Internet Foundations

1

Internet Foundations

- brief review of history
- Internet standardization
- Internet architecture
- basic Internet protocols: IP, UDP, TCP, ...

See http://www.cs.columbia.edu/~hgs/internet for resources.

Internet Standards

Who makes the rules?

ITU.T (itu.int): telecom standards by 16 study groups:

- E. Overall network operation, telephone service (E.164)
- G. transmission systems and media, digital systems and networks (G.711)
- H. Audiovisual and multimedia systems (H.323)
- V. Data communication over the telephone network (V.24)
- X. Data networks and open system communications (X.25)

IETF and IESG (ietf.org): (Internet Engineering Task Force, ... Steering Group) develop/bless protocols ("RFCs") open admission, but not quite egalitarian

W3C: HTML, XML, ...

Internet Operational Bodies

ISOC: membership organization; legal "home" of IETF

IANA: (Internet Assigned Numbers Authority) assigns numbers, top-level domains

NANOG: North American Network Operators Group

ICANN: administers IANA, registrars

RIPE, ARIN, APNIC: hands out blocks of addresses, regionally

IETF: WG + IESG + IAB

Internet Architecture Board: IAB

- architectural oversight
- process appeals
- elected by ISOC through nominations committee

Internet Engineering Steering Group (IESG): approves standards, composed of area directors

IETF Areas

- applications (28 WGs): calendar, HTTP, LDAP, MIME, NNTP, ...
- general (1): POISSON
- internet (15): IPv6, IP over x, interface MIBs
- operations and management (23): MIBs, routing policy, benchmarking
- routing (17): multicast, RIP, BGP
- security (14): S/MIME, TLS, PGP, XML security
- transport (24): RTP, SIP, RTSP, RSVP admission, TCP
- user services (4): handbooks, guides, standard policies

IETF Working Groups

- headed by chair(s) designated by AD
- should be single, well-defined topic
- discussions on public mailing list
- small groups of authors do detail work
- meet at IETF (three times a year)
- possibly interim meetings
- done 🖛 dissolve

IETF standards process

Standardization process

RFC 2026:

- 1. new topic **BOF** at IETF meeting
- 2. if response, create working group with charter
- 3. create Internet drafts = temporary (≤ 6 months) working drafts
- 4. status and discussion presentations at IETF meetings
- 5. working group last call
- 6. IETF last call
- 7. IESG "votes" (by consensus)
- 8. published as RFC: proposed standard
- 9. 2 implementations $+ \ge 6$ months $\rightarrow draft$ standard
- 10. operational experience + 4 months **Internet standard** (STD)

RFCs

- ASCII + PostScript, no charge (www.normos.org)
- published RFCs never change (no IP-1994)
- also:
 - experimental
 - informational (possibly "FYI")
 - historic(al)
- anybody can submit RFC, but editor can filter for content, conflict with existing work
- check the April 1 ones...(RFC 1149)

Internet Access and Infrastructure

Who pays for the Internet?

Network Access and Interconnection

Example: UUnet Backbone

- 201 million Internet users in the world, 112.4 million in U.S. and Canada (1 subscriber = 2.5 users!).
- many lease facilities (e.g., AOL)

company	subscribers (10^6)
AOL	20
EarthLink+Mindspring	3
NetZero	3
Prodigy	2
CompuServe	2
AT&T Worldnet	1.8
Microsoft Network	1.8

Mostly modem; 300,000 DSL and 1.1 million cable modem (end 1999).

