly...), call transfer, voice mail
  - Weaker in advanced scenarios and backward compatibility
    - \* handling TCP, TLS
    - NAT support (symmetric RTP, ICE, STUN, ...)
    - multipart bodies
    - \* SIP torture tests
    - \* call transfer, call pick-up
    - video and voice codec interoperability (H.264, anything beyond G.711)
- SIPit useful, but no equivalent of WiFi certification
  - most implementations still single-vendor (enterprise, carrier) or vendor-supplied (VSP)
  - SFTF (test framework) still limited
- Need profiles to guide implementers
- A role for public shaming?





### Trouble in Standards Land

- Proliferation of transition standards: 2.5G, 2.6G, 3.5G, ...
  true even for emergency calling...
- Splintering of standardization efforts across SDOs
  - \* primary:
    - IEEE, IETF, W3C, OASIS, ISO
  - \* architectural:
    - \* PacketCable, ETSI, 3GPP, 3GPP2, OMA, UMA, ATIS, ...
  - \* specialized:
    - \* NENA
  - \* operational, marketing:
    - \* SIP Forum, IPCC, ...



### IETF issues

- SIP WGs: small number (dozen?) of core authors (80/20)
  - \* some now becoming managers...
  - \* or moving to other topics
- \* IETF: research  $\rightarrow$  engineering  $\rightarrow$  maintenance
  - many groups are essentially maintaining standards written a decade (or two) ago
    - DNS, IPv4, IPv6, BGP, DHCP; RTP, SIP, RTSP
    - constrained by design choices made long ago
  - \* often dealing with transition to hostile & "random" network
  - \* network ossification

- \* Stale IETF leadership
  - often from core equipment vendors, not software vendors or carriers
- fair amount of not-inventedhere syndrome
  - late to recognize wide usage of XML and web standards
  - late to deal with NATs
  - security tends to be perprotocol (silo)
    - some efforts such as SAML and SASL

tendency to re-invent the wheel in each group

### Conclusion

- \* Even after 10+ years, VoIP mostly still "cheaper calls"
- \* New services and models:
  - \* (rich) presence
  - \* location-based services
  - \* user-programmable services
  - \* P2P SIP
- \* Scaling to carrier-scale and under duress
- Current standardization processes slow and complexity-inducing