Free University Berlin

Department of Mathematics and Computer Science

Institute of Computer Science
in cooperation with

Columbia University
Department of Computer Science
Internet Real Time Laboratory

Analysis and Porting
of the 7DS System
A thesis presented to the faculty of the Free University Berlin
Department of Mathematics and Computer Science

in partial fulfillment of the requirements

for the degree of Master of Science

by
Derek Daniel

April 19, 2006
Advisors
Prof. Dr. Jochen H. Schiller, Free University Berlin
Prof. Dr. Henning Schulzrinne, Columbia University
Abstract

The 7DS system is a peer-to-peer application that takes advantage of peer mobility to more effectively disseminate data in the absence of a typical internet connection. For 7DS to be effective, a large user base must be established thereby directly increasing node density. Furthermore, the appropriate mobile target device that can benefit most from 7DS must be chosen.
This thesis examines the strategies and issues involved in porting a portion of the 7DS system from Linux to Windows. Four mobile operating system platforms, BREW, Palm OS, Symbian OS, and Windows Mobile, were examined for their suitability for porting mobile applications such as 7DS. Windows Mobile Pocket PC 2003 was chosen as the most suitable mobile target platform for 7DS, and the issues involved with porting to a mobile platform were investigated. During the porting process, two distinct porting strategies were utilized. For desktop porting, a common source code was maintained with minimal system-dependent differences. For mobile porting, re-writing the source code to take advantage of the mobile platform's native API proved more efficient.
Finally, a data collection module was implemented for all target platforms, preparing 7DS for experimental testing. The data collection module acquires data that can be used for comparison to previous data analysis work, and provides practical data from within the 7DS system.
Acknowledgements

First and foremost, I would like to thank Dr. Henning Schulzrinne for allowing me the opportunity to work at Columbia University in the Internet Real Time Laboratory. It has been an honor to work with such an outstanding international team of computer scientists. His confidence in me and flexibility and patience in terms of the project and my thesis were an invaluable help. His suggestions during weekly meetings were always right on target. I would also like to thank Dr. Jochen Schiller for giving me the opportunity to write my thesis abroad at another institution.

Next, I am grateful to Arezu Moghadam and Suman Srinivasan for their work implementing 7DS on Linux, and for their helpful suggestions through every step of the development process. I could not have accomplished this thesis without their help. Also, Wing Yuen (Andy) and his theoretical models continue to inspire my interest in the future of 7DS and make me anxious to see test data. Although we did not get to work together for very long, I also enjoyed working with Se Gi Hong, the newest 7DS member, who was always willing to tackle any problem posed. I will miss working with all of the 7DS and other IRT members.
As for the thesis writing, I would like to thank my parents, Reginald and Edith Daniel, and my girlfriend, Nicole Bergman, for their assistance reading and making suggestions, especially in the last few intense days of the revising process. Also, their constant support and encouragement inspired me to keep going. Finally, I would like to thank my friends who understand the thesis writing process and who tolerated my lack of availability in the final several weeks or took care of me in other ways that made my job easier.
Table of Contents
11 Introduction

11.1 The Problem: Intermittent Connectivity

21.2 The Solution: Peer-to-Peer Data Dissemination

31.3 Mobility Models Dictate Target Devices

41.4 Thesis Goals and Organization

62 7DS System Description

62.1 7DS Description

82.1.1 Software Description

102.1.2 Proxy Server Description

122.1.3 Third-Party Library Description

132.2 Design Considerations

132.2.1 C for Performance

142.2.2 Transparency

142.3 Related Work

163 Porting to Desktop Windows

163.1 Porting Motivation

173.2 Why Not Use a Linux-Like Environment?

183.3 Past Porting-Related Work

193.3 Porting Strategy, Procedure, and Techniques

193.3.1 Porting Strategy

203.3.2 Two Attempts at Porting

213.3.3 Discovered Trends Leading to Procedure Refinement

233.3.4 Importing External Third-Party Libraries

253.4 Developer-Induced Problems

253.4.2 Linux-only Code

263.4.3 Deprecated Methods

263.4.4 HTTP Response Headers

273.4.5 Bugs Found

283.4.6 Where to Look for Help

293.5 Application Improvement As a Result of Porting

334 Comparison of Mobile Development Platforms

334.1 Introduction to Mobile Devices

354.2 Informal Survey of Prevalent Devices

364.3 Mobile Platform Operating Systems and Test Criteria

404.4 BREW

424.5 Palm OS

454.6 Symbian OS

494.7 Windows Mobile

534.8 Emulator Internet Connectivity

555 Porting to Windows Mobile

555.1 Porting Procedure

565.1.1 Toolchain Setup

575.1.2 Procedure

595.2 Second Strategy Attempted

595.2.1 Difficulties Porting Third-Party Libraries

605.2.2 Rewriting with the Native API

626 Data Collection Module

626.1 Extension of Previous Data Analysis Work

646.2 Design Challenges

656.3 Data Collection Module Implementation

687 Conclusions and Future Work

687.1 Conclusions

707.2 Future Work

73Bibliography

75Appendices

List of Figures

72.1: Basic 7DS Web Caching

82.2: Message Forwarding by a 7DS Peer

112.3: Proxy Server Flow Diagram

313.1: Cache File Size and Actual Size on Disk

374.1: Overview of Four Significant Mobile Platforms

414.2: Hello World on the BREW Emulator

444.3: Hello World on the Palm OS Cobalt and Palm OS Garnet Emulators

474.4: SDK and Carbide.vs Hello World on the Symbian OS Emulator

524.5: Hello World on the Pocket PC 2003 Emulator

646.1: Data Collection Scenarios with False Negatives and False Positives

List of Tables

354.1: Informal Cell Phone Survey Results

394.2: Overview of Mobile Platform Features

544.3: Emulator Internet Connectivity and Browser Availability

Chapter 1
Introduction
1.1 The Problem: Intermittent Connectivity

Mobile computing is undisputedly one of the most burgeoning fields in new technology. Devices are getting smaller, more portable, and more capable. Internet and inter-device connectivity is becoming ubiquitous. Although worldwide internet and network access continually grows in coverage area and ubiquity, there will always be certain conditions and locations that prevent reliable data access and exchange.

A few real-world examples serve to illustrate the problem of data dissemination under intermittent internet connectivity. One example easily at hand in technologically advanced societies is the lack of internet connectivity in underground subway systems. While some subway systems have cellular networks installed, many do not have any kind of network connectivity. In other situations, internet access may be generally available but could break down under extreme conditions, such as a stadium with tens of thousands of people, or in emergency situations where communication channels quickly become overloaded. Furthermore, most of the world does not in fact have reliable internet connectivity and many areas do not even have reliable electricity.

Internet access through a mobile device, such as a smartphone, Personal Digital Assistant (PDA), or laptop, is heavily influenced by local conditions and specific locations. In all three modern society examples, subway, stadium, and emergency situation, it is a mobile device involved in accessing the internet. In areas that do not have reliable internet or electricity, one solution is again the use of mobile devices. Wired internet, such as that found at home, in the office, or at an internet café, tends to be consistently reliable to a degree that it can be assumed to "always" function. Mobile connected devices, however, cannot always offer a reliable internet connection. Furthermore, even in cases where connectivity is at an acceptable level, improved data dissemination can only aid in reducing internet congestion and providing better service to end users.
1.2 The Solution: Peer-to-Peer Data Dissemination

7DS is a peer-to-peer software solution that increases data availability for latency-tolerant applications such as web browsing and e-mail. It exploits peer mobility to disseminate data among 7DS-enabled devices. The goal of the 7DS system is to bring a form of internet connectivity to mobile devices that are temporarily affected by certain conditions that preclude normal internet access. This goal is accomplished for web browsing by caching web data that is to be shared among other 7DS peers. SMTP message forwarding to other 7DS peers provides e-mail connectivity. By supplying these two functions under any condition and in any location, 7DS offers a form of connectivity similar to full internet access whenever full internet access is not available.

"7DS" stands for Seven Degrees of Separation, a word play on the oft-debated "six degrees of separation" theory, which proposes that any two random people are socially connected to each other through a series of at most six links. Similarly, by linking to other 7DS peers, the 7DS system attempts to use peer connectivity as a substitute for direct internet connectivity. Desired data can be sought in a peer's public 7DS cache, and outbound data can be forwarded to other peers until it eventually reaches the internet. The original concept was proposed by M. Papadopouli [17] and is currently undergoing new development in Columbia University's Internet Real Time Laboratory (IRT Lab)
.

In the examples listed previously, 7DS would allow subway commuters to exchange data underground, even allowing e-mail to be passed on to devices connected to the broader internet. Users in a crowded stadium may be able to exchange data with each other locally or in a chain that allows data to trickle down through a handful of connected users to all other users. Residents of an isolated village may be able to exchange data at regular intervals with a moving 7DS access point, for example transmitting from a vehicle that comes through the village once a day. Whenever a direct connection to the internet is not present, 7DS provides the opportunity to transparently and seamlessly exchange data with other 7DS peers.

In addition to improved data dissemination, the 7DS system offers further benefits as well. The overall load on the internet and connected networks can be reduced by transferring data locally over shorter distances. In other words, a device using 7DS is able to retrieve data from a nearby peer rather than from a potentially far-away server. The actual physical distance that data is transferred can thus be reduced. These shorter data transfer distances reduce load and costs for the network as a whole, whether that network is the internet, a cellular network, or any other type of network. From a consumer perspective, there is also potential for cost savings. For example, instead of paying for costly internet access through a cellular network provider, data can be obtained at no financial cost by connecting to a 7DS peer via Bluetooth.
1.3 Mobility Models Dictate Target Devices

The current implementation of 7DS is targeted at Linux notebook computers. However, it is predicted that 7DS will be more effective on mobile handheld devices, which have a different mobility model than notebook computers. One critical 7DS design aspect as described by Papadopouli [17] is the lack of a routing protocol. Unlike other data dissemination protocols such as those found in C. Lindemann [11] and A. Hayes [8], 7DS uses a greedy paradigm, only communicating with peers within radio range. Instead of routing, 7DS exploits peer mobility to move data from source to destination. Because 7DS relies almost exclusively on peer mobility to move data, the mobility model of the device and the user are vital to 7DS's effectiveness. Thus, it is important to develop 7DS for target devices featuring an appropriate mobility model.

Although notebook computers are certainly portable, their current typical usage is less than ideal for 7DS, as discussed in M. R. Lindsey [12]. One may make the distinction in terminology between a "portable" device and a "mobile" device. A portable device is easily transported from one location to another. A mobile device is portable but is also intended to be used while in transit. A notebook computer is thus portable but typically not mobile because it is usually turned off during transport.

In addition to typically being transported in the off state, notebook computers tend to be used in locations where standard internet access is already available. These two tendencies pose limitations to the effectiveness of 7DS because 7DS cannot be used if the device is off, and it is not necessary when a standard internet connection is available. A mobile device such as a handheld smartphone
 or PDA, on the other hand, is more likely to be used in transit. In fact, smartphones and PDAs with phone functionality are designed to be on continuously. Because such mobile devices are always on, any encounter with another mobile device has the potential for data exchange. Thus, while any portable, internet-connected device can benefit from 7DS, smartphones and PDAs would likely benefit more than notebook computers using 802.11 wireless connections.
1.4 Thesis Goals and Organization

The difference in mobility patterns between portable notebook computers and mobile handheld devices presents the primary motivation for this thesis. This thesis will examine the possibilities for migrating, or "porting", 7DS from Linux to other platforms, particularly mobile platforms. Toward that end, a portion of the 7DS application was ported from Linux to Windows XP, and then to a mobile device. Porting strategies and techniques were examined. The four most prevalent mobile platforms, BREW, Palm OS, Symbian OS, and Windows Mobile, were examined for their suitability as target platforms. Finally, a data collection module was implemented as a preliminary step to analyzing the effectiveness of 7DS on a variety of platforms.
The purpose of this thesis can be summed up by the following three objectives:

· to examine different strategies and issues involved when porting software from one platform to another,

· to determine which mobile platform is the best-suited target platform for porting 7DS, and
· to prepare the 7DS system for a real-world testing phase by beginning a port of the 7DS system and by introducing a data collection module.

The remainder of this thesis is organized as follows: Chapter 2 describes the 7DS system and the proxy server component that was ported to other platforms. Porting 7DS from Linux to Windows XP is examined in Chapter 3. Chapter 4 analyzes the four most common mobile operating systems, BREW, Palm OS, Symbian OS, and Windows Mobile, and their suitability as target platforms for porting the 7DS system. Chapter 5 covers the process of porting from Windows XP to the chosen mobile platform, Windows Mobile. Chapter 6 presents a data collection module that was implemented to collect 7DS usage data for the future analysis of 7DS effectiveness. Finally, chapter 7 provides a conclusion and reveals possibilities for future work.
Chapter 2
7DS System Description

The original 7DS system was implemented by M. Papadopouli in 2002 using Java, and is described in Papadopouli [17]. Development on the project was renewed in 2005 by a new group of graduate and post-graduate students with the goal of re-implementing 7DS and releasing it for testing. At the time of this writing, the 7DS group in Columbia's IRT Lab consisted of three Ph.D. students working on implementation and one post-doctoral researcher examining theoretical models for 7DS data dissemination.

Although this thesis does not set out to describe the 7DS system in great detail, a brief description is provided in the following section, Section 2.1. The 7DS system's conceptual design is more thoroughly described in Papadopouli [17] and Lindsey [12]. A paper describing the details of the current implementation is expected to be published soon. The scope of this thesis will be limited primarily to the proxy server and the work involved in porting it to other platforms, including mobile platforms.
2.1 7DS Description

As mentioned in Section 1.2, 7DS acts as a data-sharing web cache within a peer-to-peer network. When a user visits a website, the website's contents are stored by 7DS in the user's local storage. If another nearby 7DS peer later attempts to access the same website, it may request the website from that 7DS user instead of from the internet. Figure 2.1 shows 7DS functioning in this most basic conceptual form.

[image: image1.emf]7DS Peer A

Web Server

7DS Peer A 7DS Peer B

1. Peer A receives and

caches web objects while a

standard internet connection

is present.

Later...

2. Peer B attempts to access

the same web objects, but an

internet connection is not

available.

3. Peer B queries nearby

7DS peers instead.

4. Peer A provides the requested

web objects to Peer B

Figure 2.1: Basic 7DS Web Caching TC "2.1: Basic 7DS Web Caching" \f C \l "2"

A 7DS peer may also play the role of an SMTP message forwarder. If an internet connection is not present when a 7DS user attempts to send an e-mail message, the message may be sent to nearby 7DS peers for message forwarding instead. If an internet connection later becomes available to one of the 7DS peers carrying the message, it is successfully forwarded toward its final destination. Figure 2.2 shows 7DS acting as a message forwarding system.

[image: image2.emf]7DS Peer A 7DS Peer B

Later...

1. Peer B attempts to send e-

mail, but an internet

connection is not available.

2. Peer B sends its e-mail to

other 7DS peers for

forwarding instead.

7DS Peer A

Web Server

3. When an internet

connection becomes

available, Peer A uploads the

e-mail on behalf of Peer B.

