
BASS Application Sharing System∗

Omer Boyaci and Henning Schulzrinne
Department of Computer Science

Columbia University
{boyaci,hgs}@cs.columbia.edu

Abstract

Application and desktop sharing allows sharing of any
application with one or more people over the Internet. The
participants receive the screen-view of the shared applica-
tion from the server. Their mouse and keyboard events are
delivered and regenerated at the server. Application and
desktop sharing enables collaborative work, software tu-
toring, and e-learning over the Internet. We have devel-
oped an application and desktop sharing platform called
BASS which is efficient, reliable, independent of the operat-
ing system, scales well via heterogenous multicast, supports
all applications, and features true application sharing.

1. Introduction

Application and desktop sharing allows two or more
people to collaborate on a single document, drawing or
project in real-time. Some applications like Netbeans
and Google Docs are collaboration-aware and allow more
than one person to work on the same document at the
same time [6, 3]. However, most applications are not
collaboration-aware. Fortunately, collaboration features can
be added to these applications transparently. There are two
models for collaboration-transparent application sharing:
application-specific and generic. An application-specific
solution allows to share a specific application such as Mi-
crosoft Word [26], while a generic one allows to share any
application. Application-specific solutions are expensive in
terms of engineering cost and they may not allow to use
all features of the application [26]. Also, to participate
in a sharing session, all participants must have a copy of
the shared application. In the generic model, the applica-
tion can be anything such as a word processor, browser,
CAD/CAM, Powerpoint or movie editor. Also, the par-
ticipants do not need to install the application. One dis-
advantage of generic application sharing is that its generic

∗This work was supported in part by a grant from FirstHand Technolo-
gies.

nature makes it less efficient as compared to the application-
specific model in certain scenarios. We have developed an
application and desktop sharing system, BASS, based on
the generic model.

Application sharing differs from desktop sharing. In
desktop sharing, a server distributes any screen update. In
application sharing, the server distributes screen updates if
and only if they belong to the shared application’s windows.

The main challenges of application and desktop sharing
are scalability, reliability, true application sharing, operat-
ing system independence, and performance. BASS scales
quite well via reliable multicast as discussed in Section 6.6.
The sharing system should be efficient in the sense that it
should transmit only the changed parts of the screen, and it
should not consume all the bandwidth and CPU resources
while doing this. BASS uses the most efficient technique, a
mirror driver, to detect changed regions of the screen.

Current sharing solutions perform poorly if the user
wants to share photos or movies. They use the same en-
coding for text, computer-generated images, movies, and
photographic images. Lossless encodings give poor per-
formance for movies and photographic images. While
lossy encodings generate visual artifacts around texts and
computer-generated images such as straight lines.

Section 2 discusses related work. The system architec-
ture is discussed in Section 3, and the details of the BASS
protocol are discussed in Section 4. Client and server ar-
chitectures are explained in Sections 5 and 6, respectively.
Section 7 compares the performance of BASS to other sys-
tems in terms of bandwidth and frame rate. Finally, Section
8 summarizes our work.

2. Related work

The X Window System is a network-transparent window
system. Several X protocol multiplexors such as SharedX,
DMX, XMX, and CCFX have been developed [15]. These
multiplexors fail to support heterogeneous X servers. Also,
it is not possible to support late joiners.



Figure 1. Desktop with overlapping windows

Figure 2. MAST client view

Figure 3. Mast client view

Microsoft provides Windows Meeting Space for Win-
dows Vista and Netmeeting for Windows XP. Netmeeting
was released in 1999 for Windows 98; in our tests, it failed
to display pop-ups and menus. Windows Vista introduces
application sharing feature as part of Windows Meeting
Space, but all the attendees must use Windows Vista.

Figure 4. UltraVNC client view

VNC [24] is a cross-platform open source desktop shar-
ing system but it supports only screen sharing. VNC uses a
client-pull based transmission mechanism which performs
poorly compared with server-push based transmissions un-
der high round-trip time (RTT).

SharedAppVnc [25] supports true application sharing,
but the delay is on the order of seconds. It uses a lossy
codec and does not support multicast.

