
Improving SLP Efficiency and Extendability
by Using Global Attributes and Preference Filters

Weibin Zhao and Henning Schulzrinne
Columbia University
New York, NY 10027

{zwb,hgs}@cs.columbia.edu

Abstract

This paper presents two new mechanisms, global attributes and
preference filters, that improve the efficiency and extendabil-
ity of the Service Location Protocol (SLP). Global attributes
describe common service properties, which can be used to per-
form queries across different service types, and can be stan-
dardized for service management. Preference filters facilitate
processing of search results, such as finding the best match, in
SLP servers. They can reduce the amount of data transferred to
the client, and better support thin clients with limited resources
and capabilities.

1 Introduction

The Service Location Protocol (SLP [8]) provides a flexible
framework for service discovery in IP networks. As more ap-
plications [15, 16, 1, 21, 17] employ SLP for various discovery
purposes, there is a need to extend the functionality of SLP and
improve its efficiency in order to meet new discovery require-
ments. Consider an example of finding all services that support
the Stream Control Transmission Protocol (SCTP [18]). As an
SLP Service Request (SrvRqst) can only query services of
the same service type, an SLP User Agent (UA) needs three
steps to accomplish this discovery: sending a Service Type Re-
quest (SrvTypeRqst) to obtain a list of service types, then
using a separate SrvRqst to query services of each service
type that support SCTP, and finally combining the query results
together. Assuming there are n service types, then n+1 queries
are needed, which is inefficient when there are many service
types. Consider another example of finding a printer with the
minimum queue length. Since SLP search filters (same as those
in LDAP [10]) do not support the “minimum” function, an SLP
UA needs to get information for all printers, sort them based
on the queue length attribute, and choose the one with the min-
imum queue length. This procedure is inefficient when there
are many printers. These two examples illustrate two discovery
scenarios that are not well supported by current SLP, namely
discovery across multiple service types and discovering the best
match. To remedy this situation, we present two new SLP mech-
anisms, global attributes and preference filters. Global attributes

describe common service properties, which can be used to per-
form queries across different service types, and can be stan-
dardized for service management. Preference filters facilitate
processing of search results, such as finding the best match, in
SLP servers. They can reduce the amount of data transferred to
the client, and better support thin clients with limited resources
and capabilities.

The rest of this paper is organized as follows. In Section 2, we
describe how to define and use global attributes. In Section 3,
we present the design and use of preference filters. We discuss
implementation issues in Section 4, list related work in Section
5, and conclude in Section 6.

2 Global Attributes

In a service discovery system, a common service description
framework is needed for services to advertise their attributes
and for clients to specify their requests. A match of a client
request with a service advertisement leads to a discovery. To fa-
cilitate service discovery, service attributes need to be standard-
ized. One way to achieve this is to employ service templates.
As different service types may have different attributes, service
templates are often defined in terms of service types. How-
ever, some service attributes are independent of service types.
For instance, it is increasingly common that services can be ac-
cessed via different transport protocols, such as TCP, UDP and
SCTP. The transport protocol attribute describes a common ser-
vice property independent of service types. We refer to a service
attribute that is specific to a service type as a local attribute,
and a service attribute that is independent of service types as a
global attribute. Currently, SLP only supports local attributes:
each service type defines its attribute set via a service template
[7], and a SrvRqst always specifies a search filter (attribute
predicate) along with a single service type.

2.1 Namespace, Definition and Usage

Enabling global attributes in SLP involves three aspects: assign-
ing a separate namespace to global attributes, defining global
attributes via attribute templates, and using them properly.

SLP does not explicitly employ namespaces for attribute



naming. An attribute name is unique only within its service
type. In other words, two different service types may use the
same attribute name for different meanings. This will not cause
any problems as long as a local attribute is always used along
with its service type, though it would be more clear if each
attribute name is prefixed with its service type, such as nrsm-
capacity and iptel-gw-capacity. The situation becomes differ-
ent when global attributes are used. Since a global attribute can
be used with any service type, if it has the same name as a lo-
cal attribute, then there will be a confusion on which is which.
Therefore, a separate namespace is needed for global attributes.
According to the common practice in SLP, any global attribute
name shall begin with the “service-” prefix. Note that XML [3]
also uses prefixes to define its namespaces.

We propose that a global attribute is defined using an attribute
template (see [20] for a detailed specification), which is a sim-
plified version of the service template [7]. Any service that uses
a global attribute should import the attribute’s definition into its
service template, similar to the C include and Java import mech-
anisms. In this way, a global attribute only has one definition,
and can be used consistently across all service types.

