Internet Telephony: A Second Chance

Henning Schulzrinne
Internet Real-Time Lab
Columbia University
hgs@cs.columbia.edu

(Joint work with Jonathan Lennox, Gautam Nair, Ping Pan, Jonathan Rosenberg, Kundan Singh, Elin Wedlund, Xin Wang, and Jianqi Yin)
Overview

- differences between IP telephony and POTS
- Internet-centric IP telephony
- charging for Internet telephony
- quality of service
- programmability
- reliability
- IETF telephony model
- SIP efforts in the IETF
Data vs. Voice Traffic

The graph shows the worldwide traffic in Gb/s from 1996 to 2002, comparing data and voice traffic. The data traffic line is green, and the voice traffic line is blue dotted. Both lines show an increasing trend over the years.
Differences: Internet telephony ↔ POTS

- separate control, transport (UDP) → no triangle routing
- separate connectivity from resource availability
- separate services from bit transport
- datagram service → less bootstrapping
- in-band signaling → higher speed
- features “network” → end system: distinctive ringing, caller id, speed dialing, number translation, ... → scaling
- features: intra-PBX = inter-LATA and general
- protocols: user-network = network-network signaling
PSTN legacies to avoid

• E.164 numbers
• tones (e.g., failure indications)
• in-band signaling (DTMF)
• voice-only orientation (e.g., MGCP/Megaco)
• integration of bit transport and services

→ confine PSTN knowledge to edge of network
Universal services

- emergency services: needed for IM, email, VoIP, …
- gateway location (TRIP): physical and network services?
- dynamic carrier selection
Invisible Internet telephony

- currently: stand-alone application or PSTN phone
- chat applications
- distributed games
- virtual reality environments
- web pages and applets
- links in email messages
Integrating VoIP with the web

Everything linked together, with SIP redirecting and registering:

- **tel**: URLs
- **email**: send SIP via email, redirect calls to email
- **web**: links to and actual content (HTML, XML, audio clips, ...)
- **chat and presence**
- **RTSP**
Charging model

- can’t replicate existing $/minute PSTN model
- abolishes service monopoly by bit provider
- variable bit rate, not necessarily reserved
- service-independent to avoid masquerading
- advertising supported: 0.6 to 6 US cents/impression
Quality of service

<table>
<thead>
<tr>
<th>scheduling flow</th>
<th>IntServ</th>
<th>admission state</th>
<th>doesn’t make sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>state class</td>
<td>ietf-diffserv-rsvp, BGRP</td>
<td>DiffServ</td>
<td></td>
</tr>
</tbody>
</table>

- best effort → classes → classes with reservation → adaptive reservations → fixed per-flow reservation

- modest gain for QoS routing

- connection-oriented Internet through back door?
Coupling of signaling and QoS

- traditional (H.323) approach: use signaling to set up QoS
- but: separation of signaling and data flow
- SIP approach: security and QoS preconditions
Reliability

- need “5 nines” reliability = 5 minutes/year
- currently have maybe 99.5%
- reasons: protocol design?
- lots of independent entities for DNS, routing, servers, OS, ...
- lack of in-service software upgrades
- configuration problems
Internet phone “appliances”

- need small, cheap end systems (cf. PBX: $550/seat)
- *Ethernet phone* ⇒ no PBX for switching
- only DSP for voice coding and signaling ⇒ limited memory
- minimal IP stack (IP, UDP, RTP, DHCP, SIP, DNS, IGMP)
- downloadable software (tftp)
- no TCP needed
- multicast & MP3 radio
- must be self-configuring
- personalize by user identification (i-button)
- interface to the physical world
e*phone
Mobile Internet telephony

- user and terminal mobility are related
- mobile applications: mostly UDP (DNS, multicast) or short TCP transactions (SMTP, POP, IMAP)
- should make applications restartable
- little mobile-IP deployment
- use SIP to support mobile multimedia applications
- mobile IP and SIP mobility are complementary
Programmable services

- fixed service menu → programs
- equipment vendor → administrator, user, service providers
- several models:
 - APIs (Parlay, Jain)
 - servlets
 - sip-cgi
 - dedicated languages: CPL
 - mobile code
sip-cgi

- similar in spirit to cgi-bin scripts for web servers
- full access to all signaling functionality
- language-independent, typically scripting (Perl, Tcl, …)
- uses environment variables and stdin/stdout to communicate
- *reasonably* safe, but not for casual user
CPL

- safe: bounded run-time, no system access, provable
- creatable and editable by simple graphical tools
- independent of signalling protocol
- XML-based language, but not usually visible by user
- composable from building blocks
- minimize feature interaction by explicit specification
CPL example

Call

String-switch
field: from
match:
*@example.com
otherwise

location
url: sip:jones@example.com

proxy
timeout: 10s

busy
timeout
failure

location
url: sip:jones@voicemail.example.com
merge: clear

redirect
CPL example

<subaction id="voicemail">
 <location url="sip:jones@voicemail.example.com">
 <redirect />
 </location>
</subaction>

<incoming>
 <address-switch field="origin" subfield="host">
 <address subdomain-of="example.com">
 <location url="sip:jones@example.com">
 <proxy>
 <busy> <sub ref="voicemail" /> </busy>
 <noanswer> <sub ref="voicemail" /> </noanswer>
 <failure> <sub ref="voicemail" /> </failure>
 </proxy>
 </location>
 </address>
 <otherwise> <sub ref="voicemail" /> </otherwise>
 </address-switch>
</incoming>
Principal IETF VoIP protocols

RTP/RTCP: data transport and QoS feedback

SIP: call setup

SDP: session/media description

enum: (DNS) E.164 → URLs

TRIP: finding “cheap” PSTN gateways, BGP-like

RTSP: voice mail, announcements
Number mappings

- 212 555 0100
- sip:alice@example.com
- sip:5550100@nyc.gwrus.com
- tel:2125550100
- nyc.gwrus.com
Current SIP efforts

- SIP to Draft Standard
- QoS and security preconditions
- inter-domain AAA and billing
- session timer for liveness detection
- early media (PSTN announcements)
- SIP for presence / instant messaging
- SIP-H.323 interworking
- reliable provisional responses
- DHCP configuration for finding SIP servers
- SIP for firewalls and NATs
- caller preferences
- services (transfer, multiparty calls, home)
- ISUP carriage
Conclusion

- major protocol pieces in place
- operational issues: 911, anonymity, billing, OSS for services, …
- not just replicating existing architecture and service
- programmability key to web success
- should become an invisible service
- need to keep low-end devices in mind (IPsec!)