Home Networking

phone lines	1-10 Mb	/s, higher	frequency	than DSL

power lines < 10 Mb/s

wireless 1-11 Mb/s (IEEE 802.11) in 2.4 GHz band

Carriers

About 40 backbones, use various right-of-ways

UUnet (MCI)		
Sprint		
GlobalCrossing	mostly cross-oceanic	20,000 (U.S.)
AT&T		
Level3	railroad?	11,000 (goal: 16,000)
PSINet	leased	
Qwest	railroad	
Williams	pipelines	25,000
Enron	pipelines, HV	

Peering: Equinix

Internet Access

method	media	downstream	upstream
modem	POTS	\leq 53 kb/s	33.6 kb/s
Intercast	VBI	150 kb/s	modem
ISDN	POTS	128 kb/s	128 kb/s
DSL	POTS	160 kb/s	160 kb/s
ADSL	POTS	0.69 Mb/s	16640 kb/s
cable modem	CATV	10 Mb/s	1 Mb/s
T1	copper	1.5 Mb/s	1.5 Mb/s
T3	fiber, copper	45 Mb/s	45 Mb/s

Network utilization

Averaged over one week:

local phone line	4%
U.S. long distance switched voice	33%
Internet backbones	10-15%
private line networks	3-5%
LANs	1%

- peak personal-use hours: 5-11 pm
- "world wide wait": web servers? DNS? NAPs? access?
- average speed: 40 kb/s

ISP Service

- average connect time: 310.3 min/month home, 417.4 min/month work \$3.85 hour
- 66 MB average transfer/month ****** 33 c/MB
- 10:1 modem concentration ratio
- T1: 500 GB/month each direction ****** 0.3c/MB (\$1500/month)
- but ISP T1 utilization $\approx 40-45\%$
- ISP costs: \$2.50/month for phone line, \$2/month for equipment depreciation, \$0.20/month for network
- fiber: \$30,000-\$50,000/mile

ADSL Limits

name	Mb/s	distance (ft)	km	
DS1 (T1)	1.544	18,000	4.5	<80%
E1	2.048	16,000	4.1	
DS2	6.312	12,000	3.0	
E2	8.448	9,000	2.3	
1/4 STS-1	12.960	4,500	1.1	
1/2 STS-1	25.920	3,000	0.8	
STS-1	51.840	1,000	0.3	
OC-3	155.000	100	0.03	

ADSL Pricing Example

Bell Atlantic, May 1999:

downstream	upstream	rate	ISP
640 kb/s	90 kb/s	\$ 39.95	\$10
1.6 Mb/s	90 kb/s	\$ 59.95	\$40
7.1 Mb/s	680 kb/s	\$109.95	\$80

Cable plant architecture

A. Dutta-Roy, "Cable - it's not just for TV", IEEE Spectrum, May 1999; © 1999 IEEE

Cable plant architecture

- coax cable: < 1 GHz bandwidth, typically 500 MHz
- 35 TV channels in typical older CATV systems
- 500–2000 homes for single headend or fiber node
- head-end to residence < 80 km
- fiber node to residence < 350 m
- US: 67% of households have, 95 mio. residence "passed"

Cable modems

- always-on, but maybe temporary IP addresses
- hybrid fiber coax
- CMTS (cable modem termination system) = "headend"
- Ethernet interface to user's PC
- but: conversion to bidirectional amplifiers, power
- DHCP + network address translation (NAT)
- conversion cost: \$200–\$800
- standards:
 - Data-Over-Cable Service Interface Specification (DOCSIS)
 - IEEE 802.14: ATM MAC

- Multimedia Cable Network System Partners (MCNS): contention
- Davic (Europe)

Cable plant architecture

A. Dutta-Roy, "Cable - it's not just for TV", IEEE Spectrum, May 1999; © 1999 IEEE

Cable modem network modes

Cable modem: downstream

- one or more 6 MHz channels in 54–550 MHz range
- typical bit consumption (no A/V): 40 kb/s, 4 kb/s upstream
- 30-50% active ******* 420 customers per channel
- 64 QAM (6 bits/symbol) $\implies \leq 30$ Mb/s
- newer equipment: 256 QAM ••• 40 Mb/s