A global attribute can appear in any place where a local at-
tribute is appropriate. In a SrvRqst, when local attributes are
used, exactly one service type must be specified; but when only
global attributes are used, multiple service types or a service
type wildcard can be specified. Thus, we can query services
across multiple or all service types via a single SrvRqst. For
example, to find all services that support SCTP, we can use
a SrvRqst that has a service type wildcard, and an attribute
predicate of “service-transport-protocol=sctp”.

2.2 Efficiency and Extendability

Global attributes describe common service properties across
different service types, which improves SLP efficiency in two
ways. First, a global attribute only needs to be defined once.
Afterwards, it can be imported into any service template. This
avoids defining the same attribute in multiple service templates,
and ensures a consistent definition. Secondly, global attributes
enable using a single SrvRqst to query services across mul-
tiple service types, which is more efficient than using multiple
SrvRqst messages, one for each service type.

Global attributes can also be used for service management,
such as using service identifier to uniquely and persistently
identify a service, and using device identifier to identify all ser-
vices provided by the same device1. By standardizing global
attributes in this way, we can extend the functionality of SLP
to meet new discovery requirements. To illustrate this usage,
we show how to introduce service identifier and device iden-
tifier into SLP to support some useful discovery scenarios by
defining them as global attributes.

1Since a device may have multiple IP addresses, a device identifier is needed
to identify all URLs that belong to the same device. Otherwise, we cannot tell
that a set of URLs containing different IP addresses belongs to the same device
or to different devices.

2.3 Service Identifier and Device Identifier

A service identifier is a URI [2] (such as UUID [12] URI) with-
out locator semantics. It is unique2 and persistent3. A service
can always be identified via its service identifier even if it has
changed all other service attributes. Service identifiers can be
used as keys in service registrations and queries, as in Jini [14]
and UDDI [13]. For SLP, it employs “service” URLs as service
keys. Unfortunately, a service’s URLs are not persistent, e.g., a
service may change its URLs when it moves. To support URL
changes and to find multi-protocol services in SLP, we can use
service identifiers as follows.

URL changes: Once a service has changed its URLs, a client
cannot find the same service again by using its old URLs; but
the client can find the same service again by using its service
identifier.

Multi-protocol services: A service may support multi-
ple access protocols, having a separate URL for each ac-
cess protocol. For example, a multi-protocol printer that sup-
ports IPP [9] and LPR access protocols may have two URLs
as follows: service:printer:ipp://mpp.example.com and ser-
vice:printer:lpr://mpp.example.com. A multi-protocol service
advertises each access protocol separately, but all advertise-
ments use the same service identifier to indicate that they belong
to the same service. A client can discover all advertisements of
a multi-protocol service by specifying the service identifier and
the service type in a SrvRqst.

Similar to a service identifier, a device identifier is a URI that
uniquely and persistently identifies a device. We can use device
identifiers to discover multi-function devices as follows.

Multi-function devices: A device may provide multiple
types of services, such as scanning and printing services. A
multi-function device advertises each service type separately,
but all advertisements use the same device identifier to indicate
that they belong to the same device. A client can discover all
advertisements of a multi-function device by specifying the de-
vice identifier and a wildcard service type (or all the service
types the device supports) in a SrvRqst.

Using service identifiers and device identifiers together, we
can determine replicated services as follows.

Replicated services: All replicated servers for a service use
the same service identifier but different device identifiers in
their advertisements, whereas a device that provides the same
service on multiple interfaces (i.e., multi-homed) or at differ-
ent ports uses the same service identifier and the same device
identifier in all its advertisements.

3 Preference Filters

Service Request (SrvRqst) is the most important SLP query
interface, where a client specifies the properties of desired ser-
vices via a search filter. When multiple services match the

2Two different services will never have the same service identifier.
3Once a service identifier is assigned to a service, it will never be changed

or re-used.



Service Database Matched Services Preferred Services

Search Filter Preference Filter

Figure 1: The processing of a SrvRqst that has a search filter
and a preference filter

search filter, further processing of search results may be needed,
such as to limit the number of results returned, to sort the results,
or to find the best match. We refer to the processing of search re-
sults as preference filtering, which is described by a preference
filter. Figure 1 illustrates the processing of a SrvRqst that has
a search filter and a preference filter. First, the search filter is ap-
plied to the service registration database, which generates a set
of matched services. Then the preference filter is applied to the
matched services, which generates a set of preferred services.