Some sharing systems such as UltraVNC [12] and Mul-
ticast Application Sharing Tool (MAST) [22] claim appli-
cation sharing support. However, they distribute all pieces
within the boundary of the shared window. This may expose
information from other non-shared applications. Shared ap-
plication may open new child windows such as those for
selecting options or fonts. UltraVNC and MAST failed to
share child windows. A true application sharing system
must blank all the non-shared windows and must transfer
all the child windows of the shared application. For exam-
ple, if a user wants to share only the “Internet Explorer”
application, which has the title “Windows Live Hotmail -
Windows Internet Explorer”, from the desktop seen in (Fig-



ure 1), then the participants should only see the main and
the “Internet Options” windows. BASS (Figure 3) displays
only these two windows with a correct size while blocking
the desktop background and the non-shared windows. In
our test MAST, discussed in the following section, did not
display the shared application in correct size and did not
block the non-shared application and desktop background
(Figure 2). Similarly, UltraVNC failed in our tests due to
following problems: the cursor position did not match, win-
dows belonging to unshared applications are shared, new
windows belonging to same application are not included
and long menus are not shown properly (Figure 3).

THINC [16] and RDP [10] can play full motion movies
if the bandwidth between the user and participant is tens of
Mb/s [12, 10]. Due to their high bandwidth requirements,
they do not scale well, and they do not perform well for
realistic bandwidth conditions. BASS is the only system
which uses different encodings for different regions of the
screen. BASS uses the Theora [11] video codec to stream
movies, JPEG [13] to transmit images, and PNG [9] for the
rest.

VNC, Netmeeting, Windows Meeting Space and Mac
OS X Leopard Screen Sharing all rely on unicast only, so
they do not scale well to larger groups. Sharing an appli-
cation via unicast increases the bandwidth usage linearly
with the number of participants. For instance, Microsoft
suggests Windows Meeting Space for groups of no more
than 10 users. The TeleTeachingTool [27] and MAST use
multicast to overcome this limitation. The TeleTeaching-
Tool adds multicast support to VNC servers; however, it
is developed just for online teaching, so it does not allow
participants to control the shared desktop. Also, it does
not support true application sharing due to its underlying
VNC system. MAST allows remote users to participate via
their keyboard and mouse, but its screen capture model is
based on polling which is very primitive and not compara-
ble to current state-of-the-art capturing methods like mirror
drivers, discussed in Section 6.1. Although both TeleTeach-
ingTool and MAST use multicast for scalability, they do not
address the unreliable nature of UDP transmissions. Even
if the packets are delivered, they may be out of order. In
order to compensate for packet loss, the TeleTeachingTool
and MAST periodically transmit the whole screen which
increases the bandwidth and CPU usage. Table 2 compares
the sharing systems discussed so far. Nieh et al compared
sharing systems in detail [20].

3. System architecture

BASS is based on a client-server architecture. The server
is the computer which runs the shared application. The par-
ticipants use a lightweight Java [5] client application for
connecting to the server, and they do not need the shared

application. Clients receive screen updates from the server
and send keyboard and mouse events to the server.

The Java client works in almost every operating system.
The server could not be written in Java because Java does
not have OS level windowing information and can not learn
screen updates from the OS. Therefore, there should be a
server for each operating system and we have developed a
Windows XP server and mirror driver. A mirror driver is
the best known technique for capturing screen update events
and will be discussed in detail in Section 7.1. The mir-
ror driver runs in kernel mode and notifies the user mode
server when it detects changes in the GUI of the shared
application. The server then prepares an RTP packet con-
taining encoded image of the updated region. RTP allows
the clients to re-order the packets, recognize missing pack-
ets and synchronize application sharing with other media
types like audio and video. The screen updates can be en-
coded with PNG [9], JPEG [13] or Theora according to their
characteristics. PNG is an open image format which uses a
lossless compression algorithm [19, 18] and more suitable
for computer-generated images. JPEG is lossy, but more
suitable for photographic images. Theora is an open source
video codec comparable to H.264 and suitable for movie
encoding.

