# How IP Telephony Breaks the Internet

#### Assumptions

Henning Schulzrinne Dept. of Computer Science Columbia University New York, New York (sip:)schulzrinne@cs.columbia.edu

Sprint IP Retreat

May 20–21, 2001

# Overview

- VoIP = traffic/QoS, signaling, services
- reliability issues
- breaking the Internet architecture

# VoIP

- carrying voice (and multimedia) over IP
- strict separation signaling media traffic ( $\leftrightarrow$  PSTN)
- future: high-rate codecs, video
- (typically) not PC-based voice
- starting to displace traditional PBX in greenfield installations
- likely to see widespread use in 3G (UMTS R5) wireless

# **Example: Pingtel SIP phone**



# **Example: Cisco and 3Com SIP phones**



Cisco



3Com

### **Example: Columbia CS Phone System**

Expand existing PBX via IP phones, with transparent connectivity



# The phone works — why bother with VoIP?

| user perspective                                                                                            | carrier perspective                                                                                     |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| <ul> <li>variable compression: tin can to broadcast quality</li> <li>security through encryption</li> </ul> | <ul> <li>silence suppression → traffic ↓</li> <li>shared facilities → management, redundancy</li> </ul> |
| <ul><li>caller, talker identification</li><li>better user interface</li></ul>                               | <ul> <li>advanced services (simpler than AIN and CTI)</li> </ul>                                        |
| • internat. calls: TAT transatlantic cable =                                                                | • separate fax, data, voice                                                                             |

- \$0.03/hr
  local calls: possibly cheaper (local access fees)
- easy: video, whiteboard, ...

- cheaper switching
- better management platforms

# **Audio Codecs**

| Codec  | rate      | quality (MOS)       | min. delay |
|--------|-----------|---------------------|------------|
| G.723  | 5.3       | 3.7                 | 37.5 ms    |
|        | 6.3       | 3.98                | 37.5 ms    |
| G.729  | 8.0       | 4                   | 15 ms      |
| AMR    | 4.75-12.2 |                     | 20 ms      |
| AMR-WB | 6.6-23.85 | 7 kHz               |            |
| G.728  | 16.0v     | 4                   | 5.625 ms   |
| G.722  | 32.0      | 7 kHz               | 40 ms      |
| G.711  | 64.0      | $\mu$ -law, MOS 4.3 | var.       |

#### **Voice and Data Traffic**



# **Objective vs. Subjective MOS**

Objective MOS tools don't always handle loss impairments correctly:



# **Traffic (1998)**

Measured in Dial Equipment Minutes (DEM) or bandwidth:

|                 | GDEM | bandwidth (Gb/s) |
|-----------------|------|------------------|
| Local           | 2986 | 364              |
| Intrastate toll | 422  | 51               |
| Interstate toll | 555  | 68               |

PBX: typically, about 10% utilization per phone **\*\*\*** 6.4 kb/s per employee (128 Mb/s for 20,000 person campus)

### **Call Attempts**



# **Call Setup Delay**



#### **The Three-Minute Myth**

Local calls are about 2.4 minutes on average, but long distance calls are much *longer*, about 8.9 minutes:



# **Calls Get Longer with Distance**

| distance (mi) | % calls | duration (min.) |
|---------------|---------|-----------------|
| 1 – 10        | 5.1     | 4.6             |
| 11 - 22       | 20.2    | 5.1             |
| 23 - 55       | 23.2    | 5.9             |
| 56 - 124      | 13.3    | 7.7             |
| 125 - 292     | 12.1    | 9.4             |
| 293 - 430     | 4.6     | 10.4            |
| 431 - 925     | 9.7     | 11.9            |
| 926 - 1910    | 8.5     | 11.9            |
| > 1910        | 3.2     | 11.2            |
| average       | 310     | 7.8             |
| median        | 60      | 3.0             |

# Aside: Cost of Bandwidth

- T3 Internet access: \$16,000/month
- or 0.05c/minute (for 64 kb/s) for full utilization (bogus)
- typically, assume peak-to-average ratio of 4 (17% during busy hour) =
   0.2c/minute
- may be better if data and voice load are offset
- lack of current traffic statistics

# Why Aren't We Junking Switches Right Now?

What made other services successful?

email: available within self-contained community (CS, EE)

web: initially used for local information

**IM:** instantly available for all of AOL

All of these ...

- work with bare-bones connectivity ( $\geq 14.4$  kb/s)
- had few problems with firewalls and NATs
- don't require a reliable network

# **Reliability Issues**

- -: software updates require "scheduled downtime"
- +: but signaling servers can be made redundant much easier than SS7 SCPs
- BGP convergence times of several *minutes*: 2 minutes to withdraw routes, 30 minutes to advertise routes
- "80% of withdraws take more than a minute"
- no clear IP reliability definition reachability of any node? some large subset? "local calls"?

#### **BGP Convergence Times**

(From Abha Ahuia's IETF50 plenarv talk and Geoff Huston's talk)



Seconds Until Convergence

#### **Reliability: Power**

- more decentralized **harder** to provide power coverage
- need power for Ethernet switches, phones  $-\approx 7$ W/phone (48V)
- Ethernet powering (spare pairs), tandem or integrated into switch
- also useful for wireless base stations
- Columbia approach: separate power circuit for wiring closets



# **Reliability: Denial-of-Service**

- denial-of-service and attacks more likely than with traditional phones
- but traditional phones (including 800#) also subject to auto-dialers
- different scenarios:
  - external attack me can be filtered
  - internal compromise spoof DiffServ, RSVP
- disadvantage of integration: no secondary channel
- thus, maybe keep authorized RSVP "circuits"

# **Sources of Delay**



# **QoS: Local Area Network**

- typically, very low average utilization (few %)
- very little packet loss (a few packets a day)
- but long delay spikes (300 ms) due to Ethernet collisions if heavy file transfer
- avoid hubs, even for single office
- **•** Ethernet prioritization

#### **QoS: Access Network**

- usually, bottleneck (1:10 concentration)
- usually, asymmetrically loaded, depending on web traffic
- solution: TOS marking (supported by most phones)



### **QoS: Wide-Area Network**

- existing SLAs and measurements mostly useless: just averages
- e.g.: steady loss of 5% acceptable, one-second bursts of 20% not
- application loss = f(network loss, FEC, jitter, playout delay)
- need rough equivalent of "severely errored seconds"
- however, bursts of loss interruptions
- two types of carriers: "classical IP" vs. "voice heritage"?

#### **Resource reservation**

- airline vs. subway: reserve if > 1% of bottleneck?
- resource reservation likely for upstream cable channel
- RSVP far too complex simple end systems and without multicast
- separate problem: need reserve/commit for VoIP? coupling with application-layer signaling?
- no harm in having several resource reservation protocols
- congestion pricing (RNAP, M2I), including holding costs

#### **Example: Adaptively Virtual Exponential Average**



Exp-avg vs. Its Extension

#### **Example: Playout Delay**



# **Architectural Problems for VoIP**

VoIP breaks architectural assumptions underlying recent additions:

- NATs: only work for client-server (and TCP)
- VPNs, mobile IP: encapsulation overhead
- firewalls: assume clients inside, servers outside

# Conclusion

- motivation for VoIP
- traffic characteristics
- QoS metrics
- new resource reservation mechanisms?