SIP Conferencing

Henning Schulzrinne Dept. of Computer Science Columbia University New York, New York (sip:)schulzrinne@cs.columbia.edu

Conference International SIP - Paris, France

February 21, 2001

Joint work with Gautam Nair, Jonathan Rosenberg and Kundan Singh

- conferencing models
- full-mesh conferencing
- implementation of a conferencing server
- open issues

Conference models: end system mixing

Conference models: multicast transmit & receive

May be suitable for small-scale multicast proposals ("xcast")

Conference models: multicast receive, unicast transmit

Conference models: central server

can be call-out or dial-in

Conference models: central server

- conference identified by SIP URL, e.g., sip2001@upperside.fr
- ad-hoc conferences useful for three-party calls
- can create ad-hoc conference by using random URL, e.g., sip:a7hytaskp09878a@a.servers.com, use REFER to get others to add themselves to that conference
- for ad-hoc, conference lasts until last one leaves

Conference models: decentralized

Central signaling server, mesh media

Conference models: full mesh

Full mesh

- +: all participants are equal
- +: easy to control media distribution
- need to deal with simultaneous call-outs of two parties
- departures while other party joins
- UAC and UAS send membership list in request and 200
- if either learns about a new member, send INVITE
- allows joining of separated clouds
- departing member sends BYE to everyone may need to refuse INVITEs from new arrivals (partitions!)

Conference models: full mesh

A invites C and B invites D simultaneously:

Full mesh: open issues

- conference identification?
- how to identify that call legs are related (should be mixed)
- call-in for mesh?
- refresh mechanism to heal network partitions

Conference models – a comparison

Name	SIP	media	adding	joining	members	scale
End-Mixing	tree	tree	normal	normal	RTCP	small
			INVITE	INVITE		
Multicast	pairs	mcast	normal	mcast	RTCP	large
			INVITE	join		
Dial-In	star	star	REFER	normal	RTCP	medium
				INVITE		
Ad-Hoc	star	star	REFER	normal	RTCP	medium
				INVITE		
Dial-Out	star	star	REFER	normal	RTCP	medium
				INVITE		
Decentral	star	mesh	refer +	normal	RTCP	medium
Mesh	mesh	mesh	INVITE	?	SIP	medium

Conference models – complexity

M active senders, N participants

Properties	central	full mesh	mcast	uni rx, mcast tx	end mixing
Topology	Star	full mesh	m-cast tree	star + mcast tree	ad-hoc
Server proc.	O(M+N)	n/a	n/a	O(M+N)	n/a
Endpoint proc.	O(1)	O(M)	O(M)	O(1)	variable
Server bw	O(M+N)	n/a	n/a	O(M)	n/a
Endpoint bw	O(1)	O(M)	O(1)	O(1)	variable
Scaling	medium	medium	large	large	medium
Heterogen. UA	yes	yes	no	no	yes (partially)
Own media?	no	no	no	yes	no

Columbia sipconf conferencing server

- central-server model for mixing
- commodity hardware, easily scalable to rack full (conferences: avg. 5, 45 minute duration)
- mixes audio streams, replicates RTP (and UDP) streams
- works for video and text chat (RFC 2793)

Mixing heterogeneous streams

Example: Columbia software conference server

		<u>sipconf</u>
Cure	ntly following conferences exist Conference	Description
	irtmeeting@cs.columbia.edu	IRT group meeting.
	test	No description
	swisscom	Swisscom test
	9998	Test
	aks	My conference
Ente	r password I to <u>Delete</u> select	ed conference

You can create a new conference by giving the conference name. Conference name is of the form 'confname@host' or just 'confname' Do not forget to specify an easy to remember password which you can use for deleting the conference entry. You must specify a brief description of the conference.

Create new conference:	Create	
Description of the conference :		
Your password, needed for deleting:		
Report a problem	What is si	pconf ? Help
	© 2000, Cohumbia University. All rights	reserved.

Performance for single conference

SPARC Ultra 10 with 350 MHz CPU:

Participants	CPU	memory	bandwidth (Mb/s)	
	(%)	(MB)	inbound	outbound
2	< 0.1	2.7	0.08	0.07
20	< 1	6.0	0.08	1.37
40	2-3	9.6	0.08	2.81
60	5	13	0.08	4.25
80	10-15	17	0.08	5.69
100	35-50	22	0.08	7.13
120	50-70	26	0.08	8.59

Performance for three-party conferences

Good quality up to 15 conferences

Confer-	partici-	CPU	memory	bandwidth (Mb/s)	
ences	pants	(%)	(MB)	inbound	outbound
3	9	< 0.4	4.1	0.72	0.65
6	18	< 2.0	5.7	1.44	1.30
9	27	7-13	7.3	2.16	1.94
12	36	15-20	9	2.88	2.60
15	45	25	10	3.60	3.24
18	54	30	12	4.32	3.89

- need many different models of conferencing
- trade-off infrastructure vs. complexity vs. scaling
- mostly, can be handled by existing SIP mechanisms
- full mesh requires further work
- transition between conferencing models?