# IP Telephony and SIP – IP convergence for integrated voice, video and data networks

Henning Schulzrinne Dept. of Computer Science Columbia University New York, New York (sip:)schulzrinne@cs.columbia.edu

Worldbank IT Department, Washington, DC

May 14th, 2001

1

## Overview

- Motivation for integration
- Difficulties: security, QOS, reliability
- SIP

#### **Integrated networks**

#### Hourglass model:



*Typically*, same wiring infrastructure.

#### **Voice and data traffic**



#### The phone works — why bother with VoIP?

| user perspective                                     | carrier perspective                                                                                |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| • variable compression: tin can to broadcast quality | <ul> <li>silence suppression → traffic ↓</li> <li>shared facilities → management redun-</li> </ul> |
| <ul> <li>security through encryption</li> </ul>      | dancy                                                                                              |
| • caller, talker identification                      | • advanced services (simpler than AIN and                                                          |
| • better user interface                              | CTI)                                                                                               |
| • internat. calls: TAT transatlantic cable =         | • separate fax, data, voice                                                                        |

- \$0.03/hr
- local calls: possibly cheaper (local access fees)
- easy: video, whiteboard, ...

- cheaper switching
- better management platforms

#### **Bandwidth advantages**

- $\operatorname{cost}(2B) < 2 \operatorname{cost}(B)$
- B(voice + data) < B(voice) + B(data)

- initial motivation for Internet telephony was transport pricing
- however, *services* (like CLID, \*69) have margins of 75%
- Ameritech: service revenue of \$1b/yr
- transport: leased local wire, everything else flat or volume-based (service-independent)

#### **Internet telephony as PBX replacement**

global Internet not quite ready me try as PBX

- have mission-critical LAN, PCs anyway
- usually ample (if switched) bandwidth, low latency
- packet switching is cheaper
- network  $PCs \stackrel{\$}{=} ISDN$  phones
- no need for billing
- new services easy to build:
  - voice mail  $\longrightarrow$  email
  - calendar integration: Mr. Jones is in a meeting. Please call back at 3:30 pm
  - logic: if insurance agent calls, forward call to dial-a-joke

#### **Traffic (1998)**

Measured in Dial Equipment Minutes (DEM) or bandwidth:

|                 | GDEM | bandwidth (Gb/s) |
|-----------------|------|------------------|
| Local           | 2986 | 364              |
| Intrastate toll | 422  | 51               |
| Interstate toll | 555  | 68               |

PBX: typically, about 10% utilization per phone **\*\*\*** 6.4 kb/s per employee (128 Mb/s for 20,000 person campus)

## **Switching costs**

| switching method           | ports   | capacity (Gb/s) | cents/64 kb/s | \$/interface |
|----------------------------|---------|-----------------|---------------|--------------|
| 10/100BaseT Ethernet hub   | 24      | 2.40            | 0.6           | 10.00        |
| 100BaseTX Ethernet switch  | 24      | 2.40            | 0.9           | 14.60        |
| PBX                        | 256     | 0.02            | 218.          | 140          |
| Lucent 5ESS local (no AIN) | 5,000   | 0.32            | 469.          | 300          |
| Lucent 5ESS local (AIN)    | 20,000  | 1.28            | 273.          | 175          |
| Lucent 4ESS toll           | 100,000 | 6.40            | 7.8           |              |

#### **Internet telephony problems**

- reliability
  - power
  - denial-of-service
- QoS
  - delay
  - local area network
  - access network
  - wide-area network
- architecture
- address space
  - NAT
  - IPvб

## Why aren't we junking switches right now?

What made other services successful?

email: available within self-contained community (CS, EE)

web: initially used for local information

**IM:** instantly available for all of AOL

All of these ...

- work with bare-bones connectivity ( $\geq 14.4$  kb/s)
- had few problems with firewalls and NATs
- don't require a reliable network

#### Why aren't we junking switches right now?

Telephone services are different:

- reliability expectation 99.9% / 99.999%
- PC not well suited for making/receiving calls most residential handsets are cordless or mobile
- business sets: price incentive minor for non-800 businesses
- services, multimedia limited by PSTN interconnection
- initial incentive of access charge bypass fading (0.5c/min.)
- international calls only outside Western Europe and U.S.

## **Reliability**

- phone switch: downtime 120 seconds/year
- AOL: 88 hours/year for 1996
- ANS: 44 hours/year promised
- Ethernet switch: MTBF  $\approx 20$  years
- router configuration, route flap
- on-line software upgrades
- end-system auto-configuration (already easier than ISDN...)

