GENERALIZED MODELING FRAMEWORK FOR HANDOFF ANALYSIS Authors: Ashutosh Dutta, Bryan Lyles Telcordia Applied Research Henning Schulzrinne Columbia University Tsunehiko Chiba, Hidetoshi Yokota, Akira Idoue KDDI R&D Labs ## Effect of handoff delay during non-optimized mobility management success (experimental results) Multiple Interface Case (802.11b – CDMA1XRTT) – MIP as mobility protocol Multiple Interface Case (802.11b – CDMA1XRTT) – SIP as mobility protocol ## Motivation - Current mobility protocols span across multiple layers and are Ad Hoc in nature - Optimization methodologies are tightly coupled with each of the mobility protocol - There is no general mobility framework that can define a mobility event - A formal analysis of handoff event helps to develop a set of systematic optimization techniques - Model-based and Experimental validation are cited ### Primitive Properties of a Mobility Event - Triggering Event - Handoff Decision to switch access networks - Network Discovery - Discover the new networks around the current network - Resource discovery in the new network - New frequency, QoS parameters - Detection of new point of attachment - Configuration of network identifier - Obtain new connection temporary Identifier (e.g. new IP address,) - Authentication - Authentication of identity - Encryption - Protection of signaling and data - Registration - Establish the mapping between permanent identifier and temporary identifier for proper location management - Binding Update - Associate new network identifier for rerouting of data - Media redirection - Rerouting of data from CN - Encapsulation/decapsulation (Tunneling) - Buffering ### **Functional Matrix of Mobility Event** the elements of success | Mobilit
y/
Functi
on | Access
Type | Network
Discover
y | Resource
Discovery | Triggerin
g
Techniqu
e | Detection
Technique | Configuration | Key
exchange/
Authentica
tion | Encryption | Binding
Update | Media
Rerouting | |-------------------------------|----------------|-----------------------------------|------------------------|---------------------------------|---|------------------------------|--|---------------------------|-------------------------|-------------------------| | GSM | TDMA | ВССН | FCCH | Channel
Strength | SCH | TMSI | SRES/A3 | DES | MSC
Contld. | Anchor | | WCDM
A | CDMA | PILOT | SYNC
Channel | Channel
Strength | Frequency | TMSI | SRES/A3 | AES | Network
Control | Anchor | | IS-95 | CDMA | PILOT | SYNC channel | Channel
Strength | RTC | TMSI | Diffie-
Hellman
AKA | Kasumi | MSC
Contld. | Anchor
MSC | | CDMA
1X-
EVDO | EVDO | PILOT
Channel | SYNC
Channel | Channel
Strength | RTC | TMSI | Diffie-
Hellman/
CAVE | AES | MSC | PDSN/MSC | | 802.11 | CSMA/
CA | Beacon
11R | 11R
802.21 | SNR at
Mobile | Scanning.
Channel
Number,
SSID | SSID,
Channel number | Layer 2
authenticate
802.1X
EAP | WEP/WPA
802.11i | Associate | IAPP | | Cell IP | Any | Gateway
beacon | Mobile msmt. | AP
beacon
ID | GW Beacon | MAC
Address
AP address | IPSec | IPSec | Route
Update | Intermediatey
Router | | MIPv4 | Any | ICMP
Router
adv.
FA adv. | ICMP
Router
Adv. | FA adv.
L2
triggering | FA adv | FA-CoA
Co-CoA | IKE/PANA
AAA | IPSec | MIP
Registratio
n | FA
RFA
HA | | MIPv6 | Any | Stateless
Proactive | CARD
802.21
11R | Router
Adv. | Router
Prefix | CoA | IKE/PANA
AAA | | MIP
update
MIP RO | CH
MAP
HA | | SIPM | Any | Stateless
ICMP
Router | 802.21
11R | L3
Router
Adv. | Router
Prefix,
ICMP | CoA
AOR
Re-Register | INVITE
exchange/AA
A | IPSEC/
SRTP/
S/MIME | Re-
INVITE | B2BUA
CH
RTPtrans | **Telcordia** ### A layered approach to mobility optimization ## Inter-domain Handoff Delay Analysis (example) 8 ### **Mobility Event Distributed Tasks (Sample)** | | | | | the elements of success | |---------------------------------|--|---------------------------------|------------------------------|-------------------------| | Operation
(Job) | Task1 | Task2 | Task3 | Task 4 | | Discovery (J1) | Scanning
J11 | Beaconing
J12 | Association
J13 | Open Auth
J14 | | Detection
(J2) | Beaconing (L2),
Router Advertisement
(L3)
J21 | Solicitation
J22 | Link Switch
J23 | | | Configuration (J3) | Identifier
Acquisition
J31 | Duplicate Address Detection J32 | Mapping
Identifier
J33 | | | Security
Association
(J4) | Key distribution
J41 | Authentication
J42 | Encryption
J43 | Decryption
J44 | | Binding
Update
(J5) | Tunneling
J51 | Mapping IP addresses J52 | Caching
J53 | | | Media
Redirection (J6) | Encapsulation
J61 | Decapsulation
J62 | Buffering
J63 | Forwarding
J64 | ## A layered approach in Petri Net ## Sample Results from Petri Net Models | Transition, place or arc | р1 | t1 | p2 | t2 | рЗ | t3 | p4 | t4 | р5 | t5 | р6 | t6 | р7 | t7 | p8 | t8 | р9 | t9 | p10 | t10 | |--------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----| | Time delay | 0 | 2x | 0 | 3x | 0 | 4x | 0 | 3x | 0 | 2x | 0 | 5x | 0 | 5x | 0 | 2x | 0 | 2x | 0 | 3x | | Type of Optimization | Loops in the state transition path | D _i | N _i | D _i /N _i Cycle Time | |---------------------------------|-------------------------------------|----------------|----------------|---| | No
Optimization | p0t1p1t2p2t3p3t4p4t5p5t6p6t
7p10 | 24x | 1 | 24x | | Parallelization (Reactive) | p0t1p1t2p2t3p3t4p4t5p5t8p7t
9p10 | 19x | 1 | 19x | | Proactive | p0t9p10 | 2x | 1 | 2x | | Maintain
Security
Binding | p0t1p1t2p2t3p5t6p6t7p10 | 19X | 1 | 19X | Figure 1: MMD Experimental Testbed #### PPP Termination Non-Optimized ■ Layer 2 Delay Types of Handoff PPP Activation ■ MP-Solicitation Reactive ■ MP-Binding Update ■ DHOP Trigger Proactive ■ DHOP Inform SIP Trigger ■ SIP+Security 6000 9000 12000 3000 Media Redirection Time in ms Components optimized Figure 2: Handoff delay with 3 levels of optimization ## Summary - Identification and analysis of fundamental properties that are rebound during a mobility event - Use these properties to build a systematic framework that can represent a mobility system model - A series of optimization methodologies that could be applied to link, network and application layer - Validation of these models by way of experiments, and Petri net model - Introduce a set of design rules that can help optimize a mobility event to provide the desired threshold value ## Backup slide ### Handoff Delay (T4) consists of - Re-Attachment Delay - Binding Update Delay - Security Association - Media Redirection - Processing delay at each end-point #### Re-attachment delay - L2 association - L3 association ### Binding (signaling) update delay - Network Transmission delay - Number of message exchange - Processing delay at the end point ### Security Association Local authentication and inter-domain security association #### Media Redirection - Rebinding - Network transmission delay