Although preference filtering can be performed by UAs, hav-
ing Directory Agents (DAs) or Service Agents (SAs) perform
this function provides two advantages. First, it can reduce the
amount of data transferred to the client, which is especially use-
ful when the client uses a low bandwidth channel, such as a
wireless channel. Secondly, it can better support thin clients
with limited resources and capabilities. For example, some
clients may not be able to receive a large amount of results,
or to perform sort and choose the best match.

In the design of SLP preference filters, we choose selection
and sort as two basic building blocks, and use them to compose
generic preference filters.

3.1 Selection Filters

We designed an SLP selection extension [22] to specify selec-
tion filters. An SLP UA uses this extension in a SrvRqst to
limit the number (say, n) of results to be returned. Also an
SLP server (DA or SA) uses this extension in a Service Reply
(SrvRply) to indicate the number (say, m) of search results
before any preference filtering. If n < m, then only the first n
results (in the sorted or unsorted result list) are returned, other-
wise all m results are returned. As a special case, a UA may set
n to 0 to obtain the number of search results without retrieving
the results themselves.

3.2 Sort Filters

We designed an SLP sort extension [22] to specify sort filters.
This extension carries a sort key list (Figure 2 shows its sim-
plified specification using ABNF [4]). Each sort key has a key
name (i.e., an attribute name), a type specifier (string or integer),
an ordering specifier (increasing or decreasing), and an optional
reference value. Although SLP has five attribute types (integer,
string, boolean, opaque and keyword), we only consider inte-
ger sort and string sort since keyword attributes never need to

sort-key-list = sort-key / sort-key “,” sort-key-list
sort-key = key-name “:” type “:” ordering

[“:” ref-value]
type = “s” / “i”

;“s” for string, “i” for integer
ordering = “+” / “-”

;“+” for increasing order
;“-” for decreasing order

Figure 2: The simplified sort key list specification in ABNF

be sorted4, and boolean and opaque attributes can be sorted as
strings if needed. Integer keys may have a reference value, as
in speed:i:+:12, causing the sort to be based on the distance to
the reference value, 12.

3.3 Generic Preference Filters

A generic preference filter is a list of selection and sort filters,
which observes the following rules. First, two selection filters
and two sort filters cannot appear in a row. Second, if the same
number of sort and selection filters are used, the last one must
be a selection filter. Finally, for two selection filters s1 and s2,
if s1 appears earlier than s2, then the selected number of results
specified in s1 must be greater than that in s2.

We use select(n) to denote a selection filter, and use sort(sort-
key-list) to denote a sort filter. We show some useful preference
filters next. First, using a sort filter followed by a selection filter
can support best match, for instance, the minimum load is writ-
ten as “sort(load:i:+), select(1)”, the maximum speed is written
as “sort(speed:i:-), select(1)”, and the speed closest to a refer-
ence value 12 is written as “sort(speed:i:+:12), select(1)”. Sec-
ondly, a selection filter can select multiple results, for instance,
the top three in terms of speed is written as “sort(speed:i:-),
select(3)”. Similarly, a sort filter can sort on multiple keys,
for instance, the minimum load among those having the max-
imum speed is written as “sort(speed:i:-,load:i:+), select(1)”.
Finally, multiple sort and selection filters can be used to con-
struct more complex preference filters, for instance, the mini-
mum load among the top three in terms of speed is written as
“sort(speed:i:-), select(3), sort(load:i:+), select(1)”.

4 Implementation

It is easy to add support for global attributes and preference fil-
ters to an SLP server, since only the processing of the SrvRqst
message needs to be adjusted. When a SrvRqst uses local at-
tributes, it should have exactly one service type, and is handled
as before. If a SrvRqst uses only global attributes, it may have
multiple service types or a service type wildcard. In this case,
the service type information is ignored during the search, and

4SLP keyword attributes have no values.



then those search results that do not match any of the specified
service types are discarded.

Similarly, for a SrvRqst with a preference filter, the filter
is ignored during the search, and then it is applied to the search
results. When the filter has multiple selection and sort filters,
they must be processed in order, with the output of one filter as
the input of the next filter. The output of the last filter is returned
to the client.

We have implemented global attributes and preference filters
in our release of enhanced SLP; the source code can be found
at [5].

5 Related Work

Our work on SLP global attributes was motivated by Guttman’s
serviceid [6], which describes a way to introduce service iden-
tifiers into SLP. Guttman proposes to use service identifiers as
SLP service keys and to move URLs into the attribute list. Un-
fortunately, if a service has multiple URLs and these URLs have
different properties, then some form of hierarchical attributes
is needed5, which complicates SLP attribute list structure and
service search. Our proposal is simpler by keeping URLs as
service keys (in keeping with SLP flat attributes), and defin-
ing service identifier as a global attribute. Similar to global
attributes, Jini [14] defines a set of common entry classes in
the net.jini.lookup.entry package. When a Jini search specifies
multiple interfaces (such as Toaster and FireAlarm), it means
to find services that implement all specified interfaces (logic
“and”). In contrast, when an SLP SrvRqst specifies multi-
ple service types, it means to find services of any specified type
(logic “or”).