Cable modem: upstream

- 5–42 MHz (usually band < 3 MHz, typically 200 kHz)
- noise aggregation PSK with 2 bits/symbol (5 Mb/s)
- actual througput: 768 kb/s
- can't use Ethernet-style CDMA.
- TDMA variation: headend asks for potential senders
- headend returns grant: 2^k 6.25 μ s mini slots
- send 6-byte request to transmit me delay variation!
- encryption: 40/56 bit DES

Cable modems: IEEE 802.14 vs. MCNS

Cable modems: access delay

N. Golmie, F. Mouveaux, D. Su, "A comparison of MAC protocols for hybrid fiber/coax networks: IEEE 802.14 vs. MCNS", ICC, June 99.

Performance comparison

Keynote web retrieval performance (April 1999):

Technology	5-11pm	8am-5pm
DSL (128/384)	3.55	4.30
Cable modem	3.97	3.68
T-1	1.83	2.36

• both shared *somewhere*

RTT delay:

	average	max.
ISDN	$\approx 10 \text{ ms}$	
CM	20-45 ms	860
ADSL	$\approx 20{-}30 \text{ ms} (50 \text{ ms for } 1.5/224)$	63

Some Terminology

internet: collection of packet switching networks interconnected by routers

(the) Internet: "public" interconnection of networks

end system = host: computer that is attached to the network ↔ router; usually *one* network interface

router = gateway = intermediate system: routes packets, several interfaces

subnetwork: part of an internet (e.g., single Ethernet)

firewall: router placed between an organization's internal internet and a connection to the external Internet, restricting packet flows to provide security.

Internet WAN Physical Layers

	Gb/s	remarks
Giga Ethernet	1.25	fiber
T-3	0.045	fiber, TP or coax
OC-3c	0.155	fiber
OC-12	0.622	fiber
OC-48	2.4	fiber
OC-192	10	fiber
Dense Wavelength Division Multiplexing

- multiple optical λ in single fiber
- 1.6 to 2 Tb/s per fiber
- interfaces typically 622 Mb/s to 10 Gb/s

Link-Layer Mechanisms Used

Roughly in order of popularity:

- ATM
- IP over SONET (synchronous optical network)
- frame relay
- gigabit Ethernet (with range extenders)
- T1, T3

Asynchronous Transfer Mode (ATM)

- 48-byte cells plus 5-byte header
- routing by label swapping
- virtual circuits (VCs) and paths (VPs)
- in-order delivery, but cells can be lost
- adaptation layers:
 - AAL1 continuous bit rate (CBR); "circuit emulation"
 - AAL2 multiplexed low-delay voice
 - AAL3/4 data (rarely used)
 - AAL5 IP packet in several cells

Frame Relay

- variable-length packets
- permanent or switched virtual circuits (PVC, SVC)
- typically, lower bandwidth (\leq 45 Mb/s)
- popular as access mechanism, corporate networks

Internet Link Layers

Wireless Access

- Industrial, Scientific, Medical (ISM) bands (unlicensed): 902–928 MHz (US only), 2.4 GHz, 5.8 GHz
- analog cellular: 800 MHz
- PCS: 1.9 GHz

Wireless Ethernet:

- 900 MHz, **2.4 GHz**, or 5 GHz
- 1 or 2 Mb/s, soon 5.5 Mb/s or 11 Mb/s
- collision-based, with reservation (RTS/CTS)
- IEEE 802.11 = FH or DS

Cellular Digital Packet Data (CDPD): • pauses in AMPS voice traffic

Wireless access

Technology	band	mod.	rate	open range (m)
RAM			8.0 k/bs	
GSM data	1.9 GHz	TDMA	9.6 kb/s	
CDPD			19.2 kb/s	km
Metricom Ricochet	902-928 MHz	FH	28.8 kb/s	300-450
Bluetooth	2.4 GHz	FH	432 kb/s	10
802.11	2.4 GHz	DS	1 Mb/s	540
			2 Mb/s	400
			4 Mb/s	195
			5.5 Mb/s	120