Figure 2.2: Message Forwarding by a 7DS Peer TC "2.2: Message Forwarding by a 7DS Peer" \f C \l "2"

Of course, 7DS is not limited to these basic scenarios. Requested web objects, such as HTML pages or graphic files, may be freely exchanged between 7DS peers; peers may immediately exchange and forward data without delay; data may also be exchanged even when an internet connection is present; 7DS can request data from peers before attempting a standard internet connection in cases where a standard connection is less desirable. Using these techniques, 7DS bridges the gaps created by an intermittent internet connection. The software components necessary to realize the desired web caching and message forwarding behavior are described in the following section.
2.1.1 Software Description

The current implementation of 7DS is written in C primarily to increase performance over the previous Java implementation, but also to improve portability to smaller devices such as PDAs and smartphones with internet connectivity. Linux was chosen by the 7DS group as a development platform due to its availability and prevalence in Columbia's IRT Lab.

The following list of the primary 7DS components is in the approximate order of their size and complexity. It includes brief descriptions of their functions:

· Proxy server: The proxy server interfaces with the web browser, delivering content from one of three sources: the internet if available, the local cache if the requested object is cached locally, or another 7DS peer if internet and local cache are not available. Data that passes through the proxy server is automatically cached.

· Multicast query engine: The multicast query engine handles the peer-to-peer exchange of search queries, reports on objects available for exchange, and the exchange of actual objects, all of which occur via a direct, wireless connection between peers.

· Local web server and search engine: The local web server provides a user interface to 7DS, which can be used to search for objects available in the local cache, and to add a search to the multicast query engine. This component may be expanded in the future to further act as a control panel for 7DS features.

· Message transport engine: The message transport engine handles message delivery in the form of e-mail messages between 7DS peers.

· Cache manager: A cache manager is used to automatically re-index query results, ensuring that the search engine always returns the most current results to the user.

· Zeroconf: Zeroconf provides service discovery and automatic IP network configuration.

The types of objects currently indexed and searched by 7DS are: HTML, XML, PDF, and DOC. Objects cached by the proxy server include essentially any cacheable object requested through HTTP, including images and CSS files. It is important to note that 7DS is still in the development phase at the time of this writing. The individual components have not yet been assimilated into the comprehensive 7DS application.
2.1.2 Proxy Server Description

The 7DS proxy server works well as a standalone application and represents a significant portion of the whole 7DS application. For these reasons, it was chosen for porting to desktop Windows and subsequently to Windows Mobile. The experience gained from porting the proxy server by itself can be applied to porting the other 7DS components and to the application porting process in general.

The proxy server interfaces directly with the web browser and receives any HTTP requests from the browser. Figure 2.3 is a flow diagram showing the proxy server's decision process. Numbers in the figure correspond to the numbers found in the following description. (1) Upon receiving an HTTP request, (2) the proxy server first determines whether the request is a user query or a URL. (3) A query is handled by the search engine and multicast query engine. A URL can be either local or non-local. (4) If it is local, it is served by the 7DS web server. Otherwise, the proxy server acts as a web cache.

[image: image3.png]Listen to REQUESTS

NO

Send Query to the
Multicast Group

A J

Create a THREAD

Serving THREAD

Not Found

Do-l-have-
Internet?

YES

v

Google Search

(Ask Cooperating peers

in the 7DS System)

Parse the
REQUEST

@)

QUERY R
NO
QUERY has v
word?
Keyword NO Actas
PROXY/CACHE
SERVER
YES
0 ®)
v
- Retum
7DS Query Page HASH-TABLE
SRR VS {o the CLIENT Look Up

(This means client has
Foa submitted request for
7DS page itself)

v

Provide URLS to
the CLIENT
(XMLIHTML)

NO

Do-I-have-

NO Internet?

(8) (7) ves
!

Retrieve Obj
Return from WEB
7DS Query Page (CURL)

to the CLIENT

l

Return RESULT
to the CLIENT

4

YES —

SRV —

Actas
WEB SERVER

A A

Retrieve Obj
from LOCAL FS

h 4

Return RESULT
to the CLIENT

Retrieve Obj
from CACHE

Return RESULT
to the CLIENT

Figure 2.3: Proxy Server Flow Diagram TC "2.3: Proxy Server Flow Diagram" \f C \l "2"
Source: 7DS Development Website [20]
(5) Acting as a web cache, the proxy server searches a hash table for the requested object. (6) If the request can be served by the local cache, the local cache returns the requested object to the browser and the thread terminates. (7) If not, it attempts to retrieve the object from the original URL online, provided an internet connection is present, again terminating the thread upon success. (8) If a connection is not present, it returns the 7DS query page to the browser, allowing the user to add a search to the query queue. In future versions of 7DS, the proxy server could alternatively notify the multicast query engine automatically to add the HTTP request to the query queue.

The white portion of Figure 2.3 was examined for this thesis. The grey areas of Figure 2.3 rely on other components of 7DS, such as the multicast query engine. Including these components in porting would unnecessarily complicate the process. Porting of the proxy server to Windows XP is discussed in Chapter 3, while porting to Windows Mobile is discussed in Chapter 5.
2.1.3 Third-Party Library Description

The current implementation of 7DS uses the following external libraries: glibc, gdbm, cURL, pthread, MD5, Swish-e, libESMTP, libConfuse, thttpd, and cgilib. While some of these external libraries can be selected for installation on certain Linux distributions, others must be downloaded and installed manually. None of these external libraries are available natively in Windows, thus requiring download and installation if they are to be used under Windows. Of these 10 external libraries, glibc, gdbm, cURL, pthread, and MD5 are needed by the proxy server portion of 7DS. They will be described briefly.

The GNU C Library, glibc, provides many useful standard C functions. GNU dbm, or gdbm, "is a set of database routines that use extensible hashing"
. This library is used as a hash table stored on the local disk, rather than in memory. The proxy server uses a gdbm hash table to index the files located in the 7DS cache. cURL, or to be exact, the cURL library known as "libcurl", serves as a web client that transfers and handles files based on URL syntax. Files located in the 7DS cache are stored and retrieved using this syntax. POSIX threads, or pthreads, provide threading functions. A new thread is created to handle each HTTP request received from the browser. MD5 is used to create unique, 128-bit hexadecimal hash keys out of URLs. Particularly in Windows or other operating systems where valid URL characters such as '/' and '?' are not allowed in file names, MD5 offers an easy way to store unique cache entries on the hard drive. MD5 can also be used to protect user privacy by masking visited URLs and, for testing purposes, 7DS client MAC or IP addresses.

2.2 Design Considerations

Many of the overall design concepts for the current implementation of 7DS apply not only to the desktop Linux version, but also to the desktop Windows and mobile versions of 7DS. However, due to limitations imposed by the mobile platforms, some criteria supersede others during the porting process.

2.2.1 C for Performance

One of the primary goals of the current implementation of 7DS was to improve performance over the previous Java version by implementing in C. The C version should prove to be significantly faster than the previous Java version. This performance advantage is important for targeting mobile devices, which tend to have less powerful processor and memory specifications. Also, C implementation results in a smaller application to be stored on a mobile device.

An additional benefit of a higher-performance C version of 7DS over a version written in Java or .NET managed code is that the user's web browsing experience is not adversely affected by the software. When an internet connection is present, it is important that web pages load in a reasonable amount of time whether 7DS is installed or not. That way, even if 7DS is momentarily not directly benefiting the user, as is the case when a standard internet connection is present, the user's experience is not degraded by any delay on the part of 7DS.
2.2.2 Transparency

Another important design goal is transparency. 7DS is designed to function in the background with minimal user interaction. Setup should proceed with minimal direction from the user, but more importantly, 7DS could operate without ever requiring input from the user. As an internet proxy server, 7DS handles hundreds of thousands of individual web objects, such as individual web page images, and it must deal with all possible web objects without extraneous user input.

This requirement is especially true of the mobile version of 7DS. Because the mobile version of 7DS can potentially use peer connectivity other than simple 802.11 ad hoc networks, it is important that whatever connectivity is used, the user must not be disturbed by constant user input requests from 7DS. Bluetooth connections, for example, traditionally ask the user for confirmation before connecting to a non-paired device. Such behavior is extremely undesirable in 7DS, since 7DS should run transparently and automatically in the background to obtain desired data.
2.3 Related Work

As was mentioned previously, the original 7DS system was described by M. Papadopouli [17]. The original implementation was tested by Papadopouli using NS-2 simulation, which indicated that data dissemination occurred more quickly using 7DS. A study by Lindsey [12] followed with an examination of correlations between HTTP requests and user proximity among 802.11 wireless users on a campus network. The study showed that 25 percent of observed requests had been made previously by a nearby user, and as much as 69 percent of requested objects could be classified in the same category as objects previously requested by a nearby user.

Much related work in the area of peer-to-peer information sharing focuses on routing, although there are some exceptions. The PDI system proposed by Lindemann [11] and the Gnutella network-based proposal by Hayes [8] both use routing protocols to forward data. Like 7DS, the JASON platform in N. Le Sommer [10] does not use routing, but focuses on service discovery and application security. Likewise, the information retrieval schema presented by K. M. Hanna [7] does not use routing, but there the focus is on data distribution and replication, whereas 7DS relies on node mobility to distribute data.

7DS bears a passing resemblance to mesh networks. Mesh networks use an ad hoc structure to route data among peers toward the larger internet. Like 7DS, mesh nodes communicate wirelessly, need only be in contact with one other peer, and may involve both stationary and mobile devices. However, mesh networks also rely heavily on routing capability intended to steer packets toward the larger internet. Thus, 7DS is smaller and more lightweight than a mesh network. Compared to mesh networks, 7DS should be more robust for highly-transient mobility models because it does not rely on routing information.
Chapter 3
Porting to Desktop Windows

One of the goals of this thesis described in Section 1.4 is "to examine different strategies and issues involved when porting software from one platform to another". In this case, the 7DS proxy server was ported from Linux to Windows XP, also fulfilling another goal of the thesis referred to in Section 1.4, "to prepare the 7DS system for a real-world testing phase by beginning a port of the 7DS system".

A warning regarding porting from Linux to Windows was offered by a student with porting experience in Columbia's IRT Lab, "It is difficult, time consuming, and frustrating. Avoid it if you can." This advice was confirmed during the process of porting 7DS from Linux to Windows. If a Linux-emulating environment such as Cygwin cannot be used to aid in the porting process, porting a program that was not initially designed with Windows in mind becomes a time-consuming and difficult task. Nevertheless, the 7DS proxy server was ported from Linux to desktop Windows without the use of Cygwin or any other Linux-emulating environment.

3.1 Porting Motivation

There are several reasons for porting 7DS to other operating systems. Establishing a wide user base by supporting multiple platforms is one major objective. Platform independence, or at least support of multiple platforms, plays a key factor in the number of peers on which 7DS is installed. The greater the number of operating systems and device types supported by the software, the more available the software is to a large user base. Increasing the number of peers has a direct influence on availability of data within the 7DS network. If more peers are available because more users have 7DS installed, the likelihood that desired data can be found increases, thus improving effectiveness of the 7DS system. Windows in particular is an important platform because of its dominance as an operating system on portable computers. Linux was originally chosen by the 7DS group for a development environment due to availability in the IRT Lab, but most end users use Windows.

Another primary objective is to bring 7DS to the type of mobile devices that would benefit most from using it. The various mobile development platforms almost exclusively support Windows. The four most widespread mobile development platforms—examined in Chapter 4—officially run only on Windows, with BREW and Windows Mobile further prescribing Microsoft Visual Studio as the required Integrated Development Environment (IDE). (Independent open source projects provide Linux development tools for Palm OS and Symbian OS.) Thus, to develop 7DS to run on a mobile platform, it was necessary to first port 7DS to Windows, then to the various mobile platforms.

In addition to the primary motivations for multi-platform development, the 7DS project can benefit from the open source community if it is platform independent or multi-platform. 7DS is intended to be an open source project. When the source code is released, other developers may choose to contribute to the 7DS project and may do so using their preferred platforms for development.

3.2 Why Not Use a Linux-Like Environment?

Theoretically, porting an application from Linux to Windows is not necessarily a difficult task. A great number of programs have been successfully ported from Linux to Windows. Hence, several tools exist to aid in the procedure, including the well-known Cygwin and UWIN Linux-on-Windows environments. Cygwin is "a Linux-like environment for Windows" consisting of "a Linux API emulation layer providing substantial Linux API functionality [and] a collection of tools, which provide Linux look and feel"
. UWIN was developed by D. Korn [9] during the course of a Windows porting project and offers functionality similar to Cygwin. Other Linux-like environments include NuTCracker, Interix, and Virtually UN*X.

Unfortunately, none of these Linux-like layers offer the full extent of portability required by the 7DS project. Because the ultimate goal is to port 7DS to one or more mobile platforms, further development within the mobile IDEs must be possible. Therefore, it is not enough for 7DS to compile and run on Windows, but the requirements of the mobile development environments must also be taken into consideration. By completely porting 7DS to Windows rather than simply using a Linux-like environment, mobile development with Microsoft Visual Studio or with Palm OS's Developer Suite is made possible. Furthermore, mobile platforms that have their own APIs, such as Symbian OS, do not benefit from a Linux-like environment within Windows because the 7DS application would still need to be rewritten using API-specific function calls.
3.3 Past Porting-Related Work

Porting from Linux to Windows is examined in Korn [9]. Six porting strategies are outlined by Korn, and one strategy, writing a new POSIX library using the win32 API, is explained in detail. The result of their work is the Linux-on-Windows development environment, "UWIN". Of the six strategies considered by Korn, two were examined for this thesis: making conditional changes to the source code to use the Microsoft C library, and rewriting the source code to use the native platform's API. The primary goal of Korn was to develop a set of tools that could be used to port virtually any application from Linux to Windows without the need to make changes to the code or even to a project makefile. The goal of this thesis is to examine two of the other six porting strategies in detail and to determine the problem areas involved with those strategies.

Another goal of this thesis is to compare mobile operating system platforms for suitability for porting. A similar comparison study of the Palm OS, Symbian OS, and Windows Mobile development platforms is available from S. J. Mastrianni [13]. However, that study, published in September 1998, when Symbian OS was still called EPOC and Windows Mobile was still referred to as Windows CE is now outdated. One significant conclusion that still holds is the benefit that Windows Mobile enjoys from a close coupling with the win32 API. The study correctly points out that the development environment for Windows Mobile is extremely appealing to developers, particularly those with Windows development experience. However, Mastrianni does not examine the mobile platforms with the goal of application porting.

Two useful resources for porting from Linux to Windows come from Intel and the Microsoft Developer Network (MSDN). Intel's Solaris to Windows NT Porting Guide from 2001
 points out key differences between the platforms and provides an exhaustive comparison of compiling and linking options for both platforms. Microsoft's "Win32 and COM Development" page offers an extensive UNIX Application Migration Guide
 from October 2002. Although much of the guide presents information relevant to managers and project managers, detailed examples and comparison tables provide developers with hundreds of pages aiding in application porting.
3.3 Porting Strategy, Procedure, and Techniques
3.3.1 Porting Strategy

Before porting an application from Linux to Windows, the design strategy must be considered. In the case of 7DS, the application is already under development for Linux. For all practical purposes, it is a Linux application. Large-scale redesigning to ensure complete platform independence is no longer practical. Instead, the current implementation must be made to run on other platforms.

One significant concern in bringing 7DS to the Windows platform is maintaining a single code base for multiple platforms. If source code must be tailored to each individual platform, then it must also be maintained for each individual platform as development continues. Any changes or improvements made to the Linux source code must be duplicated in the Windows source code and subsequently for any other target platform. Such divergence is undesirable because it makes code maintenance extremely time consuming.