A number of service discovery systems and directory ser-
vices support selection and sort on search results, but none of
them support generic preference filtering by composing these
two basic operations. For example, both Jini [14] and UDDI
[13] allow a client to place a limit on the number of search re-
sults, but UDDI only supports sorting on name and date, and
Jini does not support sorting. LDAP sort control [11] and pag-
ing control [19] come closer to our proposed preference filter-
ing. But LDAP aims to send all search results back to the client
via the paging control, whereas we simply try to send selected
number of search results to the client. Furthermore, we support
reference-based sort and more complex preference filtering by
composing multiple selection and sort filters.

6 Conclusion

This paper described two simple but useful mechanisms, global
attributes and preference filters, that improve SLP efficiency
and extendability. We extended SLP attributes from local to
global and enabled generic preference filtering on search results
in SLP servers. Although we discuss these two mechanisms in

5Each URL needs to use different attributes or values for its description.

terms of SLP, we expect that the rationale behind these mecha-
nisms can be applied to other service discovery systems as well.

References
[1] M. Bakke et al. Finding iSCSI targets and name servers using SLP.

Internet Draft, Internet Engineering Task Force, March 2002. Work in
progress.

[2] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identi-
fiers (URI): generic syntax. RFC 2396, Internet Engineering Task Force,
August 1998.

[3] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible markup
language (XML) 1.0 (second edition). W3C Recommendation REC-xml-
20001006, World Wide Web Consortium (W3C), October 2000. Available
at http://www.w3.org/XML/.

[4] D. Crocker and P. Overell. Augmented BNF for syntax specifications:
ABNF. RFC 2234, Internet Engineering Task Force, November 1997.

[5] Service Location Protocol Enhancements.
http://www.cs.columbia.edu/˜zwb/project/slp.

[6] E. Guttman. The serviceid: URI scheme for service location. Internet
Draft, Internet Engineering Task Force, January 2002. Work in progress.

[7] E. Guttman, C. Perkins, and J. Kempf. Service templates and service:
Schemes. RFC 2609, Internet Engineering Task Force, June 1999.

[8] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location proto-
col, version 2. RFC 2608, Internet Engineering Task Force, June 1999.

[9] R. Herriot, S. Butler, P. Moore, R. Turner, and J. Wenn. Internet printing
Protocol/1.1: encoding and transport. RFC 2910, Internet Engineering
Task Force, September 2000.

[10] T. Howes. The string representation of LDAP search filters. RFC 2254,
Internet Engineering Task Force, December 1997.

[11] T. Howes, M. Wahl, and A. Anantha. LDAP control extension for server
side sorting of search results. RFC 2891, Internet Engineering Task Force,
August 2000.

[12] Universal Unique Identifier.
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm.

[13] Universal Description Discovery and Integration.
http://www.uddi.org/.

[14] JINI. http://java.sun.com/products/jini/, 1998.

[15] J. Kempf and G. Montenegro. Finding an RSIP server with SLP. RFC
3105, Internet Engineering Task Force, October 2001.

[16] J. Naugle, K. Kasthurirangan, and G. Ledford. TN3270E service loca-
tion and session balancing. RFC 3049, Internet Engineering Task Force,
January 2001.

[17] Todd Poynor. Automating infrastructure composition for internet services.
In The 15th Systems Administration Conference (LISA 2001), San Diego,
California, December 2001.

[18] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream control transmission
protocol. RFC 2960, Internet Engineering Task Force, October 2000.

[19] C. Weider, A. Herron, A. Anantha, and T. Howes. LDAP control extension
for simple paged results manipulation. RFC 2696, Internet Engineering
Task Force, September 1999.

[20] W. Zhao and H. Schulzrinne. Defining and using global service attributes
in SLP. Internet Draft, Internet Engineering Task Force, June 2002. Work
in progress.

[21] W. Zhao and H. Schulzrinne. Locating internet telephony gateways via
SLP. Internet Draft, Internet Engineering Task Force, March 2002. Work
in progress.

[22] W. Zhao, Henning Schulzrinne, Erik Guttman, Chatschik Bisdikian, and
William Jerome. Selection and sort extension for SLP. Internet Draft,
Internet Engineering Task Force, June 2002. Work in progress.