Internet Traffic

- 5,000-8,000 TB/month or 15.4–24.7 Gb/s
- long-distance calls: 525 GDEM or 64 Gb/s
- all the world's telephones: 600 Gb/s
- almost all (90%?) of the traffic is TCP

Voice vs. Data Traffic

worldwide traffic (Gb/s)

Voice vs. Data Traffic

- local vs. LANs vs. private networks
- capacity vs. traffic
- hop length of data traffic < voice
- link utilization (higher for voice)
- revenue

Protocol Contributions

proto	src	dest	pkts	bytes
TCP	http		35%	66.4%
TCP		http	33%	7%
TCP		nntp	1.8%	3.8%
TCP	ftp		1.4%	3.2%
TCP		smtp	1.8%	1.9%
TCP	nntp		1.3%	1.5%
UDP	dns	dns	3.1%	1.0%

April 1997, NLANR

Internet Names and Addresses

Names, addresses, routes

Shoch (1979):

Name identifies what you want,

Address identifies where it is,

Route identifies a way to get there.

Saltzer (1982):

Service and users: time of day, routing, ...

Nodes: end systems and routers

Network attachment point: ≥ 1 per node multihomed host vs. router

Paths: traversal of nodes and links

binding = (temporary) equivalence of two names

Internet names and addresses

		example	organization
	MAC address	8:0:20:72:93:18	flat, permanent
	IP address	132.151.1.35	topological (mostly)
	Host name	www.ietf.org	hierarchical
host name $\overset{\text{DNS,many-to-many}}{\rightarrow}$ IP address $\overset{\text{ARP,1-to-1}}{\rightarrow}$ MAC address			

Mappings in the Internet

whois	domain name	owner description
LDAP	key (name)	address, other info
YP	name	data item
DNS	host name	IP addresses
	IP address	host name
atmarp	IP address	ATM NSAP
ARP	IP address	Ethernet address
RARP	MAC address	IP address

The Internet Domain Name System

We'll talk about name resolution later...

Anywhere from two to ∞ parts

Each Internet host has one or more globally unique 32-bit IP addresses, traditionally consisting of a network number and a host number:

0	7	15	23	
0 network	host			Class A
	·			
10 network		host		Class B
		·		
110 network			host	Class C
1110	multicast	address		Class D

- originally, two-level hierarch $\rightarrow n$ -level, changing
- an IP address identifies an *interface*, not a host!
- a host may have two or more addresses. Why?

Internet addresses

- (almost) every *interface* has one
- but may
 - change (dial-in)
 - have lots (WWW servers)
 - have none (some routers)
 - not be globally unique
- old: class-{A,B,C} = 2-level addressing: network,host
- new: classless interdomain routing (CIDR) aggregation, route on prefix and mask

IP addresses

- dotted decimal notation: 4 decimal integers, each specifying one byte of IP address: host name lupus.fokus.gmd.de
 32-bit address 1100 0000 0010 0011 1001 0101 0011 0100
 dotted decimal 192.35.149.52
- loopback: 127.0.0.1 (packets never appear on network)
- own network (broadcast): hostid = 0; own host: netid = 0
- directed broadcast: hostid = all ones
- local broadcast: 255.255.255.255

CIDR: Classless Interdomain Routing

- problem: too many networks me routing table explosion
- problem: class C too small, class B too big (and scarce)
- discard class boundaries \rightarrow supernetting
- ISP assigns a contiguous group of 2^n class C blocks
- "longest match routing" on masked address; e.g. 192.175.132.0/22
 address/mask next hop
 192.175.132.0/22 1
 192.175.133.0/23 2
 192.175.128.0/17 3
- e.g.,: all sites in Europe common prefix in only single entry in most U.S. routers

