

Network-Layer Assisted Mechanism to Optimize Authentication Delay during Handoff in 802.11 Networks

Authors:

Rafa Marin Lopez (Toshiba America Research)

Ashutosh Dutta (Telcordia Research) Presenter

Yoshihiro Ohba (Toshiba America Research)

Henning Schulzrinne (Columbia)

Antonio F. Gomez Skarmeta (University of Murcia)

08/09/07

Outline

- Motivation
- Handoff Delay Components
- Effect of Authentication on Handoff delay
- Pre-authentication Related Work
- Network Layer Assisted Pre-authentication
- Protocols and Experiments
- Conclusion & Future Work

_Motivation

- Secured and seamless mobility accross
 heterogenous access networks needs optimization
 at all layers to support real-time communication
- Authentication and security association at linklayer is one of the major components during handoff.
- We propose a network-layer assisted proactive handoff process to jump-start link-layer security accross multiple subnets and domains

Effect of handoff delay during non-optimized mobility management (experimental results)

Multiple Interface Case (802.11b – CDMA1XRTT) – MIP as mobility protocol

Multiple Interface Case (802.11b – CDMA1XRTT) – SIP as mobility protocol

Single Interface Case (802.11b – 802.11b) – SIP as mobility

6

Example Roaming Environment

TOSHIBA

Home AAA Domain AAAh Roaming AAA Roaming Domain A AAA AAAv2 AAAv1 Domain B AR AR APAP2 AP3 Intra-subnet (intra-domain) Inter-subnet Inter-subnet (IEEE 802.11i/r) (inter-domain)

Related Work

IEEE Standards

- IEEE 802.11i provides pre-authentication at link-layer in the distribution system (DS)
- IEEE 802.11r improves 11i by introducing a new key hierarchy but it does not work between DSs either.
- Context transfer solutions (Bargh et al, Georgiades et al, Duong et al)
 - Security problems such as "domino effect"
 - Assume certain trust relationships which might not be possible in certain scenarios.
 - Oriented towards the same technology
- Pre-installation based on movement pattern (Mishra et al, Pack et al)
 - AAA assisted key installation
 - Works within the same administrative domain
- MIPv6 and AAA assisted (Ruckforth et al)
 - Limited to MIPv6 and within the same domain
- Cooperative Roaming (Forte et al)
 - Works within a domain

Key Derivation Network-Layer Preauth 802.11i Post-auth Pre-auth Authentication AAAAuthentication Server Server $\mathsf{A}\mathsf{A}\mathsf{A}$ **MSK** MSK • MSK • $MSK \rightarrow$ **PAA** PaC-EP-Master-Key → **PSK Authenticator** Authenticator PSKap AP $MSK \rightarrow PMK$ AP AP AP AP PSKap→PMK ● $MSK \rightarrow PMK$ 4-way handshake (PTKs) 4-way handshake (PTKs) 4-way handshake (PTKs) $MSK \rightarrow$ MN MN PaC-EP-Master-Key → $MSK \rightarrow PMK$ MN $MSK \rightarrow PMK$ PSK→PMK **WPA Supplicant WPA Supplicant** 🗖 Telcordia. 08/09/2007

802.11i – Pre-authentication Flow

Network-Layer Assisted Pre-Authentication Technique

- Assists link-layer optimization mechanism to work accross subnets and domains
- It is independent of link-layer technology (e.g., 802.11, CDMA)
- It does not suffer from context transfer security problems and only assumes basic trust relationship
- It supports handover across inter-technology, inter-subnet and inter-domain.

Logical Architecture

Network Layer-assisted Pre-authentication Operations

- 1. Discovering target PAAs and Access Points
 - External mechanism such as IEEE 802.21
- Pre-authentication Mechanism based on PANA
 - EAP-TLS
 - AAA as the backend AS
- 3. PSK derivation
 - PAA derives distinct PSK per AP from MSK
- 4. Key Installation Process

Network Pre-authentication Flows

Experimental Testbed

Experimental Network Elements

Mobile Node

- wpa_supplicant (IEEE 802.11i)(Auth. Methods : EAP-TLS)
- Open Diameter PANA Client (Auth Methods. EAP-TLS)

Access Points

- Hostapd (IEEE 802.11i and RADIUS Client)
- Net-SNMP (SNMP Agent)

Authentication Agent

- Open Diameter, PANA Agent
- Net-SNMP (SNMP Manager)

AAA server

- Open Diameter (Diameter EAP server for network assisted pre-authentication)
- Free RADIUS (RADIUS server for rest of scenarios)

Experimental Scenarios

- Scenario 1: No preauthentication involved.
 (AP0 → AP1)
- Scenario 2: Preauthentication at link-layer. (AP2 → AP1)
- Scenario 3: Network assisted pre-authentication. (AP0 → AP1)

* Roaming AAA Domain in roaming case. For non-roaming case, it acts as MN's home AAA domain.

Results for analyis (I)

- Tauth: authentication time with EAP-TLS
- Tconf: key installation time (only useful for network-layer pre-authentication)
- Tassoc+4way: time spent in the 802.11 association plus 4-way handshake
- Tscanning Avoided due to prior discovery

Results (II)

TABLE I. COMPARISON OF POST-AUTHENTICATION AND PRE-AUTHENTICATION

Types of Authentication	IEEE 80211i post-authentication		IEEE 802.11i pre-authentication		Network-layer -assisted pre-authentication	
Operation	Non Roaming	Roaming	Non Roaming	Roaming	Non Roaming	Roaming
Tauth	61 ms	599 ms	99 ms	638 ms	177 ms	831 ms
Tconf					16 ms**	17 ms**
Tassoc+4way	18 ms	17 ms	16 ms	17 ms	15 ms	17 ms
Total	79 ms	616 ms	115 ms	655 ms	208 ms	865 ms
Handover Delay	79 ms	616 ms	16 ms*	17 ms*	15 ms	17 ms

^{*}This time is only applicable within same DS.

^{**}This time includes key installation for two APs in our testbed.

Conclusions & Future Work

- Secure handover optimization is important to support inter-domain and inter-access handover
- Current techniques have some limitations to support intersubnet, inter-domain and inter-technology handover
- We have demonstrated that the network layer-assisted pre-authentication helps to overcome these limitations
- Currently under discussion in IRTF/IETF
- Integrate Layer-2 pre-authentication with network layer and application layer mobility protocols
- Integrate Layer-2 pre-authentication with MIPv6

PSK/PMK derivation Process

- IEEE 802.11i can work in two modes
 - 1X EAP mode (MSK)
 - PSK mode.
- Using a Master Session Key (1X EAP mode) or a pre-shared key (PSK), STA and AP can derive a PMK to perform a security association protocol (4-way handshake)
- In PSK mode, it needs a pre-shared key pre-installed. No EAP authentication is needed in this mode.
- With network-assisted pre-authentication we derive and install a different dynamically generated PSK in each AP under the same authentication agent.
- PSK is derived from a key named PaC-EP-Master-Key which, in turn, is derived from the EAP authentication performed at network-layer preauth.