Instead, an important design goal is to ensure that source code remains mostly unaltered and can be reused for multiple platforms. Ideally, a single source code could be compiled for multiple platforms with a simple preprocessor definition deciding which platform is targeted at compile time. Because a single, unified source code is not always possible, source code differences should be minimized and kept separate from shared source code whenever possible. Platform-dependent code should be placed together in a single location if possible. This porting strategy most closely resembles the second strategy outlined in Korn [9], use of the Microsoft C library with modifications to the 7DS application where function calls differ from Linux.
3.3.2 Two Attempts at Porting

To begin the porting procedure, a new, empty win32 project was created in Microsoft Visual Studio .NET 2003 running on Microsoft Windows XP Professional with Service Pack 2. Two techniques were attempted in bringing the Linux source code into the project. In one attempt, larger portions of code were copied from the Linux source code and pasted into new files in the Visual Studio project. This approach proved to be unsuccessful and a second attempt was made using minimal main.c and main.h source files containing only a main() method. Small pieces of Linux source code were then copied into the Visual Studio project a single line at a time, and additional functions, source code files, and external libraries were added as porting progressed.

The initial attempt at porting was made using larger sections of source code, such as an entire source code file containing several functions. In the end, most of the code transferred without modification. Unfortunately, the most significant difficulty in porting is locating the portions of code that work under Linux but do not simply run on Windows without modification. The problem areas are difficult to find due to the well-known fact that compiler error messages are often not particularly helpful. If the entire proxy server source code is compiled in Visual Studio without any modification, over 100 compiler errors occur, which are nearly impossible to repair, since successfully fixing one error usually reveals further errors. Thus, it is unreasonable to compile the entire Linux proxy server source code in Visual Studio and then work through compiler errors.

Instead, the program to be ported must be dismantled and introduced into the new development environment in Windows a piece at a time. Even individual source files or functions are usually not fine-grained enough to result in clear indications of where problem areas lie. In fact, in many cases, the code to be ported must be brought into the new source files one line at a time, followed by compiling and running the program. With some experience, whole functions or whole sections of code can be copied and pasted from the original Linux source code to the new, Windows source code, but when a problem is encountered, working through the porting issues of a single line of code is the only way to discover the exact sticking point between Linux and Windows.

In this manner, the second attempt at porting was made by starting with a single source file containing an empty main() method. Single lines of code were introduced individually and tested for compile- and runtime errors. Due to this line-by-line nature of the porting process, much time was spent copying one piece of code, compiling to see if it works under Windows as well as Linux, and repeating the process with the next piece of code. Over time, the process was refined, and, as a few trends were discovered, educated guesses could be made about which pieces of code required additional work to function in Windows.

An attempt was made to keep any additional source code written specifically for desktop Windows in a separate file, sysdep.h. The full source code of sysdep.h can be found in Appendix A. In a few instances, Windows source code had to be placed in the original 7DS source file. Most notably, socket initialization for Windows must take place before calling socket functions such as those used in the proxy_init() method in proxy_server.c.
3.3.3 Discovered Trends Leading to Procedure Refinement

Application header files tend to present the least amount of difficulty in porting. In fact, the 7DS header files alone compile without any modification. The opposite is true for system header files included by the 7DS application, which often require additional effort before successfully compiling. Preprocessor defines and function declarations are safe to port without modification. C-language structs and includes can present more of a challenge because they may rely on data structures and header files that do not exist in Windows or exist in locations that differ from Linux. In this case, the proper external libraries must be imported. External libraries will be covered in Section 3.3.4.

Sometimes a particular structure or function is defined in one default header file in Linux, but is found in a different location in Windows. This can be a simple matter of including the Windows header file surrounded by an ifdef as follows:

#ifdef WIN32

#include <ws2tcpip.h>

#endif

This example is necessary for the socklen_t struct, as well as for other socket-related functions. The socklen_t struct is defined as an int in both Linux and Windows, but Linux includes this definition by default, whereas Windows requires the typedef found in ws2tcpip.h. Unfortunately, without prior experience writing code to run on both Linux and Windows, the Linux programmer is not aware of the need to introduce portability at this point in the original source code. Likewise, the programmer porting the code is not aware of which Windows system header files already define a particular structure or function and simply need to be included.

Another trend noticed was the tendency of some method calls to compile correctly, but then fail to start at runtime. Thus, it is not enough to import a few lines of code, compile, and repeat; rather the application must be regularly tested to ensure that no runtime errors occur. As an additional step, care should be taken that the newly created Windows source code also runs on Linux, since the goal is to eventually have a single set of source code that compiles on either Linux or Windows. Thus, it is also necessary to occasionally test the Windows source code in the Linux environment to ensure that no incompatibilities have been accidentally brought into the code.

Finally, dummy methods that have the appropriate signature but are not yet populated with actual code are often helpful in gradually bringing pieces of code into the project. Use of this top-down programming technique was found to be more beneficial than importing smaller sub-routines in a bottom-up fashion. Because the entire proxy server is already defined by its Linux implementation, and due to the procedural nature of the C language (as opposed to object-oriented languages), top-down programming works well for porting.
3.3.4 Importing External Third-Party Libraries

To further complicate the porting process, many libraries that are available either in a default installation of Linux or can be easily installed in Linux are not so easily installed in Windows. Five of the ten third-party libraries used by the complete 7DS application are required by the proxy server. These libraries were brought into the Windows source code with varying difficulty.

For example, glibc is a common library with many useful functions. In Linux, it is installed by default or is easily installable either from the installation discs or the internet, depending on the Linux distribution. Bringing the glibc library into Windows was the most complex of the five libraries. Several versions of the library are available for download, including glibc 2.3.5
, which is a Linux-only version using many Linux-only features. However, it also comes in the form of glib (without the 'c') 2.4.7 and 2.6.6
, both of which can be used in Windows. The following glib 2.4.7 .dll runtime and .lib library files were necessary for the proxy server to run in Windows, and were obtained from the glib website: intl.dll, libglib-2.0-0.dll, glib-2.0.lib, and gthread-2.0.lib. Furthermore, the following three directories needed to be included in the Visual Studio project:
\glib-dev-2.4.7\include\glib-2.0\glib\

\glib-dev-2.4.7\lib\glib-2.0\include\

\glib-dev-2.4.7\include\glib-2.0\

Despite the installation and inclusion of glib in Windows, some functions available in the Linux glibc libraries were still not made available by glib for Windows. For example getline(), a basic function used to extract a single line of text from a file is not available. getline() is defined in glibc as:
ifdef
__USE_GNU

/* Like `getdelim', but reads up to a newline. */

__STDIO_INLINE _IO_ssize_t

getline (char **__lineptr, size_t *__n, FILE *__stream)

{

 return __getdelim (__lineptr, __n, '\n', __stream);

}

endif /* GNU */

Although glibc is under a General Public License (GPL), allowing getline() to be copied and used, simply copying getline() by itself is not possible, since it relies on other glibc-specific definitions. In fact, this difficulty is common among functions missing in the Windows environment. Missing function definitions can often be found in another location, such as in a Windows system file or a Linux library, but cannot be copied into the application project by themselves. Rather, the entire system file or library must be imported into the project, which is often difficult or impossible because of further dependencies.

Therefore, in addition to the glib library for Windows, yet another source of Linux functions was downloaded and included for use in Windows: GnuWin32, which "provides Win32 (MS Windows 95 / 98 / ME / NT / 2000 / XP) ports of tools with a GNU or similar open source license"
. Source code for getline() can be found in GnuWin32 under a GPL license as well. Unlike the getline() function found in glibc for Linux, getline() from GnuWin32 works on its own and was therefore copied into the 7DS proxy server source code. At this point, the porting process begins to look more like scouring for the right libraries and hacking together the necessary pieces.

However, not all libraries are as difficult to import to Windows as glibc. A pthread library for Windows is available for download in the form of pre-built .dll and .lib files along with three necessary header files
. Once these files were included in the appropriate project options in Visual Studio, full pthread functionality was available. Likewise, the MD5 "library" consists of one C source file and two header files, the same files used for the Linux version of 7DS. By including these files in the Windows 7DS project, MD5 encryption can be used.

The gdbm library was installed similarly to pthread. An older version, version 1.7.3, was first used, but it caused the proxy server to crash. Downloading a single .dll file, a single .lib file, then within Visual Studio including the path to the gdbm source code quickly solved the problem, emphasizing the importance of finding the most current libraries for use in the Windows port.

The cURL library was also easily installed, but was compiled from source code. The source code is available from the cURL website
, including a Visual Studio project file that can be used to compile the cURL library using Visual Studio.
3.4 Developer-Induced Problems

Several issues uncovered during the porting process were results of problematic code created by the developers themselves. During the process of writing code under one operating system, in this case Linux, portability was sometimes ignored by the original programmers because multi-platform support was not made a significant project goal from the outset. In addition, some program bugs present in the Linux implementation first became apparent when the 7DS proxy server was ported and tested in Windows.
3.4.2 Linux-only Code

One example lacking portability is inet_pton(), a Linux-only function used to convert a network address from string form, such as "127.0.0.1", to network form. This function does not exist in Windows. Another function in Windows, WSAStringToAddress(), does the same job, but it is Windows-specific. Yet a third function, getaddrinfo(), provides a similar operation with a slightly more complex data structure returned, but it is standardized to be operating system independent.

In this case, the getaddrinfo() method is ideal because it is not operating system dependent, thus requiring no further action during the porting process. Unfortunately, neither the Linux developer nor the Windows developer may be aware that a universal function exists, since their respective platform-dependent functions work well under their respective operating systems. In the 7DS proxy server, the call to inet_pton() in Windows was redefined to use WSAStringToAddress() for the sake of simplicity. Use of getaddrinfo() was possible, but would have required handling of the returned data structure, possibly breaking other functions elsewhere in the 7DS application.
3.4.3 Deprecated Methods

Another example of a porting problem created by the programmers themselves is the bzero() function. Here again, bzero() is a Linux-only function. In this case, bzero() has been deprecated, and the platform-independent memset() function can be used on both Linux and Windows. For portability, the following code can be placed in a system dependencies file:
#ifdef WIN32

#define bzero(b,len) (memset((b), '\0', (len)), (void) 0)

#endif

This solution, recommended by the Open Group [14], solves the problem simply and elegantly once the solution is known. However, discovering the best way to solve a self-inflicted portability issue such as bzero() takes a great deal of time. Finding a simple solution like this one is important because without it, the programmer may unnecessarily implement his own, more complex solution.
3.4.4 HTTP Response Headers

One of the more obscure porting issues encountered in the proxy server was a Windows problem with HTTP response headers. Initially, the 7DS proxy server did not send HTTP response headers to the web browser, rather it simply sent the HTTP body to the browser socket. The lack of response headers was not an issue in Linux as both Firefox and Opera web browsers correctly adjusted for the lack of a header. Both browsers correctly displayed requested web pages in Linux. In Windows, however, Firefox and Internet Explorer both stalled when an HTTP header was not received prior to receiving the HTTP body. It was determined that the "Content-length" field was required to inform the browser when an object had finished loading and could be displayed.

The interesting aspect of this issue was the fact that it was a Linux-Windows porting issue rather than a browser issue. Firefox in Linux worked with or without HTTP headers, while Firefox in Windows did not. Likewise, Opera in Linux worked while Internet Explorer in Windows did not. Since the possibility of browser differences was eliminated, the likely reason for this behavior was a difference between the Linux Berkley socket and Windows Winsock socket implementations. The 7DS proxy server uses sockets to communicate with the web browser and there is a moderate difference in socket implementation between the two platforms. Regardless of the cause, sending HTTP response headers is certainly necessary for any proxy server such as the proxy server in 7DS, and the importance of HTTP compliance was made evident by the porting process. HTTP header handling was therefore introduced into the 7DS proxy server. The improved header management is examined in greater detail in Section 3.5.
3.4.5 Bugs Found

In general, the porting process can be helpful in uncovering programming bugs that may not otherwise be found. The previous discussion of the HTTP response headers is one example of a programming error uncovered through porting. Another example is a buffer overflow bug that was found during the porting process.

The RFC 2616 protocol, "Hypertext Transfer Protocol - HTTP/1.1", does not specify a maximum length for URLs, although Internet Explorer, for example, limits URL length to 2,083 characters. However, for practical purposes, 7DS currently limits URL length to a much smaller 256 characters to ensure that problems with operating system limits on file- and pathname lengths are not encountered. Unfortunately, longer URLs are not unheard of, with one example at a length of 409 characters for the following Real Media advertisement loaded from weather.com:
http://www.weather.com/RealMedia/ads/adstream_nx.ads/www.weather.com/p/f/r/5day/us/ny/501/new_york/10031./1214385677@PageCounter,HeaderSpon,Feature,WxSpon,PageSpon,PageSpon2,PageSpon3,UberButton1,UberButton2,SpotButton1,SpotButton2,Hidden1,Hidden2!UberButt1214385677@PageCounter,HeaderSpon,Feature,WxSpon,PageSpon,PageSpon2,PageSpon3,UberButton1,UberButton2,SpotButton1,SpotButton2,Hidden1,Hidden2!UberButton1

A bug in the 7DS parser, a subsystem of the proxy server, causes 7DS to crash when this URL is encountered. A buffer overflow occurs due to copying of a string that is not null-terminated. This bug was found during the porting process. The porting process assists in finding bugs because the ported code is inspected closely during the line-by-line porting process. Furthermore, the application is tested on multiple platforms, which provide different error messages, leading to improved efficiency in tracking down bugs.

Another serious bug in both Windows and Linux versions of 7DS involves a bad memory operation. The bug in Linux presents itself as a segmentation fault that happens only occasionally. In Windows, the bug occurs frequently and the Visual Studio debugging option points to a problem with a memcpy() call. Discovery of this bug was one instance where the debugging tools from both operating systems were used on the same bug to more quickly localize it.
3.4.6 Where to Look for Help

When a line of code does not compile due to issues such as those outlined in previous sections, there are several resources that can be utilized. One important location to search for missing header files is the "include" folder within the Visual Studio installation directory. Standard C headers found in other locations in Linux can often be found in this folder. A full-text search within these files may also reveal the location of a necessary struct or static variable within a header, which can then be included in the project. The location of the Visual Studio "include" folder for Visual Studio .NET 2003 is:

<Visual Studio install directory>\Vc7\include\

Past members of another IRT Lab group had previously ported their software from Linux to Windows. Columbia InterNet Extensible Multimedia Architecture, "CINEMA", is a Session Initiation Protocol (SIP)-based application developed in the IRT Lab. Assistance was gained from this group in the form of system-dependent files included in the CINEMA application. These platform-dependent files for Windows were examined for possible solutions to porting issues. Determining which header files and which methods had been necessary for the CINEMA group during the porting process, provided insight into how to properly include the necessary components for the 7DS proxy server. In some instances, such as the method gettimeofday(), which is not found in Windows, the code implemented by the CINEMA group was used in 7DS for Windows.

Of course, the internet also provides some clues to solving porting challenges. Since other developers have encountered similar problems, their solutions can often be applied to the problem at hand. Furthermore, some porting suggestions and solutions may be used directly if they are provided without copyright. For example, the MSG_WAITALL flag does not exist in Windows. The suggestion to define MSG_WAITALL as 0 comes from a website discussing Nailgun
, a Java enhancement application that was ported from Linux to Windows.