#### **Reliability: power**

- more decentralized **harder** to provide power coverage
- need power for Ethernet switches, phones  $-\approx 7$ W/phone (48V)
- Ethernet powering (spare pairs), tandem or integrated into switch
- also useful for wireless base stations
- Columbia approach: separate power circuit for wiring closets



## **Reliability: denial-of-service**

- denial-of-service and attacks more likely than with traditional phones
- but traditional phones (including 800#) also subject to auto-dialers
- different scenarios:
  - external attack me can be filtered
  - internal compromise spoof DiffServ, RSVP
- disadvantage of integration: no secondary channel
- thus, maybe keep authorized RSVP "circuits"

## **Quality of service issues**

Three types of traffic:

|                       | loss            | delay        | bandwidth |
|-----------------------|-----------------|--------------|-----------|
| (Web) data            | <5% (bursts ok) | not critical | peak      |
| Streaming audio/video | <5% (random)    | not critical | avg.      |
| Voice-over-IP         | <10% (random)   | < 150 ms     | avg.      |

#### **Sources of delay**



#### **QoS: local area network**

- typically, very low average utilization (few %)
- very little packet loss (a few packets a day)
- but long delay spikes (300 ms) due to Ethernet collisions if heavy file transfer
- **w** avoid hubs
- **•** Ethernet prioritization

#### **QoS: access network**

- usually, bottleneck (1:10 concentration)
- usually, asymmetrically loaded, depending on web traffic
- solution: TOS marking (supported by most phones)



## **QoS: wide-area network**

- on *average*, enough bandwidth to most places
- however, bursts of loss interruptions
- likely solutions:

DiffServ: works well for small number of predictable classesIntServ: (RSVP) ➡ interdomain difficult, securityMPLS: only single provider, additional complexity

#### Architecture

- "classical" applications (web, file servers, SMTP): client-server
- client inside network, server often outside
- VoIP: every phone is a server
- classical applications: mostly single stream (except ftp)
- VoIP: control + data

#### **Address space**

- about half the IPv4 address space is allocated
- ARIN hands out additional space if existing allocation is more than 80% used
- minimum of 25% initial usage and 50% within a year
- minimum for direct assignment is /20
- cost is about \$0.30/year/host

#### **Network address translation**

- commonly used for DSL, possibly multiple stages
- but: work well only for client-server, with server on fixed IP address
- need application-layer-gateway for each new service (or constrain new services)
   break service neutrality of Internet
- *not* a security mechanism
- makes VoIP deployment brittle
- makes network-merging difficult

#### **Regulatory issues**

- E911 service: where is the IP address located?
- billing long-distance vs. local service Iocal service has to be self-supporting
- universal service = support for rural areas?
- infrastructure support fund?
- distinction of TV vs. telephone licensing and regulation?

#### **Internet telephony service models**

- Internet "PBX"
- Internet Centrex
- Internet Carrier
- same basic equipment, but size of gateway varies

## **Internet PBX**



#### **IP Centrex**



#### **IP Carrier**



#### **IETF VoIP Protocol Architecture**



## **IETF VoIP Protocol Architecture: Goals**

- Leverage content-neutrality of Internet more than just voice and legacy services
   wideo, shared applications, multi-party text chat
- Imperceptible transition between communication modalities
- Extensible to presence, instant messaging and event notification
- Centrex lesson: user-controlled services
- Allow services in end systems and network servers
- Multiple levels of security: IPSec, TLS, application-layer

## **Differences: Internet Telephony** $\leftrightarrow$ **POTS**

- separate control, transport (UDP) I no triangle routing
- separate connectivity from resource availability
- separate services from bit transport
- datagram service I less bootstrapping
- in-band signaling m higher speed
- features network → end system: distinctive ringing, caller id, speed dialing, number translation, ... Im scaling
- features: intra-PBX = inter-LATA and general
- protocols: user-network = network-network signaling

#### **PSTN Legacies to Avoid**

- E.164 numbers might as well wear bar codes
- tones and announcements
- in-band signaling for features (DTMF)
- systems with user-interface knowledge (12 keys, voice)
- voice-only orientation (BICC, MGCP/Megaco)
- integration of bit transport and services
- service-specific billing me separate signaling & billing
- trusted networks without crypto
- confine PSTN knowledge to edge of network

## **Invisible Internet Telephony**

"VoIP" technology will appear in

- Internet appliances
- home security cameras, web cams
- 3G mobile terminals
- fire alarms and building sensors
- chat/IM tools
- interactive multiplayer games
- 3D worlds: proximity triggers call

## **Carrier and Enterprise VoIP**

Traditionally,

- separate signaling: ISDN, CAS vs. ISUP
- service restrictions, e.g., CF inefficient

Now, largely the same:

- hosted ("ASP"), run own servers or combinations
- carrier: multiple domains per server
- if not outsourced, TRIP for gateway selection

#### **Peer-to-Peer Architecture**

- "IP telephones", gateways, PCs with software = IP hosts
- *may* use servers (H.323 gatekeepers, SIP proxy servers)
- end system fully state-aware
- protocols for call setup: H.323 or SIP
- more flexible user interface

## **Implementing Services**

|                            | end system | server |
|----------------------------|------------|--------|
| caller id                  | Х          | _      |
| call forwarding, follow me | X          | Х      |
| three-way calling          | X          | —      |
| distinctive ringing        | Х          | —      |
| 69                         | X          | ?      |
| no solicitation            | Х          | Х      |
| do not disturb             | Х          | Х      |
| call curfew                | ?          | Х      |

