SIP and the IETF Vision for IP Telephony Deployment

1

Henning Schulzrinne Dept. of Computer Science Columbia University New York, New York schulzrinne@cs.columbia.edu

NMS Alliance Partner's Conference 2000 (Boston)

October 12, 2000

Joint work with Jonathan Rosenberg, SIP IM/presence group, Telcordia, Columbia IRT research group

Overview

- VoIP service models
- the IETF VoIP architecture
- the Session Initiation Protocol (SIP)
- challenges on the horizon:
 - emergency services
 - instant messaging & presence
 - generic event notification
 - integration with 2G mobile (GSM, CDMA)
 - next-generation wireless (3GPP, 3GPP2, MWIF, ...)

Internet Telephony Service Models

- Internet "PBX"
- Internet Centrex
- Internet Carrier
- same basic equipment, but size of gateway varies

Internet PBX

IP Centrex

IP Carrier

IETF VoIP Protocol Architecture

IETF VoIP Protocols & APIs

Most protocols are re-used \longrightarrow core

- SIP session setup, services
- MGCP gateway control
- SDP describe multimedia sessions
- RTP multimedia transport

CPLXML-based languagesip-cgiSIP-based scripts

IETF Protocol Reuse

protocol	designed for	VoIP use
RTSP	streaming media	voicemail
DNS	name lookup	E.164 mapping
SCTP	reliable transport	ISUP transport
PGP	email	call authentication
MIME	email	signaling info
SDP	multicast sessions	SIP, MGCP

IETF Standards Process

Protocol "Holes"

- "tight" session control for conferences
 - admission control
 - multicast key distribution
 - advanced capability negotiation
- scalable authentication for individuals
- cross-provider QoS: primarily a business problem

IETF VoIP Architecture Characteristics

- universal identifier *user@domain*: SIP URL = email = NAI
- separation of transport of services
- media-neutral, including beyond audio and video
- emphasis on user-programmable services
- web integration: content, mutual referral
- integration with IM and presence

Internet QoS Architecture

	scheduling		
	flow	class	
admission flow	RSVP (int-serv)	BB? RNAP?	
class	—	diff-serv	
scheduling			

SIP Overview

- protocol for establishing, modifying, tearing down (multimedia) sessions
- IETF Proposed Standard since March 1999
- multimedia = audio, video, shared applications, text, ...
- also used for "click-to-dial" (PINT wg) and possibly Internet call waiting (SPIRITS wg)
- to be used for PacketCable Distributed Call Signaling
- to be used for Third-Generation Wireless (3GPP, 3GPP2)

SIP Components

entity	does	examples
proxy server	forward calls	firewall controller, "call router"
redirect server		"application server"
user agent	end system	SIP phone, gateway, "softswitch"
registrar	location mgt.	mobility support

Roles are changeable, on a request-by-request basis

SIP Example: Redirection

SIP Example: Proxying

SIP Forking Proxies

SIP syntax

request	response	
method URL SIP/2.0	SIP/2.0 status reason	
Via:	SIP/2.0/ protocol host:port	
From:	user <sip:from_user@source></sip:from_user@source>	
То:	user <sip:to_user@destination></sip:to_user@destination>	
Call–ID:	localid@host	
CSeq:	seq# method	
Content-Length:	length of body	ssag
Content-Type:	media type of body	me
Header:	<pre>parameter ;par1=value ;par2="value"</pre>	
;par3="value folded into next line"		
blank line		
V=0		dy
o = origin_user timestamp timestamp IN IP4 host		
c=IN IP4 media destination address		
t=0 0		
m= media type port RTP/AVP payload types		
)

message

SIP Advanced Features

- forking
- extensibility: new headers, methods, bodies
- security: web-like, PPP/CHAP or PGP
- multicast-capable
- support for personal, session, terminal, service mobility
- caller preferences: direct calls based on properties

SIP Mobility

terminal	cross-provider	REGISTER,
personal	different terminals, same address	REGISTER
service	different terminals, same services	upload
session	move sessions across terminals	REFER

re-INVITE

SIP Personal Mobility

alice@host.columbia.edu

Example SIP System

SIP-Based Telephony Services

conferencing	"dial-in", "dial-out"
forwarding	basic SIP
ACD	proxy, no protocol extensions
call transfer	REFER extension
DTMF transport	in RTP, not SIP
billing	in resource reservation, (mostly) not SIP

Current SIP efforts

- SIP to Draft Standard
- QoS and security preconditions
- inter-domain AAA and billing
- session timer for liveness detection
- early media (PSTN announcements)
- SIP for presence / instant messaging
- SIP-H.323 interworking

- reliable provisional responses
- DHCP configuration for finding SIP servers
- SIP for firewalls and NATs
- caller preferences
- services (transfer, multiparty calls, home)
- ISUP carriage

SIP Emergency Services

- need
 - emergency address
 - find nearest PSAP
 - PSAP determines caller location
- cannot just rely on gateway calling 911
- generally, allow devices to be location-aware ("what time is it where I'm about to call?" "call pizza parlor")
- offers new opportunities: database access, video, measurements, accessibility, ...