3.5 Application Improvement As a Result of Porting

The porting process not only reveals bugs to be fixed, but can also lead to larger application enhancements. As a result of the HTTP header problem described in Section 3.4.4, the 7DS proxy server has been improved. It now sends an HTTP header to the browser before sending the HTTP body and stores header information in the 7DS cache. The improvements not only allow 7DS to function in Windows, but also make 7DS more standard-compliant and provide an opportunity for further caching enhancement in future work.

If a data object is retrieved from the internet, 7DS passes the original HTTP header through the proxy server to the browser. If the object is retrieved from the local cache, 7DS generates its own response header. Currently, the response header consists of the following basic information (including the required newline following the header):

HTTP/1.1 200 OK

Content-length: <size>

7DS determines content-length by the size of the file stored in the 7DS cache and inserts the correct file size in the place of "<size>". The generated header can be compared to a typical HTTP header such as the one in this example:

HTTP/1.1 200 OK

Date: Wed, 25 Jan 2006 22:00:42 GMT

Server: Apache/2.0.54 (Debian GNU/Linux)

Last-Modified: Mon, 23 Jan 2006 20:53:03 GMT

ETag: "24373002-cdd-d121a9c0"

Accept-Ranges: bytes

Content-Length: 3293

Content-Type: text/html

Generation of additional header information, such as the HTTP-standard fields Date and Content-Type, is left to future work.

The proxy server was further modified to save the original HTTP response headers in the 7DS cache. The cURL option, CURLOPT_HEADERFUNCTION, stores the header in the same location as the HTTP body within the 7DS cache. This feature provides the benefit of retaining original HTTP headers for use in future 7DS development. Of particular interest are the Date, Last-Modified, and Cache-Control header fields, which can be used to improve caching behavior. Although the headers are not currently entered in the gdbm hash table as the web objects are, header file names correspond one-to-one with the web objects they represent. A header file is cached as the filename of the web object, plus a ".head" ending, making cache retrieval trivial.

The additional space required by the stored header files themselves is relatively small. A random sample of 1,000 data objects and the 1,000 corresponding header files cached by 7DS was examined to determine header storage efficiency. The average header file size was approximately 290 bytes. The average size of a cached data object was 3.4 KB. Thus, the stored header files made up only about 7.7 percent of the total 7DS cache. Ironically, as much as 21 percent of the cached data objects were, in fact, smaller than their corresponding header files, since many web pages contain numerous small images. Still, in terms of average storage efficiency, cached header files consume a relatively small amount of the storage space used by 7DS.

This relationship changes, however, when the actual size on disk is taken into account. Because the Windows NTFS file system is restricted to file sizes no smaller than the cluster size
, each header file is equal in size to the NTFS cluster size. Thus, with a cluster size of 4 KB, each of the ~290-byte header files occupies 4 KB in reality. The total 285 KB of the 1,000 stored header files become 3.9 MB of consumed disk storage under Windows. In the sample of 1,000 cached objects and the corresponding 1,000 header files, the header files then make up 38 percent of the total 10.4 MB of 7DS cache on disk. Figure 3.1 illustrates the dramatic difference in file size and actual size on disk.
[image: image9.emf]File Size

Headers

7%

Objects

93%

Headers Objects

[image: image10.png]Fle Vew Tooks Help

Hello World

Mem freeftotal 164544 /200000 /.

Figure 3.1: Cache File Size and Actual Size on Disk TC "3.1: Cache File Size and Actual Size on Disk" \f C \l "2"

The 38 percent figure represents a severe storage penalty. It must be noted that this storage penalty is exclusive to Windows file systems such as NTFS or FAT32. The ReiserFS file system used by Linux is not affected by the minimum file size issue because several small files can be packed into one cluster. The same 1,000 header files stored in Linux continue to represent only about 7.7 percent of the total 7DS cache. Implementation of a more efficient storage system, such as a hash table or database table, for header files stored on an NTFS partition, is left to future work.

Chapter 4
Comparison of Mobile Development Platforms

To take advantage of the mobility models associated with mobile, handheld devices such as PDAs and smartphones, a mobile version of the 7DS system must be implemented. Porting the 7DS proxy server to Windows XP was completed as a first step toward porting to a mobile platform because most mobile development platforms require or strongly recommend the use of Windows for development. Before porting an application to a mobile platform, however, the various mobile platforms must be examined for their suitability for the type of application being ported. This chapter reviews the four most prevalent mobile platforms and examines their suitability for 7DS porting.
4.1 Introduction to Mobile Devices

While mobile devices tend to offer a superior mobility model for 7DS than do notebook computers, they also come with certain hardware limitations. Only some of these limitations apply to the 7DS system, however. For example, screen size and input method limitations typically dictate significant design changes, but because 7DS is designed to run in the background as a transparent data caching mechanism, these factors play only a limited role for 7DS. The 7DS user interface is simple and browser-based, so it is unaffected by screen size or input methods.

The device limitations most relevant to 7DS are memory and storage space. Mobile devices have significant limits to heap size and program memory. Many devices have only 8 to 16 MB of total memory. Meanwhile, older versions of Palm OS, for example, have a 64 KB resource limit, limiting the maximum size of any resource used by a program, including the program's size itself.

While 7DS can be tailored to memory restrictions, storage space is a vital component for the data caching ability of 7DS. On a desktop or notebook computer, a web browser such as Internet Explorer or Firefox can utilize a small fraction of hard drive space, perhaps as little as 1%, which, due to current hard drive sizes, results in a web cache of a gigabyte or more. Even a conservative web cache would be 20 or 50 MB. Smartphones, however, often have only 32 or 64 MB total storage space available for all programs and user data. Such small storage space would severely limit the effectiveness of the 7DS system because only a few megabytes could be reasonably devoted to the 7DS cache. Although the relationship between cache size and 7DS effectiveness has not yet been determined quantitatively, the more files held in the cache, the more effective 7DS can be.

Fortunately, many newer mobile devices have storage expansion slots that can accept flash memory or microdrive cards, such as SD or MMC cards. Flash memory cards are currently available up to 1 GB, which would provide adequate storage space for both the 7DS cache and other user data. Microdrive cards can store even more, up to 8 GB. The tendency over time is, of course, toward larger memory sizes. However, these cards present an extra cost to the user. As mobile devices continue to incorporate larger integrated storage and the price of both integrated and expanded storage continues to fall, the cache size limitation on mobile devices should gradually diminish in relevance, making 7DS more effective and thus more attractive to the end user.

Device limitations are not always negative. Mobile device to desktop computer connectivity presents an interesting opportunity for 7DS. Because mobile devices can be connected to desktop computers, they can not only acquire data via a cellular provider, but may also exchange data with desktops and even use the internet connection of the host computer. In one usage scenario, a 7DS-enabled device pre-caches data while it is connected to a desktop computer each night. During the day, it exchanges data with other 7DS peers. Data obtained from the internet via a desktop computer can be considered to have no cost as far as the 7DS model is concerned, either monetarily or in terms of battery use.

Finally, energy limitations play an important role in mobile devices. The general question for 7DS remains how to properly conserve energy while effectively disseminating data through the 7DS network. The various energy-saving approaches introduced by Papadopouli [17] will need to be evaluated as a part of future work.
4.2 Informal Survey of Prevalent Devices

A small, informal survey of cell phone users was conducted to obtain a further indication of current device availability. A non-representative group of cell phone users in both America and Europe were asked what type of cell phone they currently own, whether it has Bluetooth and/or internet connectivity, and how often the internet is accessed, if at all. Although the sample size was small and the respondents were not representative of the population as a whole, responses reflected known tendencies in current cell phone markets. Because the survey respondents were not chosen at random, the resulting responses will only be indicated briefly.

	
	American Users
	Amer. %
	
	European Users
	Euro. %
	
	Total Users
	Total %

	Respondents
	17
	100%
	
	17
	100%
	
	34
	100%

	Bluetooth Available
	1
	6%
	
	5
	29%
	
	6
	18%

	Internet Available
	11
	65%
	
	13
	76%
	
	24
	71%

	
	
	
	
	
	
	
	
	

	Internet Used
	5
	45%
	
	4
	31%
	
	9
	38%

	 Daily
	1
	20%
	
	1
	25%
	
	2
	22%

	 Weekly
	1
	20%
	
	1
	25%
	
	2
	22%

	 Monthly
	1
	20%
	
	0
	0%
	
	1
	11%

	 Rarely
	1
	20%
	
	0
	0%
	
	1
	11%

	 Once
	0
	0%
	
	2
	50%
	
	2
	22%

Table 4.1: Informal Cell Phone Survey Results TC "4.1: Informal Cell Phone Survey Results" \f D \l "2"

Table 4.1 shows the informal survey responses of cell phone users in America and Europe. A total of 34 cell phone users were questioned, 17 each from the United States and Europe. The Bluetooth and internet availability figures represent a fraction of total responses. Meanwhile, the figures for "Internet Used" represent a fraction of those users who have internet access available. In other words, 45% of those American respondents who have internet access available on their cell phones have used the internet from their phones, while 31% of European respondents with internet available have used the internet from their phones.

Of the 34 respondents, most have internet access, but only a few have Bluetooth. Bluetooth is somewhat more prevalent in Europe than in North America. Most people do not regularly access the internet over their cell phones, often citing cost as the primary reason. It is important to note that people of certain demographics are more likely to own and use advanced cell phones capable of Bluetooth and internet connectivity. For example, business executives are commonly known to own and regularly use Blackberry devices capable of e-mail.

4.3 Mobile Platform Operating Systems and Test Criteria

Several mobile operating systems are available, the most significant of which are: BREW, Palm OS, Symbian OS, and Windows Mobile. According to a 2005 ARCchart report [19] on these four major mobile platforms, dramatic growth is expected from a 32 percent global market share of advanced mobile handsets in 2005 to a 54 percent market share in 2008. This 32 to 54 percent figure represents the operating system platforms that are the most advanced and most programmable, with the remaining market share consisting of proprietary software. Within this operating system market, Symbian currently has a 60 percent global market share, BREW follows at 25 percent, and Windows Smartphone and Palm OS share the remaining 15 percent. It should be noted, however, that PDAs without telephony are not included in this market analysis. Some of these PDAs without telephony have wireless connectivity, making them potential target devices for 7DS. A brief description of each of the four mobile platforms is offered in Figure 4.1.
[image: image4.png]BREW

More of an integrated system than a smart phone platform, BREW incorporates
back-end management and billing systems as well as a smart phone application
environment. Owned and managed by Qualcomm and popular in the USAand Asia

Palm 0S

Originally & PDA platform but now extended to embréce elephony, wholly owned
by Paim Source and licensad to manufacturers inciuding PaIMONE. Recent

announcements from Sony that they would stop seling Palm OS devices outside.
Jepen has cast a shadow on the future, but the recent purchase of China.
MobileSoft has opened up new opportunities.

Symbian

Developed from EPOC, Symbian was Spun out of Psion and is owned by major
players in the mobile phone business. Symbian version & is truly Real Time,
allowing the canstruction of smert phones with only a single processor.

Series 60
GUI layer designed for single-handed
‘operation and owned by Nokia and
Iicensed o other menufacturers.

Used extansivoly by Nokia

uiQ
Spuri out of Symbian into a separate
company, UIQ is a GUI layer designed
for Pen ineraction. Most wel known cn
Sony Ericsson devcos (000 seriss)

Figure 4.1: Overview of Four Significant Mobile Platforms TC "4.1: Overview of Four Significant Mobile Platforms" \f C \l "2"
Source: ARCchart - Developing for Mobile Environments, March 2005 [19]

The BREW, Palm OS, Symbian OS, and Windows Mobile development platforms were examined for suitability for porting of the 7DS system. The platform specifications and requirements were considered and a simple, Hello World test program was implemented for each platform for the purpose of familiarization. Market share, device availability, and predicted future tendencies were considerations for the viability of the platforms as 7DS porting candidates. The following criteria were also examined for each of the four mobile development platforms, with particular weight given to the overall estimated ease of porting:

IDE

· Ease of Installation

· Ease of getting started with a Hello World program run on an emulator

API

· Amount of documentation available

· Ease of understanding the API and API complexity

· Similarity between platform API and the C language

· Platform-supported languages

Porting 7DS

· Estimated ease of porting

· Potential issues and difficulties
· Amount of 7DS source code requiring modification

Microsoft Visual Studio .NET 2003 is required for the BREW and Windows Mobile SDKs and was installed ahead of time. The Symbian documentation also assumes that Microsoft Visual Studio .NET is used, although it is not required. Windows Mobile Pocket PC uses eMbedded Visual C++, which was also installed prior to Windows Mobile testing. Table 4.2 provides an overview of all four platforms' properties as discussed in the following sections.
	
	BREW
	Palm OS
	Symbian
	Windows

	IDE
	Visual Studio
	Eclipse provided, Codewarrior
	VS recommended, Codewarrior
	VS or eMbedded Visual C++

	 Installation
	easy
	average
	difficult
	easy

	 Hello World
	pre-built
	included
	included
	included

	 SDK Version as
 Tested
	2.1.3
	5.4 Garnet
	Series 60 ver. 7.0s enhanced
	Pocket PC 2003

	
	
	
	
	

	API
	C-based, unique to BREW
	C-based
	C++-based, unique to Symbian
	nearly identical to win32

	 Documentation

 from Manufacturer
	some
	extensive
	some
	extensive

	 Documentation

 from Other Sources
	some
	extensive
	extensive
	some

	 Similarity to C

 language
	similar
	very similar
	dissimilar
	very similar

	
	
	
	
	

	Programming Languages
	C primary
	C primary
	C++ primary
	C++ primary

	 C
	yes
	yes
	only in form of C++
	yes

	 C++
	yes
	yes
	yes
	yes

	 C#
	no
	no
	no
	yes

	 Java
	yes
	yes
	yes
	yes

	
	
	
	
	

	Porting 7DS
	very difficult
	moderate
	difficult
	easy

	 Multi-threading

 Support
	no
	Cobalt version only
	client/server model only
	yes

	 Global/Static

 Variables
	no
	yes
	client/server model only
	yes

	 Level of Available

 Hardware
	modest features, voice-centric
	outdated
	advanced
	advanced

	 7DS Code

 Modification

 Required
	significant
	moderate to significant
	moderate to significant
	mostly due to external libraries

	
	
	
	
	

	Other Important Attributes
	
	
	
	

	 Free Distribution of

 Applications
	no
	yes
	yes
	yes

	 OTA Distribution
	yes
	yes
	yes
	yes

	 Market Share
	25% - mostly North America
	about 5%
	60% - mostly Series 60
	about 10%

	 Market Growth
	static
	static
	shrinking
	growing

Table 4.2: Overview of Mobile Platform Features TC "4.2: Overview of Mobile Platform Features" \f D \l "2"
4.4 BREW

BREW stands for "Binary Runtime Environment for Wireless" and is a product of Qualcomm. As such, it is fairly widespread in America, but lesser known or not known at all in Europe. BREW is not a complete operating system; rather, it is a software platform. The primary language for BREW development is C, which offers an advantage in porting the current C implementation of 7DS to the BREW platform. BREW requires Microsoft Windows and Microsoft Visual C++ (or Visual Studio). Development with another IDE is theoretically possible but uncommon according to ARCchart [19].