#### **Master-Slave Architecture**

- master-slave: MGC controls one or more gateways
- allows splitting of signaling and media functionality
- "please send audio from circuit 42 to 10.1.2.3"
- uses MGCP (implemented) or Megaco/H.248 (standardized, but just beginning to be implemented)
- gateway can be residential
- basis of PacketCable NCS (network control system) architecture
- service creation similar to digital PBX or switch
- $\longrightarrow$  can charge for caller id, call waiting

## **MGCP** Architecture



- for all but small system, need peer-to-peer!
- MGCP system can call SIP or H.323 end system
- all use RTP to transfer data

## **Deployment scenarios**

Inside-out: IP as transmission medium in transport between switchesOutside-in: IP in corporate networks, with circuit-switched access to PSTNWild card: 3G wireless

## **SIP 101**

- SIP = signaling protocol for establishing sessions/calls/conferences/...
- session = audio, video, game, chat, ... described by SDP carried in SIP message
- 1. called server may map name to user@host
- 2. callee accepts, rejects, forward ( $\rightarrow$  new address)
- 3. if new address, go to step 1
- 4. if accept, caller confirms
- 5. ... conversation ...
- 6. caller or callee sends  $\mathsf{BYE}$

#### **SIP** stack



## **SIP Components**

| entity          | does          | examples                           |
|-----------------|---------------|------------------------------------|
| proxy server    | forward calls | firewall controller, "call router" |
| redirect server |               | "application server"               |
| user agent      | end system    | SIP phone, gateway, "softswitch"   |
| registrar       | location mgt. | mobility support                   |

Roles are changeable, on a request-by-request basis

#### **SIP Operation in Proxy Mode**



#### **SIP Operation in Redirect Mode**



#### **SIP Personal Mobility**





alice@host.columbia.edu

alice@columbia.edu (also used by bob@columbia.edu)

## **SIP Forking Proxies**



#### **SIP Advanced Features**

- forking
- extensibility: new headers, methods, bodies
- security: web-like, PPP/CHAP or PGP
- multicast-capable
- support for personal, session, terminal, service mobility
- caller preferences: direct calls based on properties

## **More SIP Internet Telephony Services**

- camp-on without holding a line
- short message service ("instant messaging")
- schedule call into the future
- call with expiration date
- add/remove parties to/from call mesh
- "buddy lists"

#### **Internet Telephony – as Part of Internet**

- universal identifier: email address = SIP address = IM address
- SIP URLs in web pages
- forward to email, web page, chat session, ...
- include web page in invitation response ("web IVR")
- third-party control of calls via scripts,
- include vCard, photo URL in invitation
- user-programmable services: CGI (RFC 3050), CPL, servlets

## **Example: Pingtel SIP phone**



## **Example: Cisco and 3Com SIP phones**







3Com (\$395 list)

#### **Example: Columbia CS Phone System**

Expand existing PBX via IP phones, with transparent connectivity



#### sipd single sign-on for account creation and modification



#### sipd contact management



CINEMA – Columbia InterNet Extensible Multimedia Architecture

#### Contacts for User hgs@cs.columbia.edu

Deleted contact hgs@erlang.cs.cohmbia.edu.

| Contact                                                              |   | Preference | Expires            | Action  | Last modified            |
|----------------------------------------------------------------------|---|------------|--------------------|---------|--------------------------|
| <u><mailto:hgs@cs.columbia.edu></mailto:hgs@cs.columbia.edu></u>     | è | [D. 1      | _01 Dec 2001 00:00 | Proxy 🗖 | 12 Oct 2000 18:41 Change |
| <u><sip:hgs@muni.cs.columbia.edu></sip:hgs@muni.cs.columbia.edu></u> | 9 | Ĭ.         | <u>.</u>           | Proxy 🗖 | 15 Dec 2000 18:06 Change |
| <u><sip:hgs@128.59.19.205></sip:hgs@128.59.19.205></u>               | è | <u>1.0</u> | 05 Jan 2001 00:49  | Proxy 🗖 | 04 Jan 2001 18:49 Change |
| <u><sip:hgs@128.59.19.216:5060></sip:hgs@128.59.19.216:5060></u>     | è | <u>1.0</u> | 05 Jan 2001 00:53  | Proxy 🗆 | 04 Jan 2001 18:53 Change |

#### **Programming Internet Multimedia Services**

Primarily, creation, forwarding, proxying, rejection of calls

- **APIs (Parlay, JAIN):** protocol-neutral (SIP, H.323, ISUP), but may be least common denominator
- SIP CGI: use Perl and other scripting languages; easy to learn

Servlets: Java only; faster than cgi; limited functionality

- **CPL:** = XML-based language for *user* service creation; portable across providers, but not all services
  - Protocol-neutral: Parlay, JAIN, CPL
  - Call creation: Parlay, JAIN
  - VoiceXML is for voice-service creation *after* call setup

- integrated networks: why? why not?
- Internet telephony: architecture and operational issues
- SIP for creating enhanced services

#### For more information...

**SIP:** http://www.cs.columbia.edu/sip

RTP: http://www.cs.columbia.edu/~hgs/rtp

Papers: http://www.cs.columbia.edu/IRT