The server supports both multicast and unicast transmis-
sions. For unicast connections, either UDP or TCP can be
used. Since TCP provides reliable communication and flow
control, it is more suitable for unicast sessions. Multiple
TCP clients sharing a single application may have differ-
ent bandwidths, so we have developed an algorithm which
sends the updates at the link speed of each client. For UDP
clients, the server controls the transmission rate because
UDP does not provide flow and congestion control. Several
simultaneous multicast sessions with different transmission
rates can be created at the server. The server can share an
application to TCP clients, UDP clients, and several multi-
cast addresses in the same sharing session.

Participants can join a sharing session anytime, and they
need the full screen buffer before receiving partial updates.
Therefore, they send a RCTP-based feedback message, Full
Intra-frame Request (FIR) [23], after joining the session.
The server prepares and transmits the image of the whole
shared region after receiving an FIR message. Preparing a
full screen update is costly in terms of CPU, so the sharing
server stores the generated image for some time.

Although multiple users can receive screen updates si-
multaneously, clearly only one of them can manipulate the
application via keyboard and mouse events. BASS uses the
Binary Floor Control Protocol (BFCP) [17] to restrict the
control of the application to a single user. BFCP receives
floor request and floor release messages from clients, and
then it grants the floor to the appropriate client for a pe-
riod of time while keeping the requests from other clients in



OS Independent Scalable Application Sharing Remote Control Recording
VNC + - - + +
Windows Meeting Space - - + + -
Leopard Screen Sharing - - - + -
TeleTeachingTool + + - - +
Mast + + - + -
BASS + + + + +

Table 1. Comparison of related work

a FIFO queue. All BFCP messages, keyboard and mouse
events are transmitted directly to the server using TCP.
Java’s key-codes are used for mouse and keyboard events
because these events are captured from a Java client and
regenerated by a Java component at the server. These key-
codes are publicly available [4].

We have also added a recording feature to BASS. Par-
ticipants can record the sharing session to a file. This file
may be used for watching the session locally or streaming
to multiple receivers simultaneously. This feature is very
useful for preparing lectures or software tutorials for future
use.

4. The BASS protocol

BASS clients and servers communicate using the BASS
protocol. The protocol defines five messages from server to
client and two messages in the reverse direction (Table ??).
The “Open new window” message instruct the client appli-
cation to open a new window. For TCP clients, the server
transmits this message right after establishing the connec-
tion. UDP-based clients send a “full intra-frame request”
to the server when they join the session. Receiving this FIR
message, the server transmits the “Open new window” mes-
sage. The server transmits “Region update” messages for
updated regions. Whenever the shared window resizes, the
server sends a “Window size update” message. “Move rect-
angle” instructs the client to move a region from one place
to another, which is efficient for some drawing operations
like scrolls.

Each protocol message consists of an RTP header, mes-
sage type identifier, window identifier, and message specific
payload (Table ??). The message specific payload structure
and length are determined by the message type. Neither
TCP nor RTP declares the length of the RTP packet. There-
fore, RTP framing [21] is used to split RTP packets within
the TCP byte stream.

5. Client architecture

The BASS client is very simple and lightweight com-
pared with the server. It receives screen updates from the

server and displays them to the participant. It is completely
stateless in the sense that it can disconnect and reconnect
to the server. Due to its simplicity, clients for different plat-
forms can be easily developed. A Java BASS client has been
developed in our lab. BASS clients can listen for or initiate
connections. Participants of a sharing session can be view-
only or they can request input control from the server. To re-
quest input control from server, a user presses the “control”
button in the GUI of the client application (Figure 3). The
client sends a floor request message, and then the server re-
sponds with a ”granted” or ”request queued” message. The
server grants the floor immediately if nobody else currently
controls the floor. Otherwise, the request will be queued in a
FIFO queue, and the floor will be granted to the requesters
one-by-one automatically. Users can release the floor by
pressing the “control” button again. The floor is automati-
cally released after a period of inactivity or after the client
holding the floor leaves the session. After the server grants
the floor, the client captures all keyboard and mouse events
locally and transmits them to the server via RTP messages.