Version 2.1.3 of the BREW SDK was installed for testing. Five BREW SDK versions are available: 1.0, 1.1, 2.0, 2.1, and 3.0. Since BREW devices are backwards-compatible, the lowest possible SDK version that supports all desired features was chosen for compatibility with the maximum number of phones. Versions 2.0 and above support Bluetooth and are thus best suited for 7DS to enable the possibility of eventually using Bluetooth connections for 7DS data exchange. The SDKs and documentation can be downloaded from the BREW developer homepage
, with further tutorials and examples available at developer.com
. The "Getting Started" guides make it particularly easy to start development for BREW without previous experience.

The SDK installs straightforwardly via an online installer. Essentially, the SDK acts as a plug-in to Microsoft Visual Studio. Visual Studio then serves as the development environment. The SDK itself consists of documentation, help files, example programs, and an emulator, in addition to the Visual Studio module that integrates itself into the MS Visual Studio environment. The integrated module consists of an application wizard and MIF file editor to edit a BREW application's .mif configuration files. A Hello World tutorial by developer.com's Murray Bonner was followed, although a pre-built Hello World example is installed with the SDK. Figure 4.2 shows the Hello World application running on the BREW emulator.
[image: image11.png]=0l x|

world

Hello, World!

[image: image5.png]% Sha BREW(tm) Emi -[o) x|

Hello World App

e freeftotal 121264 200000/

Ready

Figure 4.2: Hello World on the BREW Emulator TC "4.2: Hello World on the BREW Emulator" \f C \l "2"

Creating a new BREW project starts the BREW application wizard, which walks the developer through several options. A customizable code skeleton is created that includes the necessary basic components for the type of BREW application being developed. For example, a call to the required method AEEClsCreateInstance() is included, or if sound support is desired, choosing "Sound" adds the appropriate include files.

BREW's API documentation is thorough and useful. However, although the primary development language is C, the BREW API is very specific to BREW. C applications, such as 7DS, cannot simply be ported directly without significant rewriting. One problem that arises for 7DS is the fact that static and global data are not allowed on the BREW platform. As a result, the standard C libraries cannot be used with BREW. Not only that, but BREW is single-threaded, whereas 7DS uses threads to serve each requested object. 7DS threading would thus require rewriting.

The typical BREW hardware available may also be less suitable for 7DS use. BREW tends to be found on voice-centric devices. Because it is not a full-fledged operating system, it is not as extensive, does not provide as many features, and does not offer the full extent of processing power afforded by other mobile platforms. Still, a web browser is available for BREW, making 7DS use possible.

Unfortunately, "…all BREW handsets are supplied completely locked-down and unable to install anything which has not been signed by Qualcomm" [19]. The locked-down handsets eliminate BREW as a reasonable possibility for distribution of 7DS in the current stage of 7DS development. BREW is half software development platform and half distribution platform. It is strongly oriented toward development for profit and there is no possibility for users to download or install a BREW application for free. Furthermore, the Qualcomm certification program, "True BREW", requires a testing and certification fee.

Thus, the only viable use for BREW would be as a distribution-for-profit platform once 7DS is completed and in a final, publicly available form. 7DS may eventually be complete enough to be distributed in this fashion, but it should be distributed on the other platforms first as long as it is in the research and development phase. Furthermore, the API limitations, such as no static or global data, no standard C libraries, and single-threading, mean that 7DS would require significant re-implementation using the BREW API.
4.5 Palm OS

The future of Palm OS was put into question by an announcement on September 26, 2005 by Palm Inc. [15] that Palm has begun licensing Microsoft Windows Mobile for use in a new line of Palm Treos released in 2006. The new devices will use Windows Mobile 5.0 rather than Palm OS. According to an ARCchart report [19], Palm currently has by far the most applications available and boasts nearly the largest developer community second only to Windows Mobile. This status will likely change, however, if Palm Inc.'s overall strategy focuses on Windows Mobile. Investing resources in Palm OS may not be advantageous at the moment. At least one industry analysis group is advising against large-scale investment in Palm applications, according to M. Hamblen [6].

Nevertheless, there is a significantly large user base already established. Furthermore, a more recent letter from Palm CEO Ed Colligan [16] proclaims that Palm will continue to support Palm OS and has a license "to make and market Palm OS-based products until 2010". Porting to Palm OS may still be worthwhile provided the porting process is not overly difficult and the user base does not shrink too rapidly.

Unlike the other mobile platforms, whose SDKs integrate into a separate IDE, Palm provides the Palm OS Developer Suite as a standalone application using the Eclipse IDE. The Developer Suite requires Windows, although support for other operating systems is theoretically possible. Development on Linux or Mac OS can be done without the Developer Suite, instead using the separate Palm SDK consisting only of the necessary libraries and headers for use with Metrowerks Codewarrior or Palm's PRC-Tools compiler. The Developer Suite includes all necessary SDKs, documentation, examples, emulators, and simulators.

Palm OS currently comes in two versions, 5.4, known as "Garnet", and 6.x, known as "Cobalt". Cobalt is more advanced and has been available for over two years, but not a single device using it has ever been released. Thus, development for the Garnet version is clearly preferred over Cobalt, despite Garnet's age. Furthermore, Cobalt is backwards-compatible, so a program developed for Garnet would also be able to run on Cobalt. The Palm OS Developer Suite includes both SDKs, so development can be done for either OS version.

The variety of Palm OS versions, SDKs, and additional tools available for Palm development make the selection process somewhat more difficult than for other platforms. However, with so many additional tools, the development possibilities for Palm are numerous. The level of documentation for Palm OS is impressive, and there are more published books available than for any other mobile platform, according to ARCchart [19]. A downloadable introductory "Programmer's Companion" and API reference for the Garnet version alone consists of over 3,400 pages of documentation.

Like the other mobile platforms, Palm provides a pre-designed Hello World application selectable from the "new project" wizard. The program compiles without further modification and runs on the Garnet or Cobalt simulator. Figure 4.3 shows the Hello World application running first on the Palm OS Cobalt emulator, then the same application running on the Palm OS Garnet emulator. The same source code is used for both programs.
[image: image12.png]=lolx)

helloworld

Hello, World!

) 5:16p (§ 3¢ @) @@

[image: image13.png]

[image: image14.png]5 Pocket PC 2003

Emuator_Help

Hello Waorld!

Cobalt

Cobalt

Garnet
Figure 4.3: Hello World on the Palm OS Cobalt and Palm OS Garnet Emulators TC "4.3: Hello World on the Palm OS Cobalt and Palm OS Garnet Emulators" \f C \l "2"

Like BREW, Palm OS's primary development language is C. Unlike BREW, the Palm OS API follows the ISO C99 standard closely and many or most functions are readily available. The Palm OS API also implements its own versions of standard C functions, for example StrNCopy() for strncpy(), for compatibility to older Palm OS programs, but the C99 standard functions are preferred. Thus, porting 7DS to Palm OS would be relatively easy as far as standard C functions are concerned. Multi-threading is only supported on Palm OS Cobalt and later, and so could not be used with the preferred Garnet OS version. Palm OS Garnet is event-based, which adds an additional layer of complexity to the porting process. Palm allows global data, as opposed to BREW, which does not.

A further limitation of Palm OS Garnet is its 16-bit memory addressing. This type of addressing limits the application code segments and any additionally used resources to 64 KB for each resource. There are ways around this limitation, for example by use of a constructor or GLib shared libraries. However, this limitation still results in additional complexity in porting 7DS to Palm OS. Both the 7DS program itself and several of the external libraries reach sizes well over 64 KB when compiled for Windows. It can reasonably be expected that they would also reach sizes over 64 KB when compiled for Palm OS.

While Palm OS is a better overall choice than BREW for porting 7DS, it falls short in a few key areas. The future of Palm OS is uncertain and the only viable version of the operating system is outdated. While the C language itself poses few problems to porting, other design aspects of Palm OS require more intense redesigning of 7DS.
4.6 Symbian OS

Symbian OS is the most widely distributed mobile platform. Research group Canalys [2] estimates that "...just under 80% of the smart phones shipped in EMEA ["Europe, the Middle East, and Africa"] in the first half of 2005 were Series 60...". Symbian and Windows Mobile are often cited as the two most dominant mobile platforms, which are furthermore likely to continue dominating most of the market.

There are two sub-platforms of Symbian OS: Series 60 and UIQ. Series 60 was developed by Nokia and can be found in devices from Nokia and other manufacturers. Nokia additionally offers Series 80 and 9200 Communicator Series operating systems for Nokia Communicator devices. UIQ was spun off of Series 60 and is designed to be used with a touch-sensitive screen and a plastic pen. Sony-Ericsson makes many of the well-known UIQ devices such as the P800/P900.

The number of Series 60 devices greatly exceeds the number of UIQ devices, although many Series 60 devices might be better counted as "feature phones" rather than more advanced smartphones. The greater market penetration of Series 60 makes it more desirable than UIQ as a development platform for 7DS, but the more data-centric nature of UIQ balances this aspect, making both sub-platforms similarly attractive alternatives. UIQ shares much common code with Series 60, so a later port from Series 60 to UIQ would be relatively easy.

The Symbian SDK is available in many different versions. SDKs are available at symbian.com for Symbian OS versions 6.1, 7.0s, 7.0s enhanced, 8.0a, 8.1, and 9.1. Individual manufacturers may additionally provide their own SDK. The SDK for Series 60 version 7.0s enhanced was chosen due to the large number of available devices using 7.0s enhanced, the features included in 7.0s enhanced, and developer tool support. Although Symbian OS is purported to be backwards-compatible, this claim is not entirely true, and reports of incompatibility even among different devices running the same OS version are not uncommon [19]. According to Symbian documentation, "about 80% of the APIs are common to all variants of Symbian OS" [4].

Symbian offers the most flexibility in IDE choice. While Microsoft Visual Studio is recommended, any IDE can be used, and there are Symbian-specific versions of some IDEs, such as Codewarrior for Symbian OS, and the recently-released, Eclipse-based Carbide.c++ IDE from Nokia. Visual Studio was used for this thesis.

Because of the many different OS versions and various additional tools, it is somewhat difficult to get started programming for Symbian OS. However, as with Palm OS, documentation is extensive and readily available. Nokia in particular provides a great deal of support in the form of developer tools, documentation, and forums where developers can find answers to questions.

Like BREW, the Symbian SDK integrates into Microsoft Visual Studio as a plug-in. As with BREW and Palm OS, the Symbian SDK includes a Hello World example ready to be compiled. By following the steps given in the Getting Started Guide included in the SDK documentation, this example can easily be imported into Visual Studio, compiled, and then run on the emulator. A second hello world example included in Carbide.vs was also compiled and run. Carbide.vs is an additional set of tools formerly called Nokia Developer's Suite for Symbian OS
. The SDK-included Hello World and the Carbide.vs Hello World examples are shown in Figure 4.4.
[image: image15.png][€] Series 60 2.1 - wins udeb

elloworld
i

Hello Horld!

g 4
D > &
\mf
A o &
\ o &

[image: image16.emf]Actual Size on Disk

Headers

38%

Objects

62%

Headers Objects

[image: image6.png][€] Series 60 2.1 - wins udeb

£ Applications

 SDK

 SDK

Carbide.vs
Figure 4.4: SDK and Carbide.vs Hello World on the Symbian OS Emulator TC "4.4: SDK and Carbide.vs Hello World on the Symbian OS Emulator" \f C \l "2"

The primary language of Symbian OS is C++. Java is also strongly supported, particularly for Series 60. Symbian OS is object oriented, lending itself well to object oriented programming languages. For this reason, some additional work would be necessary to port 7DS to Symbian OS. Most C source code can be ported to C++, but C is not a true subset of C++; therefore, 7DS would require minor alteration. According to Symbian documentation, "it is usually difficult or even impossible to write complete Symbian OS applications using only C" [21].

In addition to the minor differences between C and C++, Symbian has its own API, which is significantly different from standardized C/C++. The documentation of the API is terse and limited. This shortcoming is compensated by extensive forums, such as Forum Nokia and NewLC, where tutorials, articles, and examples, as well as additional developer tools, are available. However, starting a Symbian project is comparable to learning a new programming language due to its unique API. Common code between the desktop Linux version and a Symbian version of 7DS would be negligible. Because the API is so different from the original C used for 7DS, more than a cosmetic renaming would be necessary to port 7DS to Symbian OS, making Symbian OS less attractive for porting than other platforms.

Symbian OS is optimized for single-threaded applications using asynchronous function calls and active objects within the thread. It would likely improve 7DS application performance to create a single-threaded version or use cooperative- rather than preemptive-multitasking. However, multi-threading is supported, so the multi-threaded nature of 7DS would not necessarily need to be rewritten. The lack of global or static variables in Symbian OS suggests that a client-server model be used, since only an executable server in Symbian can use global variables.

On the surface, the client-server structure would not seem to hinder 7DS, since most 7DS components function in a client-server manner using sockets. However, work done by A. Gefflaut [5] indicates that Symbian's client-server model contains further limitations that would likely cause problems. A client-server file access example that applies to 7DS as well is presented by Gefflaut. To provide file access, Symbian uses a file server interface that only allows the resource-creating client thread to manipulate those resources. Two separate threads in 7DS, each servicing separate HTTP requests, would not be able to simultaneously access cache information. Networking and console access are similarly limited. While there are certainly workarounds, these additional workarounds would need to be designed and implemented for a Symbian port of 7DS.

Compared to BREW and Palm OS, Symbian offers more advanced hardware and an operating system better suited to strong application development. However, the porting process for 7DS is made difficult by Symbian's unique API and limited client-server architecture. Symbian OS has the steepest learning curve of the four platforms reviewed, but provides an advanced development environment.
4.7 Windows Mobile

Although the market share figures in Section 4.3 indicate a lack of market penetration for Windows Mobile, these figures do not show the complete picture. While Symbian has a 60 percent market share, it only leads in the voice-centric market. Microsoft Windows Mobile had an approximately 45 percent market share of the data-centric market as of 2004, according to a report by Canalys [1]. This discrepancy raises an important question: What type of user is most likely to use and benefit from 7DS, the voice-centric or data-centric device user?

Logic suggests that, while voice-centric devices are also internet-capable, data-centric device users are more likely to use the internet for web browsing and e-mail on a regular basis. Furthermore, the ARCchart study [19] predicts that overall, with voice- and data-centric combined, Symbian will drop to a 40 percent market share while Microsoft gains a 25 percent market share by 2008. Windows Mobile already has a large developer community and many applications available. With Microsoft's ability to dominate seemingly any consumer electronics market it chooses, Windows Mobile will likely significantly increase its user base.

As with Symbian OS, there are two main sub-platforms of Windows Mobile. Windows Mobile Pocket PC is comparable to Symbian UIQ; both are designed with touch screens for two-handed operation and an emphasis on PDA aspects. Windows Mobile Smartphone is similar to Symbian Series 60 with one-handed operation and an emphasis on cell phone-like usage. A Pocket PC device is more likely to be used for web browsing due to its larger screen, pen-based interface, and data-centric design. Also, the Pocket PC sub-platform is significantly more widespread than the Smartphone sub-platform and thus better-suited for widespread 7DS distribution. Also, according to ARCchart [19], Windows Mobile Pocket PC is the easiest of all mobile platforms on which to develop.

Before an SDK can be installed, Microsoft ActiveSync and either eMbedded Visual C++ or Visual Studio are required. These components will be covered in greater detail in Section 5.1.1. Windows Mobile projects in Visual Studio use the .NET Compact Framework. In eMbedded Visual C++, the SDK provides additional project options for Windows Mobile once the SDK is installed. Multiple SDK versions can be installed simultaneously. The eMbedded Visual C++ environment, while not exactly the same as Visual Studio, offers most of the same features simply found in different locations. Additional add-on tools are also available.

