

GENERALIZED MODELING FRAMEWORK FOR HANDOFF ANALYSIS

Authors:

Ashutosh Dutta, Bryan Lyles

Telcordia Applied Research

Henning Schulzrinne

Columbia University

Tsunehiko Chiba, Hidetoshi Yokota, Akira Idoue

KDDI R&D Labs

Effect of handoff delay during non-optimized mobility management success (experimental results)

Multiple Interface Case (802.11b – CDMA1XRTT) – MIP as mobility protocol

Multiple Interface Case (802.11b – CDMA1XRTT) – SIP as mobility protocol

Motivation

- Current mobility protocols span across multiple layers and are Ad Hoc in nature
- Optimization methodologies are tightly coupled with each of the mobility protocol
- There is no general mobility framework that can define a mobility event
- A formal analysis of handoff event helps to develop a set of systematic optimization techniques
- Model-based and Experimental validation are cited

Primitive Properties of a Mobility Event

- Triggering Event
 - Handoff Decision to switch access networks
- Network Discovery
 - Discover the new networks around the current network
- Resource discovery in the new network
 - New frequency, QoS parameters
- Detection of new point of attachment
- Configuration of network identifier
 - Obtain new connection temporary Identifier (e.g. new IP address,)
- Authentication
 - Authentication of identity
- Encryption
 - Protection of signaling and data
- Registration
 - Establish the mapping between permanent identifier and temporary identifier for proper location management
- Binding Update
 - Associate new network identifier for rerouting of data
- Media redirection
 - Rerouting of data from CN
 - Encapsulation/decapsulation (Tunneling)
 - Buffering

Functional Matrix of Mobility Event

the elements of success

Mobilit y/ Functi on	Access Type	Network Discover y	Resource Discovery	Triggerin g Techniqu e	Detection Technique	Configuration	Key exchange/ Authentica tion	Encryption	Binding Update	Media Rerouting
GSM	TDMA	ВССН	FCCH	Channel Strength	SCH	TMSI	SRES/A3	DES	MSC Contld.	Anchor
WCDM A	CDMA	PILOT	SYNC Channel	Channel Strength	Frequency	TMSI	SRES/A3	AES	Network Control	Anchor
IS-95	CDMA	PILOT	SYNC channel	Channel Strength	RTC	TMSI	Diffie- Hellman AKA	Kasumi	MSC Contld.	Anchor MSC
CDMA 1X- EVDO	EVDO	PILOT Channel	SYNC Channel	Channel Strength	RTC	TMSI	Diffie- Hellman/ CAVE	AES	MSC	PDSN/MSC
802.11	CSMA/ CA	Beacon 11R	11R 802.21	SNR at Mobile	Scanning. Channel Number, SSID	SSID, Channel number	Layer 2 authenticate 802.1X EAP	WEP/WPA 802.11i	Associate	IAPP
Cell IP	Any	Gateway beacon	Mobile msmt.	AP beacon ID	GW Beacon	MAC Address AP address	IPSec	IPSec	Route Update	Intermediatey Router
MIPv4	Any	ICMP Router adv. FA adv.	ICMP Router Adv.	FA adv. L2 triggering	FA adv	FA-CoA Co-CoA	IKE/PANA AAA	IPSec	MIP Registratio n	FA RFA HA
MIPv6	Any	Stateless Proactive	CARD 802.21 11R	Router Adv.	Router Prefix	CoA	IKE/PANA AAA		MIP update MIP RO	CH MAP HA
SIPM	Any	Stateless ICMP Router	802.21 11R	L3 Router Adv.	Router Prefix, ICMP	CoA AOR Re-Register	INVITE exchange/AA A	IPSEC/ SRTP/ S/MIME	Re- INVITE	B2BUA CH RTPtrans

Telcordia

A layered approach to mobility optimization

Inter-domain Handoff Delay Analysis (example)

8

Mobility Event Distributed Tasks (Sample)

				the elements of success
Operation (Job)	Task1	Task2	Task3	Task 4
Discovery (J1)	Scanning J11	Beaconing J12	Association J13	Open Auth J14
Detection (J2)	Beaconing (L2), Router Advertisement (L3) J21	Solicitation J22	Link Switch J23	
Configuration (J3)	Identifier Acquisition J31	Duplicate Address Detection J32	Mapping Identifier J33	
Security Association (J4)	Key distribution J41	Authentication J42	Encryption J43	Decryption J44
Binding Update (J5)	Tunneling J51	Mapping IP addresses J52	Caching J53	
Media Redirection (J6)	Encapsulation J61	Decapsulation J62	Buffering J63	Forwarding J64

A layered approach in Petri Net

Sample Results from Petri Net Models

Transition, place or arc	р1	t1	p2	t2	рЗ	t3	p4	t4	р5	t5	р6	t6	р7	t7	p8	t8	р9	t9	p10	t10
Time delay	0	2x	0	3x	0	4x	0	3x	0	2x	0	5x	0	5x	0	2x	0	2x	0	3x

Type of Optimization	Loops in the state transition path	D _i	N _i	D _i /N _i Cycle Time
No Optimization	p0t1p1t2p2t3p3t4p4t5p5t6p6t 7p10	24x	1	24x
Parallelization (Reactive)	p0t1p1t2p2t3p3t4p4t5p5t8p7t 9p10	19x	1	19x
Proactive	p0t9p10	2x	1	2x
Maintain Security Binding	p0t1p1t2p2t3p5t6p6t7p10	19X	1	19X

Figure 1: MMD Experimental Testbed

PPP Termination Non-Optimized ■ Layer 2 Delay Types of Handoff PPP Activation ■ MP-Solicitation Reactive ■ MP-Binding Update ■ DHOP Trigger Proactive ■ DHOP Inform SIP Trigger ■ SIP+Security 6000 9000 12000 3000 Media Redirection Time in ms

Components optimized

Figure 2: Handoff delay with 3 levels of optimization

Summary

- Identification and analysis of fundamental properties that are rebound during a mobility event
- Use these properties to build a systematic framework that can represent a mobility system model
- A series of optimization methodologies that could be applied to link, network and application layer
- Validation of these models by way of experiments, and Petri net model
- Introduce a set of design rules that can help optimize a mobility event to provide the desired threshold value

Backup slide

Handoff Delay (T4) consists of

- Re-Attachment Delay
- Binding Update Delay
- Security Association
- Media Redirection
- Processing delay at each end-point

Re-attachment delay

- L2 association
- L3 association

Binding (signaling) update delay

- Network Transmission delay
- Number of message exchange
- Processing delay at the end point

Security Association

Local authentication and inter-domain security association

Media Redirection

- Rebinding
- Network transmission delay

