Why SIP?

Henning Schulzrinne
Dept. of Computer Science
Columbia University
New York, New York
(sip:)schulzrinne@cs.columbia.edu

SIP Services and Applications – Washington, D.C.

April 20th, 2001
Overview

- A brief history
- Service models
- SIP design principles
- Extensions in progress
- Potential hazards
Whence SIP?

Feb. 1996: earliest Internet drafts

Feb. 1999: Proposed Standard

March 1999: RFC 2543

April 1999: first SIP bake-off

November 2000: SIP accepted as 3GPP signaling protocol

December 2001: 6th bake-off, 200+ participants

March 2001: 7th bake-off, first time outside U.S.
SIP years

<table>
<thead>
<tr>
<th>Year</th>
<th>Development</th>
<th>Trade Rags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>standard & skunk works</td>
<td>“what does SIP stand for again?”</td>
</tr>
<tr>
<td>2000</td>
<td>product development</td>
<td>“SIP cures common cold!”</td>
</tr>
<tr>
<td>2001</td>
<td>pioneer deployment</td>
<td>“Where are the SIP URLs?”</td>
</tr>
<tr>
<td>2002</td>
<td>kmart.com/sip</td>
<td>SIP product comparisons</td>
</tr>
</tbody>
</table>
VoIP signaling architectures

- master-slave ➔ MGCP, Megaco
- (mostly) single administrative domain ➔ H.323
- peer-to-peer, cross domain ➔ SIP
Master-Slave Architecture

- master-slave: MGC controls one or more gateways
- allows splitting of signaling and media functionality
- “please send audio from circuit 42 to 10.1.2.3”
- uses MGCP (implemented) or Megaco/H.248 (standardized, but just beginning to be implemented)
- gateway can be residential
- basis of PacketCable NCS (network control system) architecture
- service creation similar to digital PBX or switch
- end system has no semantic knowledge of what’s happening
- can charge for caller id, call waiting
VoIP architectures

<table>
<thead>
<tr>
<th>Feature</th>
<th>SIP</th>
<th>H.323</th>
<th>Megaco/MGCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiple domains</td>
<td>x</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Third-party control</td>
<td>x</td>
<td>–</td>
<td>single-domain</td>
</tr>
<tr>
<td>multimedia</td>
<td>x</td>
<td>fixed set</td>
<td>not likely</td>
</tr>
<tr>
<td>end system control</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>extensible</td>
<td>x</td>
<td>?</td>
<td>limited</td>
</tr>
<tr>
<td>generic events</td>
<td>x</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>cgi scripting</td>
<td>x</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>servlets</td>
<td>x</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>CPL</td>
<td>x</td>
<td>x</td>
<td>–</td>
</tr>
</tbody>
</table>
SIP inheritance

- URLs:
 - general references ("forward to email")
 - recursive embedding

- HTTP:
 - basic request/response format, status codes, ...
 - proxies (but no caching)
 - cgi programming interface

- email/SMTP:
 - addressing
 - MX \rightarrow SRV records for load balancing, redundancy
 - header/body separation, MIME
SIP design choices

Transport protocol neutrality: run over reliable (TCP, SCTP) and unreliable (UDP) channels, with minimal assumptions

Request routing: direct (performance) or proxy-routed (control)

Separation signaling vs. media description: can add new applications or media types, SDP \rightarrow SDPng

Extensibility: indicate and require proxy and UA capabilities
Personal mobility

alice17@yahoo.com
alice@columbia.edu
7000@columbia.edu
Alice.Cary@columbia.edu

columbia.edu

yahoo.com

alice@columbia.edu
(also used by bob@columbia.edu)
tel:1212541111

tel:12015551234

alice@host.columbia.edu

February 2001
Example: Columbia CS phone system

Expand existing PBX via IP phones, with transparent connectivity
Events as universal glue

- currently, don’t have general event notification in the Internet
- email is too slow: pull on the last hop (server to user)
- generic problem:
 - “voicemail has arrived”
 - “called party is reachable”
 - “new configuration data available”
 - “IR sensor has detected movement”
 - “boiler temperature above threshold”
 - …
- same delivery (SIP), different data (XML DTDs)
SIP as a presence & event platform

- minimal SIP extension: **SUBSCRIBE** to request notifications, **NOTIFY** when event occurs
- also, **MESSAGE** for IM, sessions for multi-party chats
- transition to true “chat” (and video)
- services such as reaching mobile phone while in meeting
Events: SIP for appliances

- SUBSCRIBE door@alice.home.net
- NOTIFY alice@work.com
- DO light@alice.home.net
- INVITE camera@alice.home.net