Several versions of the Windows Mobile SDK are available online. The most current version, Windows Mobile 5.0, is available in both Pocket PC and Smartphone versions, although it takes a step toward unifying the two sub-platforms by providing program compatibility between the two. The next major version of Windows Mobile will supposedly fully unify the Pocket PC and Smartphone sub-platforms. Other SDK versions available are officially referred to as Windows Mobile 2003 for Pocket PC or Smartphone, Windows Mobile 2002 for Pocket PC or Smartphone, Windows Mobile 2000 for Pocket PC, and the older Windows CE.

Windows Mobile 2003 was chosen for comparison to the other mobile platforms because of the number of devices available and the available features used by 7DS, such as multi-threading. According to ARCchart [19], about 90 percent of a program's source code can be shared between Pocket PC and Smartphone versions of Windows Mobile. Backwards compatibility from version to version can be expected to be even greater than sub-platform compatibility, usually with no code re-writing necessary, although there are exceptions such as the example presented in work done previously [3]. Hence, a future transfer from Windows Mobile 2003 to Windows Mobile 5.0 (or to Windows Mobile 2002) should be relatively straight forward, provided good programming practices are employed. Devices running Windows Mobile tend to have more powerful hardware compared to the other three mobile platforms, so this platform's age is not a limiting factor.

The primary programming language for Windows Mobile is C++. It also supports C and Java, while Visual Basic has been phased out. Support for pure C on Windows Mobile is comparable to pure C support on desktop Windows environments. This C support makes it relatively easy to port the C version of 7DS to Windows Mobile. It is the only platform that supports C# in the form of the .NET Compact Framework. The .NET Compact Framework provides a common environment for managed code, allowing portability of .NET code at the cost of performance.

The .NET Compact Framework is highly touted by Microsoft, and indeed, it has many useful features that aid in programming for Windows Mobile. However, it also has some disadvantages when it comes to porting a program like 7DS. The .NET Compact Framework can only be used to write managed code. The performance hit that comes with managed code contradicts one of the main goals of the current 7DS implementation, that is, that it perform significantly faster than the previous version of 7DS implemented in Java. Performance measurements by Gefflaut [5] indicate that ".NET programs executed on smartphones would have similar performance characteristics [to Java]". This level of performance would defeat the purpose of implementing 7DS in C instead of Java. Not only that, but the .NET Compact Framework cannot be used in pure C, rather only with C#, Managed C++, or C++/CLI. 7DS would need to be rewritten in one of these managed languages to take advantage of the .NET Compact Framework.

As with the other mobile operating systems, the Windows Mobile 2003 for Pocket PC SDK includes an emulator and a sample Hello World project. Here too, the Hello World project can be compiled and run by simply clicking through the appropriate "new project" menus. Following the instructions in the "readme.htm" file, the sample Hello World project was compiled and run on the emulator. Figure 4.5 shows the resulting Hello World example on the Pocket PC emulator.
[image: image17.png]Applications

Ql

Calc Card Info

Address

Date Book DevNub

CncProfiles

Graffiti2Demo helloworld

Gprs Counters

Memo Pad

z
=

A

HotSync

&

Prefs SMs

Phone Pad

Welcome

To Do List

[image: image7.png]Pocket PC 2003

Emuator_Help

=lolx]

=My Documents
[profiles

[Program Files
s Temp

1/30/06

Figure 4.5: Hello World on the Pocket PC 2003 Emulator TC "4.5: Hello World on the Pocket PC 2003 Emulator" \f C \l "2"

One of the biggest advantages of Windows Mobile is the API's similarity to the win32 API. Known as the winCE API, it is a true subset of the win32 desktop API. Most desktop Windows features are included in the winCE API, including the Microsoft C library. Pocket PC is designed to use multi-threading with a subset of the win32 threading API. Windows Mobile is the only mobile platform, besides the defunct Palm OS Cobalt, to fully support static data and global variables, as well as multi-threading. With such similarity to the desktop version of Windows, a programmer with Windows programming experience should have little difficulty working with Windows Mobile.

Microsoft provides extensive documentation from the Microsoft Developer Network (MSDN), but it leans toward the experienced Microsoft platform developer with fewer entry-level resources, such as a "quick start" guide, than the other mobile platforms. Many of the basic settings necessary to compile a program must be discovered and modified by trial and error. For example, pre-compiled headers must be turned off manually for each new C source file added to the project in eMbedded Visual C++. Settings for pre-compiled headers and other options are scattered in several different locations.

Windows Mobile has distinct advantages over the other platforms in terms of C development and porting. Of the four platforms, it is the most closely related to a desktop platform, provides ample hardware specifications, and an API supporting most desktop API features. Because 7DS was already ported to Windows XP for this thesis, further porting to a mobile platform should be easiest using Windows Mobile. The quickly growing market share and data-centric nature of Windows Mobile makes it attractive for software distribution, as well. Thus, Windows Mobile was chosen as the ideal platform for porting 7DS.
4.8 Emulator Internet Connectivity

Because 7DS is essentially a background application used by the web browser, it is critical that a web browser and internet connection are available on any mobile platform for which 7DS is to be developed. During the development phase, this implies that a web browser and internet connection should be available not only on the end device, but also on the emulator running on a desktop PC. All four platforms' emulators are able to piggyback the emulated device's internet connection on the host PC's internet connection. In other words, if the host PC has an internet connection, the emulator has an internet connection. However, the ability to open a web browser and freely access internet sites varies widely from platform to platform. Table 4.3 offers an overview of emulator internet connectivity and browser availability based on the SDKs examined.
	
	BREW
	Palm OS
	Symbian
	Windows

	Internet Connectivity through Host PC
	X
	X
	X
	X

	WAP Browsing
	
	
	X
	X

	Full Browser Included in SDK
	
	
	
	X

	Opera Browser Available
	X
	X
	X
	X

Table 4.3: Emulator Internet Connectivity and Browser Availability TC "4.3: Emulator Internet Connectivity and Browser Availability" \f D \l "2"

The BREW emulator is automatically configured for internet access and the included example applications demonstrate web server connectivity. However, BREW is the most lacking in browser capability; specifically, a browser is neither included in the SDK nor available from the Qualcomm website. While the Palm OS Cobalt simulator has the ability to piggyback its internet connection on Winsock, the Garnet OS version of the simulator does not. Neither Palm OS version includes a browser, but a Web Browser SDK can be downloaded from the Palm website. The Symbian emulator is able to use its host PC's internet connection, but only WAP content can be accessed by default without downloading and installing an additional browser such as Opera. Windows Mobile provides Pocket Internet Explorer as an integrated web browser. Although it requires configuration, it is able to access the internet normally. Windows Mobile provides the best emulator internet connectivity with the default installation.

It should be noted that, in addition to the emulators running on a host desktop PC, actual devices from all four mobile OS platforms are able to use a desktop PC's internet connection when connected to the PC. Also of note is the availability of the Opera web browser as a native application across a variety of platforms. The January 2006 release of the Java-based Opera Mini browser furthermore brings the web browser to any Java-enabled device, making it a good web browser choice for debugging and later distribution of 7DS.
Chapter 5
Porting to Windows Mobile

Chapter 3 examined the process of porting the 7DS proxy server from Linux to Windows XP. Rather than port the entire 7DS program from Linux to Windows, then to a mobile platform, it was decided to first port the proxy server to a mobile platform. Windows Mobile Pocket PC 2003 was chosen as the most suitable mobile platform for the first mobile version of 7DS. A framework for the proxy server was implemented for Windows Mobile Pocket PC 2003 to begin the porting process. That process for porting the proxy server to Pocket PC 2003 is described in this chapter.
5.1 Porting Procedure

Two possible strategies were considered for porting to a mobile platform. Ideally, the same strategy that was followed for porting from Linux to desktop Windows could be applied again; the source code would be minimally altered to conditionally compile for the various platforms. However, this strategy was found to be insufficient for porting to mobile platforms, primarily due to the work involved in importing the appropriate external, third-party libraries. A second strategy was also examined: re-writing the proxy server source code to utilize the Windows Mobile native API, winCE. This second strategy will be discussed in greater detail in Section 5.2.

5.1.1 Toolchain Setup

The Windows Mobile toolchain for Pocket PC 2003 was set up according to the instructions on Microsoft's Windows Mobile website. Additional programs available from the Microsoft website must be installed before the SDK in the following order:
1. ActiveSync 3.7.1

2. eMbedded Visual C++ 4.0

3. eMbedded Visual C++ Service Pack 3

4. Visual Studio .NET 2003

5. Pocket PC 2003 (or Smartphone 2003) SDK

The backwards-compatible version 4.1 of ActiveSync was available at the time of this writing; therefore it was installed instead of version 3.7.l. Likewise, Service Pack 4 of eMbedded Visual C++ is backwards compatible; hence it was installed instead of Service Pack 3. Finally, Visual Studio .NET 2003 was already installed on the system for use with the other mobile platforms, so its configuration was left unchanged. Visual Studio is only required if managed code for the .NET Compact Framework is to be written, so it was not used for the porting process.

Debugging was done using the emulator included in the SDK and an HP iPAQ h6300 series device running Pocket PC 2003. The iPAQ h6300 offers both 802.11 wireless and Bluetooth, making it an ideal device for future 7DS Bluetooth development. It contains a 166 MHz ARM processor and provides 64 MB SDRAM and 64 MB Flash ROM memory containing the operating system and 55 MB of user-accessible space. An SD card expansion slot is available for external memory cards. Debugging directly on the device was found to be faster and more comfortable than debugging on the emulator, primarily because the emulator does not retain installed files or setting changes when exited. Furthermore, some differences exist between emulator and device; for example, the same source code for a proxy server thread running on the emulator outputs printf() commands differently than it does on an actual device.
5.1.2 Procedure

The Hello World sample application was taken as a basic framework for the Windows Mobile version of the 7DS proxy server. It automatically generates the necessary application initializations, Windows message handling routines, and basic Windows Mobile GUI components. Although the proxy server is a console application and does not use the basic components found in the Windows GUI, these components ensure a standardized Windows framework and were retained for possible future use.

The main entry point for Pocket PC 2003 applications is the method WinMain(). This method initializes the application and contains the Windows main message loop. The main message loop allows the application to interact with the Windows operating system, for example to receive the WM_CLOSE message, which commands an application to close. It is before the main message loop that a call is made to the 7DS main() method. The 7DS main() method has the same structure as the original desktop Linux version of 7DS. By calling the 7DS main() method from WinMain(), the original main() method can remain unaltered, simplifying the porting process, while features such as a Windows-based GUI (rather than a console interface) may be implemented at a later date.

Unlike desktop Windows, Windows Mobile does not include a console or command line interface. The lack of a console has a significant impact on 7DS development, since debugging output is sent to the console in both Linux and desktop Windows versions, and cache initialization and exit commands are received by 7DS through the console. Typical console output functions such as printf() do not result in any output whatsoever on Windows Mobile. Fortunately, two workarounds are possible for this issue.

The first workaround is to change console output calls, such as printf(), to fprintf() and send console output to a text file instead. When using the Pocket PC emulator for debugging, this text file can be located in a shared folder on the host PC and opened in an editor program such as UltraEdit, which can be set to automatically update the file contents. In this way, a form of console output is simulated. A further advantage of this method is that console output is automatically saved to a file, which can later be reviewed for errors. When debugging on an actual device, however, the debug file proves less practical because it cannot be viewed in real time as 7DS is running. It must be opened separately on the device or transferred to a connected desktop PC. Furthermore, the problem of console input is not solved.

The second workaround comes in the form of a third-party console application that provides command line functionality on the Windows Mobile device or emulator. A command shell is available from Microsoft as a developer "power toy". However, this add-on is only available for ARM processors, so it will not run on devices with other CPUs or on the emulator. A third-party add-on, Pocket Console, is available online
 for multiple platforms. Although designed for Pocket PC 2002, it also works with Pocket PC 2003 and may work with other Windows Mobile versions. With either the Microsoft "power toy" or Pocket Console installed, 7DS behaves as a normal console application without further modification of console debugging calls.

Once the basic application framework based on the Hello World application was set up, the same basic procedure that was found to be successful in porting the 7DS proxy server from Linux to Windows was attempted in porting from desktop Windows to Windows Mobile. Proxy server source code was brought into the Windows Mobile 7DS project one or two lines at a time to uncover any unexpected errors.

Some compiling problems that were discovered in the port from Linux to Windows could be eliminated from the outset. For example, the fact that the bzero() method is not available in the win32 API implies that it will not be found in the winCE API either, and the preprocessor define of bzero() to memset() was brought into the Windows Mobile version of the 7DS proxy server immediately. Thus, one of the benefits derived from porting from Linux to desktop Windows was the easy recognition of problematic source code.
5.2 Second Strategy Attempted

Unfortunately, the porting strategy of maintaining a single code base between desktop Windows and Windows Mobile proved to be insufficient. Although system function calls tended to work without further modification, due to the similarity between the win32 and winCE APIs, calls to external, third-party library functions created problems.
5.2.1 Difficulties Porting Third-Party Libraries

Of the five external libraries used by the proxy server, glibc, gdbm, cURL, pthread, and MD5, only MD5 could be successfully imported into the Windows Mobile environment. Because the MD5 library consisted of only two source code files provided by RSA Data Security with no further dependencies, it was easily incorporated into the mobile proxy server.

The other external libraries were re-compiled for Windows Mobile only after significant difficulty. For example, the pthread library is available for desktop Windows in the form of a pre-built .dll and .lib file, and four required header files. For Windows Mobile, however, it must first be compiled from the pthread source code. This source code had been ported previously by other developers of Windows Mobile applications, and was modified by those developers to conditionally compile for Windows Mobile.

However, the pthread source code did not compile without further alteration. Not only did the tool chain used to compile pthread for Windows Mobile need to be properly configured through trial and error, but undocumented changes in the source code itself were required. In the config.h file, "#define NEED_SEM" needed to be commented out despite documentation to the contrary. In another source file, the definition of the errno() function, which is not available in Windows Mobile, required uncommenting although there was no documented indication that this step was necessary. These modifications to the pthread source code were not documented in the source code comments, in any additionally downloaded pthread files, or in the online discussion postings by the original pthread porting developers. Only through extensive searching and trial and error were the appropriate settings and required code pieces correctly configured. Furthermore, the correct settings could only be determined for the Windows Mobile emulator, not for the ARM-based iPAQ test device.

Similar problems were encountered with two of the other external libraries, glibc and cURL. glibc is not available in a Windows Mobile version. Use of the desktop Windows version failed with a runtime error. Although the cURL source code has settings for Windows Mobile, attempts to compile cURL with these settings or to use the desktop Windows version of the cURL library on Windows Mobile, were likewise unsuccessful.

Other projects that have already ported applications to Windows Mobile, such as the script language Ruby
, have run into the same issues involving certain standard libraries such as glibc and gdbm. The source code from such projects is often freely available and, theoretically, one should be able to obtain the ported libraries from those projects and reuse them for other applications, in this case 7DS. However, as pointed out by D. Price [18], versioning and tool chain issues often crop up, which make it impossible to directly import a previously-ported library from another project without modification. Many necessary functions are not implemented, conflict with other imported libraries, or sometimes for unknown reasons simply do not work.
5.2.2 Rewriting with the Native API

Because of the difficulties involved in using external, third-party libraries, a second porting strategy was examined. By rewriting the 7DS proxy server source code to use the native winCE API, the laborious task of working through third-party library source code to discover undocumented critical differences to the desktop library counterparts was avoided. The time spent attempting to compile another developer's source code for a poorly-supported platform can be better spent changing the external library function calls to native API function calls. Alternate third-party libraries, such as wget in place of cURL, may better support the targeted mobile platform. However, this kind of substitution also requires changes to the 7DS source code to call the alternate library's methods.

