Predicting Internet Telephony Call Setup Delay

Tony Eyers TITR University of Wollongong, Australia tony@elec.uow.edu.au

Henning Schulzrinne Department of Computer Science Columbia University, New York hgs@cs.columbia.edu

First IP Telephony Workshop, Berlin, April 12-13, 2000

Internet Telephony QOS

- Major focus on protocol development:
 - H.323, SIP/SDP, pint, ...
 - number mapping & gateway location (enum, TRIP)
 - as yet, no standard definitions
 - IETF work underway to adapt ITU performance targets
- focus so far on Internet *voice* QOS
- Internet Telephony call setup delay, a key QOS indicator, has not been widely studied:
 - IETF drafts on IP signaling transport (SIGTRANS WG)
 - Elwalid et al. consider delay performance of a Lucent H.323 GK

- Determine Internet telephony call setup delay distribution, over public Internet
- even with resource reservation or diff-serv for media, signaling likely to be sent best-effort!
- dial-to-ring delay
- key parameters: propagation delay, queueing delay, retransmission delay
- processing delay not considered
- also: compare SIP and H.323 setup delay performance
 - key difference: recovery scheme for lost messages
 - SIP uses UDP, with timeout/retransmission mechanism
 - H.323 uses TCP (mostly)

SIP Call Setup

SIP Call Setup: Extended

SIP Characteristics

- INVITE over UDP retransmitted until first provisional response (1xx) arrives, at 0.5, 1, 2, 4, 8, 16 seconds intervals, then give up
- optional reliable provisional response mechanism (PRACK), not studied here
- final response (2xx or higher) retransmitted until ACK arrives, with interval capped at 4 s
- final responses also retransmitted when retransmitted INVITEs arrive
- retransmission limited to 7 packets
- other methods (BYE, OPTIONS, CANCEL) do not retransmit responses and cap time-out at 4 s

H.323 Call Setup

H.323 Characteristics

- TCP connection establishment adds at least one round trip
- TCP SYN, H.323 SETUP, CONNECT use 'standard' TCP timeouts
 - recommended initial value 3 seconds (RFC 1122)
 - some implementations start at 6 seconds [Stevens94], Solaris allows initial timeout to be set *whole OS*
 - timeout value increases by a factor of two for each retransmission
- H.323 Annex E provides a UDP option, but not yet implemented

Internet Performance Measurements: the Surveyor Project

- Run by Advanced Networks and Services
- measures one way UDP delay
 - currently around 40 sites (mostly USA, some in Europe, Korea, New Zealand)
 - each site exchanges 4 40-byte UDP packets each second (2 each way)
 - One way delay measured, resolution 50 μs
 - packet loss also recorded
- Surveyor site provides:
 - delay/loss histograms for each day, for all site pairs (measurements began in 1997)
 - located at http://www.advanced.org/csg-ippm/
- Surveyor traces provide packet delay/loss used in our simulations

Simulation Methodology

- Instantaneous delay/loss probabilities constructed from trace records
- two state error model used, to capture bursty errors
- Simulated calls arrive
- 50 calls/sec, Poisson call arrivals
- Call setup delay distribution/call loss rate recorded over simulated interval (e.g., one hour)

Case Study

- simulation runs over the first 90 business days in 1999
- 60 minutes per day starting at 16:00
- source-destination pairs:
 - New York-Chicago
 - New York-West Coast
- variations:
 - all calls visit a redirect server in Washington, DC
 - all calls visit a redirect server in Washington, DC, then transit a proxy server in Indiana
 - H.323 (i.e., TCP)
- minimum and 95th percentile of call setup delay

SIP Call Setup Delay: New York-Chicago

H.323 Call Setup Delay: New York-Chicago

SIP with Redirect Server: New York-West Coast

SIP with Redirect Server: New York-West Coast, via Boston

Blocking Probability

PSTN interworking: ISDN abandons calls after 2 s

	Bos.	Chi.	West	Wash.	Colorado
New York	20.3	77.2	32.3	9.1	15.4
	28.2	94.7	40.0	20.0	18.5
Boston		1.6	31.5	0.0	5.4
		1.6	31.5	0.0	10.8
Chicago			34.3	5.2	28.6
			34.3	6.9	61.4
West Coast				33.3	45.3
				36.7	57.3
Washington State					6.6
					6.6

% of days with PSTN/Internet telephony blocking > 1%, SIP (top row) and H.323 (bottom row)

Conclusions

- Acceptable SIP call setup delay, for simple calls
- H.323 delay worse at times, due to TCP
- TCP timers will need to be tuned for Internet telephony signalling
- complex call types exhibit variable delay performance
- high blocking probabilities likely if interfacing with PSTN
- related issue: post-pickup delay if call is gated