SIP Emergency Services

SIP Bake-Off

- takes place every four months, 5th at Pulver.com August 2000
- 45 organizations from 11 countries
- about 50-60 implementations:
 - IP telephones and PC apps
 - proxy, redirect, registrar servers
 - conference bridges
 - unified messaging
 - protocol analyzers
- first IM/presence interop test
- emphasis on advanced services (multi-stage proxying, tel URLs, call transfer, IVR, ...)

The Dangers of VoIP

- focus on single service: voice, fax, ...
- PSTN: service orientation \leftrightarrow Internet: neutral transport
- APIs as least common denominator across POTS, ISDN, SS7 \longrightarrow 100-year old functionality
- carbon-copy replication of existing services
- terminology overload

Differences: Internet Telephony \leftrightarrow **POTS**

- separate control, transport (UDP) m no triangle routing
- separate connectivity from resource availability
- separate services from bit transport
- datagram service is less bootstrapping
- in-band signaling m higher speed
- features "network" → end system: distinctive ringing, caller id, speed dialing, number translation, ... Im scaling
- features: intra-PBX = inter-LATA and general
- protocols: user-network = network-network signaling

PSTN Legacies to Avoid

- E.164 numbers might as well wear bar codes
- tones (e.g., failure indications)
- in-band signaling (DTMF)
- systems with user interface knowledge (12 keys, voice)
- voice-only orientation (e.g., MGCP/Megaco)
- integration of bit transport and services
- service-specific billing
- trigger model for service creation
- trusted networks without crypto authentication
- \longrightarrow confine PSTN knowledge to edge of network

Replication of Existing Services

- "user is familiar with PSTN services"
- but how many users actually know how to use call transfer or directed pick-up?
- user interface is often just legacy of key systems or other ancient technology
- avoid binding of identifiers to devices call person or group of people, regardless of location
- instead, model desired behavior
- single-server features don't need standardization
- find general mechanisms (e.g., REFER for three-party calls and various call transfers)

Terminology Overload

Invasion of the meaningless technical-sounding terms, attempting to familiar mimic PSTN boxes:

- CO switch \longrightarrow soft switches = gateway + SIP UA + ?
- SCP \rightarrow application servers = proxy? web server? media server?
- $PBX \longrightarrow Internet PBX = proxy? + gateway?$

• ...

Temptation: new name \rightarrow new protocols, APIs, ... – the old box boundaries don't necessarily make sense!

It's That Simple...

We really only have a few basic components:

- PSTN gateway, with some combination of FXO/FXS
- SIP proxy/redirect/registrar servers (or H.323 gatekeepers)
- SIP user agents (or H.323 terminals): PCs, phones
- media storage servers
- DNS, directory, web, email, news, ... servers

Invisible Internet Telephony

VoIP technology will appear in ...

- Internet appliances
- home security cameras, web cams
- 3G mobile terminals
- fire alarms
- chat/IM tools
- interactive multiplayer games

The Largest Signaling Network is Not Running SS7

- AT&T: 280 million calls a day
- AOL: 110 million emails/day, total about 18 billion/day
- total > 1 billion instant messages a day (AOL: 500 million)
- signaling effort of call \approx IM

Signaling and Events

Signaling: "do this" (push) – Events: "this just happened"

Commonalities between Signaling and Events

- presence is just a special case of events: "Alice just logged in" ≈ "temperature in boiler exceeds 300° F"
- need to *locate* mobile end points
- may need to find several different destinations ("forking")
- same addressing for users
- presence often precursor to calls
- likely to be found in same devices
- events already in VoIP: message alert, call events

SIP as a **Presence Platform**

- requires minimal extensions to SIP: SUBSCRIBE to ask to be alerted, NOTIFY when event occurs
- MESSAGE for sending text messages ("IM")
- true "chat" is voice (+ video)
- services such as reaching mobile phone while in meeting

Events: SIP for Appliances

(Work with Telcordia)

Programmable Internet Telephony

	APIs	servlets	sip-cgi	CPL
Language-independent	no	Java only	yes	own
Secure	no	mostly	no, but can be	yes
End user service creation	no	yes	power users	yes
GUI tools w/portability	no	no	no	yes
Call creation	yes	no	no	no
Multimedia	some	yes	yes	yes

Example: integration with iCal \longrightarrow automatically export personal calendar to call handling

Third-Generation Wireless

- goal: 144 kb/s moving, 384 kb/s stationary, 2 Mb/s indoors
- based on GSM or wideband CDMA
- push IP to the hand set
- SIP as signaling system for voice calls in 3GPP

Conclusion

- basic IETF-based architecture in place
- SIP as foundation for services see http://www.cs.columbia.edu/sip
- extensions to mobility, emergency services, ... in progress
- first (and last?) chance to recover from 120 years of legacy
- avoid replication of PSTN on packets
- most VoIP applications won't look like a telephone
- opportunities in emergency services, mobile, event notification