Not only is it less time-consuming to rewrite the 7DS source code rather than another developer's source code, but an API for a mobile platform may have particular advantages in implementation. Mobile platforms in particular have optimizations that desktop platforms do not have or need. For example, certain types of loops that are acceptable for desktop systems might quickly drain a mobile device by continuously using CPU clock cycles, preventing the CPU from going into an energy-saving sleep state. Therefore, another energy-saving technique may be made available by the mobile platform's API. In such a case, it is critical to use the mobile platform's energy-saving technique, even though it causes the source code to diverge from the original code. Memory allocation is another area where mobile devices are required to squeeze every last bit out of a small amount of total available memory. Thus, they often have improved implementation of low-level memory functions such as alloc().

Likewise, third-party libraries implemented for a desktop platform may or may not be portable to mobile platforms, but again, the mobile platform often provides the same functionality with better performance designed specifically for a mobile device. The advantages of platform-specific methods must thus be balanced with the desire to have a common source code for all platforms.

Using the second strategy of rewriting the proxy server source code, a few pthread function calls were tested using winCE threading function calls instead. The overall structure of the 7DS proxy server was maintained and only individual functions calls were exchanged, for example the WaitForSingleObject() method in place of pthread_mutex_lock(). Because the proxy server makes extensive use of third-party library functions, which needed to be rewritten for Windows Mobile, porting of the proxy server to Windows Mobile is not yet complete. To continue porting to Windows Mobile, the proxy server requires re-implementation using the winCE API and possibly alternate third-party libraries.
Chapter 6
Data Collection Module

In addition to an examination of porting strategies and mobile platforms, this thesis covers the implementation of a data collection module for use on all target platforms. The effectiveness of 7DS has already been demonstrated in a laboratory setting in Papadopouli [17]. To test 7DS effectiveness in a real-world setting, an appropriate module for data collection must first be implemented. The ability of 7DS to effectively provide increased data availability through caching and data exchange among peers can be examined by observing the collective cache hit rate among 7DS users. Other performance metrics such as the time required to perform a query, file transfer time, or proxy server throughput are also of interest, but are left to future work. A data collection module was therefore implemented to handle 7DS cache performance measurements.
6.1 Extension of Previous Data Analysis Work

One of the goals in implementing the data collection module was to obtain data that is directly comparable to the data collected in previous work by Lindsey [12]. Lindsey used traces of HTTP requests and wireless access point MAC address event logs to examine correlations between web requests and spatial proximity to other users. In that work, the following information was extracted from monitored HTTP requests:
· "the time of the packet’s receipt (with one-second resolution),

· the hostname specified in the request’s Host header,

· the Request-URI (e.g., /mobicom/2003/), and

· the hardware MAC address of the mobile IEEE 802.11 client."
(Source: M. R. Lindsey [12])

An important distinction between the data collection in Lindsey [12] and that of this module is that this module measures data from within 7DS while Lindsey collected data by monitoring general 802.11 wireless traffic passing through a gateway router. This difference results in a somewhat different data collection strategy. Also, the data collected by Lindsey represents the theoretical effectiveness of 7DS in an ideal case where data is always successfully exchanged between two nodes that encounter each other.

Whereas Lindsey [12] considers two users to be in spatial proximity when they are connected to the same wireless access point at the same time, a test of 7DS itself must use peer encounter information to determine whether two nodes are in proximity to each other. Particularly in the case of mobile devices, two devices may be in proximity to each other yet connect to entirely different wireless access points, as illustrated in Figure 6.1-a. For example, two devices using different service providers can be connected to separate wireless access points, yet both may exchange data via 7DS. This configuration represents a false negative type of error if data were collected at the access point rather than on the device itself. Meanwhile, as shown in Figure 6.1-b, two devices may be able to access the same wireless access point, yet be far apart from each other and out of each others' radio range. This second scenario represents a false positive for data collected at the access point.

[image: image8.emf]
Figure 6.1: Data Collection Scenarios with False Negatives and False Positives TC "6.1: Data Collection Scenarios with False Negatives and False Positives" \f C \l "2"
a) Two devices in proximity to each other but connected to different access points.

b) Two devices connected to the same access point but not in proximity to each other.

6.2 Design Challenges

A few challenges arise with collecting data from within the 7DS application. First, data collected must be stored on a 7DS user's device rather than a central server. Because each individual HTML file or graphic represents a separate HTTP request, log files of requests can become quite large, possibly causing storage concerns. Second, data collected must somehow be sent to a central repository, presumably at Columbia University, for analysis. Finally, users' privacy must be ensured because of the sensitive nature of web requests associated with MAC addresses.

To solve the first issue, data storage on a user's device can simply be limited by a pre-determined or user-configurable maximum log file size. If the log file becomes larger than this maximum size, data is not logged. Because 7DS can be deployed on devices with greatly varying storage capacity, from a few megabytes on a mobile device to notebook computers with hundreds of gigabytes of storage, the maximum log file size should be changed depending on the target device. The log size limit feature was implemented for desktop Windows (and hence for Linux as well), but is not yet ported to Windows Mobile.

The second issue of sending data to a central repository presents in itself a unique opportunity to test another function of 7DS, that is, the SMTP message forwarding capability. Once a log file reaches a certain size, it might be sent via e-mail through the 7DS system to a Columbia University server configured to receive 7DS log files. With each 7DS peer occasionally sending such a log file through the 7DS message forwarding system, a statistically significant amount of e-mail forwarding traffic could be generated, and further data on 7DS effectiveness, such as e-mail forwarding hop count could be collected. Alternatively, if the amount of e-mail traffic generated thereby is undesirable, log files could be sent via an internet connection when it is present, ideally whenever a mobile device is connected to a PC with an internet connection. Because the e-mail message forwarding system was not yet complete at the time of this writing, this function of the data collection module is left to future work.

Finally, to ensure privacy, we do not wish to collect and store log data in a form that allows a user's web surfing to be monitored by us or anyone else. We would like to collect all HTTP requests and MAC or IP addresses, but this data allows us to see exactly which websites each individual 7DS user visits. To prevent this invasion of privacy, the logging function can be set to use MD5 encoding to produce a 128-bit hash of both the requested URL and the client's MAC or IP address instead of the URL and MAC/IP addresses themselves. This hash encryption function was implemented for the data collection module. MD5 was chosen because it is a fast method and is already used in 7DS to create cache paths. Depending on the level of privacy desired, another, more secure algorithm could be used. MD5 is slightly vulnerable to attacks and its relatively short 128-bit key length raises the question of a brute force attack as well. To further ensure privacy, the option to turn off the logging function entirely should be left to the user.
6.3 Data Collection Module Implementation

The data collection module was implemented for desktop Windows and was subsequently backported to the Linux version of 7DS. It was also ported to the Windows Mobile version of 7DS. Configuration of the maximum log file size and MD5 encoding for privacy is set in the 7DS configuration reader module and can be read from a configuration file. The full source code of the data collection module can be found in Appendix B.

The function logURLAndTime(char *url) is called with the URL to be logged. As such, it should be called whenever a URL request is made, for example in the do_request() method found in proxy_server.c. The log file is opened in append mode and is created if it does not exist. If the log file is not yet larger than the maximum allowed size, logURLAndTime() first logs the IP address of the host device as read by the configuration reader. If MD5 encryption is turned on, it records a 128-bit hash of the IP address instead of the IP address itself.

Next, the logURLAndTime() method records the URL to the log file. As with the IP address, if MD5 encryption is turned on, a 128-bit hash of the requested URL is recorded instead. This hash encryption can be activated independently of the IP address encryption. It then records the current system time in the form of seconds since midnight, January 1, 1970. As an option, the current time can be also be recorded in a human-readable format. Next, a flag is set indicating whether an internet connection is present or not. Finally, another flag is set if the URL is in the local 7DS cache and hence retrievable from cache rather than the internet.

Each piece of the logged request is separated by a space so that the log file can be easily imported as a "comma-separated list" into Microsoft Excel or a database for analysis. A space was chosen as the field delimiter because it is not a valid URL character. Examples of the logging function output follow:
Client IP address, requested URL, seconds since the epoch, with internet, available from cache:

160.39.245.11 http://www.cnn.com/index.html 1142712049 INTERNET FROMCACHE

MD5 hash activated for the URL, with and without internet:

160.39.245.11 006d5652f4c43ab9e69328ab5e74f7e4 1142712050 INTERNET FROMCACHE

160.39.245.11 4128cf8aa23a1d96563378b6ea3d419a 1143080847 NOINTRNT FROMCACHE
MD5 hash activated for both IP address and URL:

7f77d7449fbf97e5114b821bde97b785 99b661d0359dac391d18e1b89e15ca57 1143094973 NOINTRNT FROMCACHE

Human-readable date included:

160.39.245.11 77d583b7e01cfd1ed9a6d7a2050062fe 1143090977 Wed Mar 22 23:16:17 2006

 INTERNET FROMCACHE

Because the 7DS peer service discovery module was not yet finalized at the time the data collection module was implemented, MAC address or IP address collection from peers was not included. Instead, the IP address of the client as reported by the configuration reader is logged. Measurements relying on the service discovery module, such as peer encounters or data retrieval success rate from peers, are left to future work.
Chapter 7
Conclusions and Future Work

7.1 Conclusions

The goals of this thesis were to examine the issues with porting an application from one platform to another, to determine a suitable mobile target platform for the 7DS system, and to prepare 7DS for experimental testing. These goals were accomplished by porting the 7DS proxy server to desktop Windows, determining an appropriate porting strategy for Windows Mobile, and implementing a data collection module able to collect real-world data from within the 7DS system.

The 7DS system should be ported from its current, ongoing implementation in C on Linux desktop and notebook computers to other platforms for two reasons. First, the effectiveness of 7DS relies partly on node density, in other words, the number of 7DS users. Thus, it is important to distribute the application for desktop Windows and notebook computers due to the prevalence of Windows. Second, the 7DS system is likely to most benefit mobile devices, such as PDAs and smartphones; therefore, it must also be brought to mobile operating systems that run on such devices.

The largest component of 7DS, the proxy server, was successfully ported to the desktop Windows environment, including five of the ten external, third-party libraries used by the entire 7DS application. The porting strategy of maintaining a single code base by making only minimal, conditional changes to the source code as necessary was likewise successful.

During the porting process, several tendencies were noticed. The top-down programming technique of using empty dummy methods was found to be beneficial for line-by-line porting. External, third-party libraries sometimes proved difficult to port. While 7DS header files were easily ported, system header files often caused problems. Some porting problems were "self-created" by the original Linux programmer's unawareness that a certain function is Linux-only or deprecated.

Bugs were also discovered during the porting process, leading to refinement of the application. In particular, HTTP header handling was introduced as a new and necessary feature of the proxy server. One conclusion to be drawn from this experience is that the porting process aids in making bugs or design flaws more apparent. Porting from one platform to another requires that software be made more standard-compliant than if it is implemented exclusively on one platform. Non-compliant code is more likely to cease functioning as future versions of operating systems or web browsers are released. Such code is simultaneously less likely to be portable.

Several steps can be taken to ensure that a program is more easily ported to other platforms. First, programmers should remain aware of system-dependent functions and deprecated methods. System-independent functions and non-deprecated methods should be used whenever possible, even if using such preferred methods involves a more complex data structure. Second, target platforms should be decided in the design phase before development begins. The porting process would be made easier with multi-platform development envisioned from the start. A standardized C library available for all platforms could be chosen, and in particular, third-party libraries could be chosen based partly on their availability for multiple platforms. Finally, source code should be compiled and tested on multiple platforms as development takes place in order to reveal bugs or other problem areas as they occur, rather than all at once at the end of development.

Porting to desktop Windows is not only beneficial in increasing the potential 7DS user base and improving the source code, but also as a stepping stone to mobile platforms. Four widespread mobile platforms were examined and compared for this thesis. Windows Mobile was chosen for porting due to its characteristics examined in Chapter 4. Because of BREW's application licensing structure, 7DS development for BREW is not currently feasible. In addition to a likely declining user base, Palm OS Garnet has memory and feature limitations, while Palm OS Cobalt is not available on actual devices. Symbian OS is a good alternative, but the learning curve for the Symbian API is steeper than for other platforms and significant additional work is necessary for porting. Windows Mobile offers the easiest way to establish a mobile version of 7DS because it is extremely similar to desktop versions of Windows and it supports all necessary features used by 7DS, such as multi-threading.

Finally, a data collection module was implemented for use in experimental testing of the 7DS system. The data collection module collects data that is directly comparable to the data collected in Lindsey [12], allowing test results to be compared and evaluated. However, as opposed to Lindsey's data collection, this data collection module was implemented for use within the 7DS system itself rather than at a gateway router, so that both theoretical and experimental results can be obtained.
7.2 Future Work

One significant question raised by attempting to port 7DS to a mobile platform is the usefulness of Linux-like environments, such as Cygwin. Because one of the goals of porting 7DS to Windows was to use one of the Windows-only development environments for mobile platforms, it was initially believed that a Linux-like environment would be insufficient. The purpose of porting was not merely to allow 7DS to run on desktop Windows, but also to allow further development of 7DS from within the Windows environment. The strategy of maintaining one single code base for all versions of 7DS in order to simplify the task of future code development and maintenance was successful for desktop Windows, but was found to be lacking for mobile development. Because the second strategy attempted, rewriting the 7DS source code using the native mobile API, proved more successful for mobile platforms, the code base for desktop and mobile platforms is thereby implicitly divided between the two. This conclusion indicates that the use of Linux-like environments such as Cygwin may be sufficient after all. Development might continue on Linux, using Cygwin to more quickly port 7DS to Windows. Development for mobile platforms might then proceed using a completely separate source code.

Another area left to future work is an examination of Linux Mobile. Linux Mobile was not reviewed due to time constraints and Linux Mobile's lesser availability compared to the other mobile platforms. However, recent observations of online news articles and forums indicate that the Linux Mobile development community is growing, possibly making it an important platform for development. It would be particularly interesting to compare the porting process of desktop Windows and Windows Mobile to that of desktop Linux and Linux Mobile.

7DS effectiveness could be enhanced by improving the level of HTTP standard compliance. Two issues must be considered. First, attention should be given to conforming to the HTTP standard. 7DS would benefit from the stability and predictability of standard conformance, as evidenced by the HTTP header issue discussed in Section 3.5. On the other hand, work done by A. Wolman [22] implies that the cache hit rate can likely be improved if HTTP standard caching directives are not strictly followed. As in the previous implementation of 7DS in Papadopouli [17] and Lindsey [12], HTTP caching directives are currently ignored by 7DS, yielding a higher cache hit rate. Unfortunately, some objects truly cannot or should not be cached, so this issue must be addressed.

Now that the proxy server stores the original HTTP header as a separate file, further development could utilize these header files to determine the degree of HTTP caching compliance desired. Various algorithms based on the Cache-Control directive as well as other directives, such as Date, Expires, and Last-Modified, can be applied to determine the validity of a cached object. For example, if the Last-Modified field is significantly older than the Date field, it might be decided that the Date field should be ignored.