6. Windows XP server architecture

The Windows server allows Windows XP users to share
an application with other participants. The Windows server
has two main compenents, a kernel-mode mirror driver and
user-mode sharing server. The mirror driver tracks the up-
dated regions of the screen, and notifies the user-mode shar-
ing server about these updates through a shared memory
region. The user-mode sharing server learns the updated
regions, prepares region updates, and transmits these up-
dates to the participants (Figure 5). The sharing server also
receives and regenerates mouse and keyboard events from
participants. These two components are examined in detail
in the following sections.

6.1. Mirror driver

A mirror driver is a display driver that mirrors the draw-
ing operations of a physical display driver. The Windows
OS calls the physical and mirror display drivers with the
same GDI (graphics device interface) commands. It is the



most efficient way of learning screen updates because the
operating system provides the exact coordinates of screen
updates. We had to develop our own mirror driver for the
sharing server because there is no free and open source
mirror driver. Remote Desktop Connection and VNC also
use their own mirror drivers to efficiently learn the screen
updates. Stability and correctness are very important for
kernel-mode components because they may easily cause
restart or blue screen. Our mirror driver is completely stable
such that we have not observed any crashes at all for the last
two years.

We have used shared memory to establish a communi-
cation channel between the mirror driver and the sharing
server. Both mirror driver and the sharing server map the
same region of the memory to their own address spaces. The
shared memory consists of a frame buffer to keep the screen
state and a ring buffer which is used by the mirror driver to
insert update commands and coordinates. There are two
types of commands, BitBlt and MoveRect. The Windows
OS notifies the mirror driver for an update, and then mirror
driver inserts this update to the ring buffer with command
type and the coordinates of the region. In case of applica-
tion sharing, the BASS server computes the bounding rect-
angle of the shared application windows and informs the
mirror driver about the tracking region. The mirror driver
only tracks this specific region instead of the whole desk-
top, decreasing CPU overhead.

6.2. Server architecture

Figure 5. Windows XP server architecture

The Windows XP sharing server is a user-mode process
which complements the mirror driver. While the mirror

driver keeps track of the frame buffer and the list of updated
regions, the sharing server handles connection establish-
ment, process keyboard and mouse events, and optimizes,
compresses and transmits screen updates (Figure 5). The
multi-threaded sharing server can serve multiple clients si-
multaneously. The server can wait for incoming connec-
tions and it can also connect to clients directly if instructed
by the user. The sharing server has been designed con-
sidering the following challenges. Participants may have
different bandwidths and they can join in anytime. UDP-
based multicast and unicast sessions should be reliable even
though UDP does not provide reliability. Some regions or
windows may require different encoding for better perfor-
mance.

The sharing server has one main thread, one manager
thread, and a number of client threads. The main thread pe-
riodically checks for updated regions and prepares encoded
images of these regions. These images are inserted to the
image ring buffer which stores them until they are transmit-
ted by client threads.

6.3. Serving window updates to users with
different bandwidth

Encoding screen updates is a CPU-intensive operation,
so there is no point in generating lots of updates if the clients
do not have enough bandwidth to display them. The man-
ager thread observes each client’s bandwidth and throttles
the main thread according to the highest bandwidth client.
This technique can be easily explained with a movie playing
example. Assume that the user shares a movie with remote
participants. The same region of the screen is updated 24-
30 times per second. Initially, the server tries to generate
as many updates per second as possible. If at least one of
the clients has enough bandwidth to receive these updates,
the manager thread allows the main thread to continue this
pace. But if none of the clients has enough bandwidth to
deal with that update rate, then the manager thread slows
the main thread by forcing it to sleep between update gen-
erations. Therefore, the main thread will generate a single
update by combining several updates into one. The man-
ager thread tries to equalize the update generation rate to
the fastest client’s bandwidth speed. This technique pre-
vents unnecessary CPU usage in the sharing server.

The effective bandwidths of clients may change dur-
ing the sharing session. This is properly handled by the
manager thread because it checks clients’ effective band-
widths periodically. A similar technique is utilized by the
low bandwidth client threads. The fastest one transmits all
the generated updates, however other clients may not trans-
mit all the generated updates due to their low bandwidths.
These low bandwidth clients skip some of the region up-
dates if there are newer updates for these regions. Going



back to video player example, the fastest may transmit 12
frames per second, whereas the others transmit some of
these generated frames permitted by their bandwidths.