SIP user agent

SIP proxy (RGW)
SIP service architectures

classical: Media and signaling in one box

distributed: request routing and coordination, with service components (storage, IVR, location, …)
Challenges and obstacles

- scalable device configuration
- PSTNv3
- “walled garden”
- service infrastructure
- standardization
- invisible Internet telephony
Device configuration

- need to plug in store-bought phone, without more than personalization
- limited user interface
- configuration from local (visited) network and from home network
- don’t want current PBX single-vendor tie-ins
- cannot rely on California-style upgrades
- notifications of new configurations ➤ SUBSCRIBE/NOTIFY
Device configuration

- **visited network**
 - SIP: IP address, router, DNS domain, server, SIP outbound proxy, TFTP server
 - **visited.net**
 - **home network**
 - SIP: SIP timers, SIP preloaded routes
 - **alice@home.com**
 - TFTP: boot image
 - Address book, CPL scripts, dialplan

February 2001
Potential obstacles

• SIP as transport – for legacy signaling
 – due to proxies, UDP not designed for volume data
 – doesn’t add significant value
• NATs and firewalls – can engineer around them, but ugly
 – leads to IP-over-HTTP solutions, defeating firewall
 – proxy boxes outside NATs
PSTN legacies to avoid

- E.164 numbers – might as well wear bar codes
- overlap dialing
- tones and announcements
- in-band signaling for features (DTMF)
- systems with user-interface knowledge (12 keys, voice)
- voice-only orientation (BICC, MGCP/Megaco)
- integration of bit transport and services
- service-specific billing ➔ separate signaling & billing
- trusted networks without crypto
- ➔ confine PSTN knowledge to edge of network
“Walled garden” model

- 3G wireless carriers adopting SIP, but used to closed services
- SIP users should be able to use any proxy for services, not just carrier service
- typical users have many identities (and, thus, servers):
 - work hgs@cs.columbia.edu
 - travel schulzrinne@yahoo.com
 - home henning@schulzrinne.leonia.nj.us
 - professional h.g.schulzrinne@ieee.org
- hard to prevent: SIP can use any port number
- if not, requires draconian restrictions on IP packets, not just filtering port 5060 (SIP port)
- also, services may be split across servers
So I want to build a SIP network…

Ready for trials, but probably not quite for shrink-wrap status:

- installation and operation still requires fair amount of expertise
- lots of web and email experts, few SIP experts
- needs some external infrastructure: DHCP and SRV, possibly AAA
- inconsistent configuration for Ethernet phones (being worked on)
- SIP phones still more expensive than analog phones ➔ hard to justify PBX replacement (incremental cost)
- no just-download or ship-with-OS “soft” clients
Need for service infrastructure

- need carriers that offer SIP gateways
- without having to provide SS7 connectivity
- with *outbound* PSTN calling
- with *inbound* calls and *number portability* – need to be able to keep old PSTN numbers
- either IP Centrex model or in-house servers – like ISP services for email or web
- for commercial-grade conferences, need nailed-up Internet connectivity, orderable (at least) by web page – across providers!
- PBX revenue already decreasing
Why aren’t we junking switches right now?

What made other services successful?

email: available within self-contained community (CS, EE)

web: initially used for local information

IM: instantly available for all of AOL

All of these . . .

- work with bare-bones connectivity (≥ 14.4 kb/s)
- had few problems with firewalls and NATs
- don’t require a reliable network
Why aren’t we junking switches right now?

Telephone services are different:

- reliability expectation 99.9% → 99.999%
- PC not well suited for making/receiving calls – most residential handsets are cordless or mobile
- business sets: price incentive minor for non-800 businesses
- services, multimedia limited by PSTN interconnection
- initial incentive of access charge bypass fading (0.5c/min.)
- international calls only outside Western Europe and U.S.
Standardization

- SIP working group is one of the most active in IETF
- located in “transport” area, but really an application
- about 80 active Internet drafts related to SIP
- typically, 400 attend WG meetings at IETF
- but few drafts are working group items
- 80-20% – 80% of the technical work takes 20% of the time
Invisible Internet telephony

“VoIP” technology will appear in

- Internet appliances
- home security cameras, web cams
- 3G mobile terminals
- fire alarms and building sensors
- chat/IM tools
- interactive multiplayer games
- 3D worlds: proximity triggers call
Conclusion

- SIP maturing – base stable, extension in progress
- avoid creating PSTN replica
- leverage, not inhibit, Internet flexibility
- significant deployment challenges remain
For more information...

SIP: http://www.cs.columbia.edu/sip

RTP: http://www.cs.columbia.edu/~hgs/rtp

Papers: http://www.cs.columbia.edu/IRT