The next step in terms of the 7DS application itself is two-fold. First, the remaining 7DS components other than the proxy server should be ported to desktop Windows and Windows Mobile. Using the strategies and lessons learned from porting the proxy server portion of 7DS and five of the ten necessary external libraries, the rest of the components should port more easily. Next, 7DS should be deployed for experimental testing. In an initial test, 7DS-enabled devices could be distributed to a small test group specifically organized to try out 7DS. The data collection module is ready to be used for such a test group. Later, once the individual components of 7DS are brought together, it can be distributed for public testing on multiple platforms.

The data collection module itself may also be improved. It currently collects data that can be directly compared to the previous work done by Lindsey [12], but several other measurements are also of interest. Document retrieval from peers and peer encounters when no data is exchanged should provide valuable insight into the data dissemination models' accuracy.

While the data collection module can currently be used on devices to which the experimenter has access, a method for automatically sending logged data to a central repository must also be implemented before public distribution. 7DS's own SMTP message forwarding component could be used to this end as discussed in Section 6.2. One further avenue for future data collection would be to provide data aggregation and possibly even partial data analysis from within the system as the logged data is forwarded toward the central repository. This technique is currently employed in sensor networks to save energy in transmission costs. While energy savings may be less applicable to the 7DS system, since sending log files should make up only a small fraction of total data traffic, it might someday be useful to fine-tune the program's behavior in real-time based on recently analyzed log data.

Bibliography
[1] Canalys Research press release, Global smart phone shipments treble in Q3, October 27, 2004, http://www.canalys.com/pr/2004/r2004102.htm
[2] Canalys Research press release, Changing times in the smart mobile device market, September 29, 2005, http://www.canalys.com/pr/2005/r2005094.htm

[3] D. Daniel, Symbian vs. Windows Smartphone: A Comparison of the Latest Smartphone Platforms, B.Sc. thesis, Free University Berlin, July 22, 2004

[4] M. de Jode and C. Turfus, Symbian OS System Definition, Symbian developer documentation, September 2004, http://www.series60.com/developers?pbId=20&pbType=7&c_id=2

[5] A. Gefflaut, et al., Porting the .NET Compact Framework to Symbian Phones - A Feasibility Assessment, .NET Technologies 2005 International Conference, May 30 - June 1, 2005
[6] M. Hamblen, Palm's Embrace of Windows for Treo Clouds Future of Palm OS, Computerworld news article, October 3, 2005, http://www.computerworld.com/networkingtopics/networking/story/0,10801,105112,00.html

[7] K. M. Hanna, B. N. Levine, and R. Manmatha, Mobile Distributed Information Retrieval for Highly-Partitioned Networks, IEEE International Conference on Network Protocols, November 2003
[8] A. Hayes and D. Wilson, Peer-to-Peer Information Sharing in a Mobile Ad Hoc Environment, Proceedings of the Sixth IEEE Workshop on Mobile Computing Systems and Applications, 2004

[9] D. Korn, Porting UNIX to Windows NT, Proceedings of the Anaheim Usenix,

pp. 43-58, January 6-10, 1997
[10] N. Le Sommer and H. Roussain, JASON: An Open Platform for Discovering, Delivering, and Hosting Applications in Mobile Ad Hoc Networks, International Conference on Pervasive Computing and Communications, June 2004

[11] C. Lindemann and O. Waldhorst, A Distributed Search Service for Peer-to-Peer File Sharing in Mobile Applications, Proceedings of the Second IEEE Conference on Peer-to-Peer Computing, 2002

[12] M. R. Lindsey, Correlations Among Nearby Mobile Web Users, M.Sc. thesis, University of North Carolina at Chapel Hill, 2003
[13] S. J. Mastrianni, Windows CE Handheld Systems for the Corporate Mobile Work Force, September 1998, http://www.mastrianni.net/stevem.htm
[14] Open Group Base Specifications Issue 6, IEEE Standard 1003.1, 2004 Edition, http://www.opengroup.org/onlinepubs/009695399/functions/bzero.html
[15] Palm Inc., Palm and Microsoft Join to Bring the Palm Experience to Windows Mobile, press release, September 26, 2005, http://www.palm.com/us/company/pr/news_feed_story.epl?reqid=760974

[16] Techworld, Palm CEO Promises to Stick with Palm OS, news article, November 9, 2005, http://www.techworld.com/opsys/news/index.cfm?NewsID=4759

[17] M. Papadopouli, Resource Sharing in Mobile Wireless Networks, Ph.D. thesis, Columbia University, 2002
[18] D. Price, Porting Unicon to Windows Mobile 2003, Report, November 4, 2005, http://www.zianet.com/nutconsult/port/
[19] B. Ray, M. Lewis, Developing for Mobile Environments, ARCchart Technology Report, March 2005

[20] 7DS Development Webpage, (temporary location) http://www1.cs.columbia.edu/~arezu/7DS_Home/index.html

[21] Symbian developer documentation, Symbian OS: From ANSI C/C++ ToSymbian C++, March 22, 2004, http://www.series60.com/developers?pbId=20&pbType=7&c_id=2

[22] A. Wolman, et al., Organization-Based Analysis of Web-Object Sharing and Caching, Proceedings of the Second USENIX Symposium on Internet Technologies and Systems, October 1999

Appendix A
System dependent source code from sysdep.h

/**

 *

 * sysdep.h

 *

 * System dependent code for 7DS

 *

 * Author:

 * Derek Daniel <dd2227@columbia.edu>

 * Department of Computer Science - Columbia University

 *

 * Copyright (c) 2005 by Columbia University, all rights reserved.

 * ***/

#ifdef WIN32

// from the CINEMA group

#define sleep(x) Sleep((x) * 1000)

#define random rand

// as recommended by www.opengroup.org for deprecated bzero method...

#define bzero(b,len) (memset((b), '\0', (len)), (void) 0)

// the following is added for pthread calls.

#pragma comment(lib, "pthreadVC2.lib")

// the following two lines are necessary for the "g_thread_init(NULL);" call

// in main.c and anywhere else it might occur.

#pragma comment(lib, "gthread-2.0.lib")

#pragma comment(lib, "glib-2.0.lib")

// the next two lines are needed for gethostname() (and probably many other

// networking/socket things) to work in windows

#include <winsock2.h>

#pragma comment(lib, "ws2_32.lib")

// needed for struct socklen_t and many socket things in windows.

#include <ws2tcpip.h>

// inet_pton() is Linux only. WSAStringToAddress() is Windows only.

// This should be tested to be sure that the redefinition is correct.

// WSA requires null-terminated strings, which I'm not 100% sure it's

// getting from the inet_pton() call.

#define inet_pton(type, in, out) WSAStringToAddress(in, type, NULL, out, 4)

// suggestion from

// http://blog.taragana.com/index.php/archive/nailgun-for-faster-startup-of-java-apps-windows-port-available-review-porting-woes-to-windows/

#define MSG_WAITALL
0

// necessary for libcurl, specifically in proxy_server.c, the calls to curl's

// easy.c methods.

#pragma comment(lib, "libcurl.lib")

// necessary for gdbm

#pragma comment(lib, "libgdbm.lib")

#endif

Appendix B

Data collection module source code from analysis.c

/**

 *

 * analysis.c

 *

 * Data collection and analysis for 7ds

 *

 * Author:

 * Derek Daniel <dd2227@columbia.edu>

 * Department of Computer Science - Columbia University

 *

 * Copyright (c) 2005 by Columbia University, all rights reserved.

 * ***/

#include <stdio.h>

#include <unistd.h>

#include <sys/time.h>

#include <sys/stat.h>

#include "sysdep.h"

#include "md5.h"

// Log file location for Windows desktop. Needs to be changed for winCE

#ifdef WIN32

#define LOG_FILE "E:\\compsci\\masters\\bottomUp\\analysis\\log.txt"

#else

#define LOG_FILE "analysis/log.txt"

#endif

#define HEX_STRING "0123456789abcdef"
// for MD5 to convert to hex

#define ANALYSIS_DEBUG 1

// Two helper functions for MD5 encoding. These are taken from caching.c

static void MDPrint(void *signature, char *str, const int str_len);

static void MDString(char *string, char *md5);

extern int loggingMD5URL;

// set in configuration_reader.c

extern int loggingMD5IP;

// set in configuration_reader.c

extern int maxLogFileSize;

// set in configuration_reader.c

extern char my_ip_address[];

// set in configuration_reader.c

// Logs the requested URL and the current system time. This should be called whenever

// a URL request is made. For example, it can be called in the do_request() method

// in proxy_server.c.

int logURLAndTime(char *url) {

 FILE *file;

 time_t t1;

 char md5[33];

 struct stat file_stat;

 int size;

 /* Open log file. If it doesn't exist, it will be created. */

 if ((file = fopen(LOG_FILE, "a")) == NULL) {

fprintf(stderr, "Couldn't open log file. Logging disabled.\n");

return -1;

 }

 // Determine log file size. If it fails, return and don't log.

 if (stat(LOG_FILE, &file_stat) != 0) {

fprintf(stderr, "Error occurred in data analysis module. Could not stat the file. Logging disabled.");

return -1;

 }

 size = file_stat.st_size;

 // Data is only logged if the size of the log file is under a certain size.

 if (size < maxLogFileSize) {

if (ANALYSIS_DEBUG)

printf("\nabout to write to log file");

// Log the host's IP address. If MD5 is turned on, encode the IP

// address into a hex string to protect privacy.

if (loggingMD5IP) {

MDString(my_ip_address, &(md5[0]));

fprintf(file, "%s ", md5);

}

else {

fprintf(file, "%s ", my_ip_address);

}

// Log the URL requested. If MD5 is turned on, encode the URL

// into a hex string to protect privacy.

if (loggingMD5URL) {

MDString(url, &(md5[0]));

fprintf(file, "%s ", md5);

}

else {

fprintf(file, "%s ", url);

}

// Get the current time.

t1 = time(NULL);

// Put the current time into a format that can be converted to a char*

// and log it in the file.

// ctime is for human readable, but includes a newline.

// t1 directly is for seconds since 1970.

fprintf(file, "%d ", (int) t1);

// fprintf(file, (char*) ctime(& t1));

// optional human-readable time

// Log whether or not an internet connection is present.

if (do_i_have_internet() == 1) {

fprintf(file, "INTERNET");

}

else {

fprintf(file, "NOINTRNT");

// string is the same length as "INTERNET" for readability

}

// can alternately be changed to insert nothing or another delimiter if internet is not present.

// Log whether or not the requested URL is found in the local cache.

if (is_url_in_hash(url)) {

fprintf(file, " FROMCACHE\n");

}

else {

fprintf(file, "\n");

}

fflush(file);

if (ANALYSIS_DEBUG) {

printf("\n time logged= %d seconds \n", (int) t1);

printf("done writing to log file\n");

}

 }

 return 0;

}

// Alternate method no longer necessary because logURLAndTime uses

// is_url_in_hash(url) to check this.

// This method places a flag in the log file if the file was retrieved from the cache.

int wasRetrievedFromCache() {

FILE *file;

// Open log file. If it doesn't exist, it will be created.

if ((file = fopen(LOG_FILE, "a")) == NULL) {

fprintf(stderr, "Couldn't open log file. Logging disabled.\n");

return -1;

}

if (ANALYSIS_DEBUG)

printf("\nwasRetrievedFromCache() writing to logfile\n");

// Flag representing cache retrieval

fprintf(file, "FROMCACHE\n");

fflush(file);

if (ANALYSIS_DEBUG)

printf("\nwasRetrievedFromCache done writing to log file\n");

return 0;

}

// The following two helper functions encode a string into a hex string.

// They are the same as those used by the caching module.

/*

 * MDPrint()

 * Converts digest to ASCII

 */

static void MDPrint(void *signature, char *str, const int str_len)

{

 unsigned char *sig_p;

 char *str_p, *max_p;

 unsigned int high, low;

 str_p = str;

 max_p = str + str_len;

 for (sig_p = (unsigned char *) signature;

 sig_p < (unsigned char *) signature + 16; sig_p++) {

 high = *sig_p / 16;

 low = *sig_p % 16;

 /* account for 2 chars */

 if (str_p + 1 >= max_p) {

 break;

 }

 *str_p++ = HEX_STRING[high];

 *str_p++ = HEX_STRING[low];

 }

 if (str_p < max_p) {

 *str_p++ = '\0';

 }

}

/*

 * MDString()

 * Creates a hexadecimal string representation

 */

static void MDString(char *string, char *md5)

{

 MD5_CTX context;

 unsigned char digest[16];

 unsigned int len = strlen(string);

 MD5Init(&context);

 MD5Update(&context, string, len);

 MD5Final(digest, &context);

 MDPrint(&(digest[0]), md5, 33);

}

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit ohne fremde Hilfe angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle Teile die wörtlich oder sinngemäß einer Veröffentlichung entstammen, sind als solche kenntlich gemacht.

Berlin, den 19. April 2006
Derek Daniel
� IRT Laboratory, http://www.cs.columbia.edu/IRT/

� A "smartphone" is a mobile device combining the functionality of a traditional mobile phone with that of a PDA. The term is also used by Microsoft as a brand name, "Windows Mobile Smartphone".

� GNU dbm database routines, http://www.gnu.org/software/gdbm/gdbm.html

� Cygwin Homepage, http://www.cygwin.com/

� Intel Porting Guide, http://or1cedar.intel.com/media/pdf/solarisporting.pdf

� Microsoft Application Migration Guide, http://msdn.microsoft.com/library/default.asp

� GNU C Library, http://www.gnu.org/software/libc/libc.html

� GLib Library, http://www.gimp.org/~tml/gimp/win32/index.html

� GnuWin32 LibGW32C Library, http://gnuwin32.sourceforge.net/packages/libgw32c.htm

� Pthreads-Win32, http://sourceware.org/pthreads-win32/

� cURL, http://curl.haxx.se/

� Nailgun Porting Suggestions, http://blog.taragana.com/index.php/archive/nailgun-for-faster-startup-of-java-apps-windows-port-available-review-porting-woes-to-windows/

� For more information on NTFS and cluster sizes, see http://www.ntfs.com/

� BREW Developer Homepage, http://brew.qualcomm.com/brew/en/developer/resources/dev_resources.html

� Developer.com, BREW Development, http://www.developer.com/ws/brew/

� Carbide.vs, Symbian OS development tools, http://www.forum.nokia.com/main/0,,034-902,00.html

� Symbolic Tools Pocket Console, http://www.symbolictools.de/public/pocketconsole/index.htm

� Ruby, Object-Oriented Scripting Language, http://www.ruby-lang.org/en/

PAGE
viii

_1204980440.vsd
Laptop

Server

7DS Peer A

7DS Peer B

Later...

1. Peer B attempts to send e-mail, but an internet connection is not available.

2. Peer B sends its e-mail to other 7DS peers for forwarding instead.

7DS Peer A

Web Server

3. When an internet connection becomes available, Peer A uploads the e-mail on behalf of Peer B.

_1206401076.vsd

_1204979740.vsd
Laptop

Server

7DS Peer A

Web Server

7DS Peer A

7DS Peer B

1. Peer A receives and caches web objects while a standard internet connection is present.

Later...

2. Peer B attempts to access the same web objects, but an internet connection is not available.

3. Peer B queries nearby 7DS peers instead.

4. Peer A provides the requested web objects to Peer B