6.4. Encodings

The updates are distributed as PNG images except for
movies or photos. PNG is very suitable and efficient
for computer-generated images. However, its lossless na-
ture results in a large increase in the compressed size of
photographic images with negligible gain in quality, com-
pared with JPEG and Theora which are specifically de-
signed for photographic images. But the server does not
know whether an updated region contains photographic or
computer-generated content, because the mirror driver runs
at the frame buffer level and at that level, there are only
pixels and no metadata. Fortunately, detecting movie play-
ing is very easy due to its specific characteristics. Differ-
ent from other applications, movies generate 24-30 updates
per second in a specific region of the screen. Benefitting
from this characteristic, we have developed an algorithm to
detect movie playing in order to use JPEG or Theora en-
coding for this region. Consecutive updates to a specific
region trigger the detection. The Detection algorithm en-
codes the region using JPEG and compares the compressed
image size between JPEG and PNG. If the JPEG size is less
than a quarter of the PNG size, the server switches the de-
fault algorithm for this region to Theora and stores this re-
sult in a lookup table for subsequent updates. Theora is the
default encoding for movies because it is four times more
bandwidth efficient than JPEG. However, encoding Theora
is costlier than JPEG, especially for high resolution movies.
JPEG uses approximately four times more bandwidth than
Theora but can generate 1.5 times more frames. The user
can switch the server’s default encoding for movies from
Theora to JPEG if all the participants have enough band-
width. If the compression ratio of JPEG or Theora regions
drops below 12:1 compared to raw bits during the session,
the server deletes the stored encoding information for this
region from the lookup table. Similarly, regions which are
marked as PNG regions are periodically rechecked.

6.5. Minimizing the effect of packet loss for
UDP clients

With UDP, packets can get lost. Region updates may re-
quire several kilobytes or even megabytes. Unless designed
carefully, a single packet loss may destroy the region up-
date completely. In order to minimize the effect of packet
loss, we have developed an algorithm which generates sev-
eral small PNG images for a given update region. Blindly
generating a PNG image for each scan line may increase
the bandwidth usage because a new zlib compressor object

should be created for each new PNG. Creating a new zlib
compressor decreases the compression ratio, so the band-
width usage increases. Our algorithm tries to maximize the
number of scan lines included in a single UDP packet while
trying to keep the packet size below 1500 bytes, which the
MTU for Ethernet. Due to its adaptive nature, it may feed
tens of lines for a text document whereas it may feed only a
single line for a photographic image. We have observed an
increase of approximately twenty percent in bandwidth due
to small PNGs.

Transmitting self-contained UDP packets minimizes the
effect of packet loss. Instead of losing the complete region
update, participants may lose only a few scan lines in case of
a packet loss. They may end up with imperfect frame buffer
due to packet losses, but they can continue to participate to
the session. The retransmission mechanism discussed in the
next section helps to restore the frame buffer state.

6.6. Reliable multicast

In the previous section, we described our algorithm
which minimizes the effect of packet loss. In this section,
we explain another supplementary technique which retrans-
mits missing packets [14]. When a packet loss occurs, the
participant views the rest of the image except missing scan-
lines. The client application sends a negative acknowledge-
ment (NACK) for this missing packet [23]. Receiving this
NACK, the server retransmits the requested packet. We
have modified the oRTP library [8] which is used in the
server side and extended our own Java RTP library on the
client side to support this feature. The client/server applica-
tions do not deal with retransmission and buffering of pack-
ets, as these are handled by the RTP libraries.

The retransmission mechanism accommodates mali-
cious or corrupted client behavior and NACK storms. In
order to protect itself from malicious clients, the server does
not retransmit a packet more than three times. If a packet
failed to reach to several multicast clients, they all send a
NACK back to the server causing a NACK storm. Instead of
sending a NACK right after detecting a packet loss, clients
wait for a random amount of time (0-100 ms). If a client ob-
serves a multicast NACK from another client while waiting,
it suppresses its own multicast NACK request.

6.7. Streaming movie support

BASS is able to detect the regions of screen where a
movie is playing, and it uses Theora or JPEG encoding for
these regions. Encoding in real-time is computationally ex-
pensive. Although a Pentium 4 can encode 426x320 movie
in full motion, it can only encode 6-10 frames per second for
a 852x480 movie. Therefore, we implemented another fea-
ture into BASS which enables to stream full motion movies



to participants regardless of the resolution. The user copies
the movie file into a specified BASS directory. BASS au-
tomatically detects the movie and displays it in the GUI. If
the movie is not encoded in Theora, BASS transcodes the
movie into Theora using ffmpeg2theora [2]. This prepro-
cessing takes 30 seconds for a 20 seconds 852x480 MPEG-
4 movie. After the transcoding user can stream the movie
to participants using negligible CPU power.

7. Performance results

We compared the bandwidth usage of sharing systems
for web browsing. We also compared them for playing
movies in terms of both bandwidth usage and frame rate.
All sharing systems use 24 bits per pixel except RDP, which
uses 16 bits per pixel. If RDP used 24 bits, it would con-
sume fifty percent more bandwidth. For all tests, we used a
Pentium 4 3GHz CPU and 1GB memory as the server and
a Athlon XP 2600+ CPU and 1GB memory as the client.
Server and client are connected over an 100 Mb/s LAN.
For the movie playing comparison over a low bandwidth
measurement, we restricted the bandwidth of the client to 3
Mb/s using NetLimiter [7]. To count the frame rate, we used
a Canopus TwinPact100 scan-line converter. This box takes
the RGB output of the client as input, and it outputs a digi-
tal movie stream via firewire cable. We recorded this movie
stream using the iMovie application of a Macbook pro. We
then counted the individual frames to find the actual frame
rate.

Figure 7. Web browsing performance

Figure 7 compares RDP, VNC and BASS for web brows-
ing. During the measurement, the server automatically vis-
ited the home pages of the twenty most popular webpages
according to alexa.com. We developed and used a Java-
based automated testing application, available at [1], which
visits each website for ten seconds. Some of these websites
have animations and advertisements. Therefore, the band-
width usage depends on how eagerly a particular sharing
system transmits updates. We can say that all systems con-
sume almost the same bandwidth, around 1 Mb/s. Although
VNC and BASS use similar compression techniques, VNC
consumes less bandwidth because it uses a single compres-
sor during the session, while BASS uses a separate com-

pressor for each update. Using a new a compressor for each
update allows BASS to compress each update only once re-
gardless of the number of participants. However, VNC has
to compress the same update for each participant because
each participant has a different compressor. In case of more
than one participant, VNC consumes more CPU, while the
CPU usage of BASS remains constant.

We measured the multimedia performances of sharing
systems by playing a movie over both an unlimited band-
width link and a 3 Mb/s bandwidth link. The movie is a 20
seconds soundless 852x480 24 fps MPEG-4 encoded trailer
of Warren Miller’s Higher Ground. The BASS server can be
configured by the user to use JPEG or Theora for movies.
BASS-T and BASS-J represent BASS systems which use
Theora and JPEG for movies, respectively. BASS-M rep-
resents BASS’s Theora streaming feature, discussed in Sec-
tion 6.7, instead of playing them in default media player.
Figure 6 compares sharing systems over an unlimited band-
width link. BASS-M and THINC are able to play the movie
in full motion, however THINC consumes 112 Mb/s, while
BASS-M consumes only 1.6 Mb/s. RDP gives the second
highest frame rate, but consumes 45 Mb/s. BASS-J gives
9 fps consuming just 2 Mb/s, and BASS-T gives 6 fps con-
suming less than 1 Mb/s. VNC is the worst performer in
terms of frame rate. In conclusion, BASS gives acceptable
frame rate while using less than 2 Mb/s.

Comparing sharing systems in unlimited bandwidth en-
vironments is not very realistic because some participants
may have low bandwidths. We repeated the same exper-
iments over a 3 Mb/s link (Figure 8). Frame rates of all
sharing systems dropped less than a frame per second ex-
cept BASS whose frame rate remained the same. BASS-M
is able to play full motion movies over an 1.6 Mb/s link. In
conclusion, over low bandwidth links, all three BASS con-
figurations yield a frame rate that is at least six times than
the other sharing systems.

8. Conclusion

We have developed an application and desktop sharing
system which is scalable, efficient, and independent of the
operating system. BASS supports all applications due to
its generic model, and transmits only the shared application
and its child windows. We have used industry standards like
RTP, BFCP, and PNG. BASS uses very little CPU thanks to
the mirror driver. BASS, VNC and RDP consume roughly
the same bandwidth for web browsing. However, BASS
uses several times less bandwidth than the others for playing
movies. Others can develop clients and servers compatible
with BASS by implementing its open protocol.



Figure 6. Comparison of sharing systems in terms of movie performance (unlimited bandwidth)

Figure 8. Movie performance (3Mb/s)

References

[1] BASS Application Sharing System. http://www.cs.
columbia.edu/˜boyaci/bass/.

[2] ffmpeg2theora. http://v2v.cc/˜j/
ffmpeg2theora.

[3] Google docs. http://docs.google.com.
[4] Java keycodes. http://java.sun.com/javase/6/

docs/api/java/awt/event/KeyEvent.html.
[5] Java technology. http://java.sun.com/.
[6] Netbeans. http://www.netbeans.org/.
[7] Netlimiter. http://www.netlimiter.com/.
[8] oRTP. http://freshmeat.net/projects/ortp.
[9] PNG. http://www.libpng.org/pub/png/.

[10] RDP. www.microsoft.com/
windowsserver2003/techinfo/overview/
termserv.mspx.

[11] Theora open video codec. http://www.theora.org/.
[12] UltraVNC. http://www.ultravnc.com.
[13] Joint photographic experts group. http://www.jpeg.

org, 1992. ISO 10918-1.

[14] B. Adamson, C. Bormann, M. Handley, and J. Macker.
Negative-acknowledgment (NACK)-Oriented Reliable Mul-
ticast (NORM) Protocol. RFC 3940, Nov. 2004.

[15] J. E. Baldeschwieler, T. Gutekunst, and B. Plattner. A survey
of X protocol multiplexors. SIGCOMM Comput. Commun.
Rev., 23(2):16–24, 1993.

[16] R. A. Baratto, L. N. Kim, and J. Nieh. Thinc: a virtual dis-
play architecture for thin-client computing. SIGOPS Oper.
Syst., 2005.

[17] G. Camarillo, J. Ott, and K. Drage. The Binary Floor Con-
trol Protocol (BFCP). RFC 4582, Nov. 2006.

[18] P. Deutsch. DEFLATE Compressed Data Format Specifica-
tion version 1.3. RFC 1951, May 1996.

[19] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format
Specification version 3.3. RFC 1950, May 1996.

[20] A. M. Lai and J. Nieh. On the performance of wide-area
thin-client computing. ACM Trans. Comput. Syst., 2006.

[21] J. Lazzaro. Framing Real-time Transport Protocol (RTP)
and RTP Control Protocol (RTCP) Packets over Connection-
Oriented Transport. RFC 4571, July 2006.

[22] G. Lewis, S. M. Hasan, V. N. Alexandrov, and M. T.
Dove. Facilitating Collaboration and Application Sharing
with MAST and the Access Grid Development Infrastruc-
tures. In E-SCIENCE ’06, 2006.

[23] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey. Ex-
tended RTP Profile for Real-time Transport Control Protocol
(RTCP)-Based Feedback (RTP/AVPF). RFC 4585, 2006.

[24] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hop-
per. Virtual network computing. IEEE Internet Computing,
1998.

[25] G. Wallace and K. Li. Virtually shared displays and user in-
put devices. In 2007 USENIX Annual Technical Conference.

[26] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen. Leverag-
ing single-user applications for multi-user collaboration: the
coword approach. In CSCW ’04: Proceedings of the 2004
ACM conference on Computer supported cooperative work.

[27] P. Ziewer and H. Seidl. Transparent teleteaching. In AS-
CILITE, pages 749–758. Auckland, New Zealand, 2002.