Example: ifconfig

ifconfig -a

- le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING>
 inet 192.35.149.117 netmask fffff00
 broadcast 192.35.149.0
- fa0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING>
 inet 194.94.246.72 netmask fffff00
 broadcast 194.94.246.0
- qaa0: flags=61<UP,NOTRAILERS,RUNNING>
 inet 193.175.134.117 netmask fffff00
- qaa1: flags=61<UP,NOTRAILERS,RUNNING>
 - inet 129.26.216.231 netmask fff0000
- qaa2: flags=60<NOTRAILERS,RUNNING>
- qaa3: flags=60<NOTRAILERS,RUNNING>
- lo0: flags=849<UP,LOOPBACK,RUNNING>
 inet 127.0.0.1 netmask ff000000

IP address exhaustion

As of February 2000,

- 61.1% of available address space allocated
- 49.4% of allocated address space announced
- 30.2% of available address space announced

Routing table:

- 71,717 "autonomous system" (AS) entries
- 41,256 of which are /24

Routing Table Entries

Network Address (and Port) Translation (NA(P)T)

- most corporations use private address space, also residential
- 10/8, 172.16/12, 192.168/16
- NAT translates internal \leftrightarrow external as needed
- works for outgoing TCP connections: POP, HTTP, SMTP, Telnet
- need application layer gateway (ALG) for out-of-band protocols (ftp, SIP, RTSP, H.323, ...)
- problems:
 - controlled connections (ftp, Internet telephony, media-on-demand)
 - UDP services (streaming media)
 - security rewriting breaks IPsec
- suggestion: Realm-Specific IP (RSIP) makes host aware of mapping

Problems with IP Addresses

- if a host moves from one network to another, its IP address changes
- currently, mostly assigned without regards to topology → too many networks III CIDR
- limited space IPv6
- class thresholds: class C net grows beyond 254 hosts
- hard to change: hidden in lots of places
- multihomed host: path taken to host depends on destination address

Multihoming

- = one "stub" network, multiple providers
- options:
 - 1. global prefix \blacksquare aggregation \downarrow
 - 2. divide network me no redundancy
 - 3. multiple addressess \blacksquare applications need to try several, address space use \uparrow

Mobility and Renumbering

- renumber if immediate or up-stream provider changes
- mobility: change network attachment point
- mobility = renumbering: network "location" changes
- IP address as location IP address, break aggregation
- renumbering is hard: configuration files, transition
- IP address as identifier m break connections

Subnetting

- large organizations: multiple LANs with single IP network address
- subdivide "host" part of network address 🗰 subnetting

How does a packet get to the server?

E.g., web page from http://www.cs.umass.edu:

- get host name www.columbia.edu from URL;
- DNS: translate to IP address 128.59.35.60
- is it on local network? no me find local router
- local router sends to Internet
- Internet routes to Columbia network router (128.59.?.?)
- Columbia router routes to web server

Peeking inside a packet

IP Forwarding

```
get destination IP address D
if network(D) == directly attached network {
 ARP: D -> MAC address
 put in link layer frame
  forward
else
  foreach entry in routing table {
    if (D & subnet mask) == network(entry) {
      get next hop address N
      ARP: N -> MAC address
      put in link layer frame
      forward
```

IP source/destination remains same, MAC changes

IP Forwarding

GMD Fokus Network

Network Layer: IPv4 and IPv6

- unreliable datagram misorder, loose, duplicate
- 32-bit (IPv6: 128 bit) globally unique addresses
- no checksum on payload
- allow *fragmentation* of large packets into MTU-sized frames
- 20 (IPv6: 40) byte header
- IP multicast: receiver group with anonymous membership

IPv4

IPv4 Service Model

datagram: each packet is independent of all others

best effort: packet may arrive or not after some time

IPv4

- independent packets
- unreliable
- might be reordered (rare), delayed, duplicated, ...
- but: minimal service on top of *anything* (see RFC 1149)
- only *header* checksum

IPv4 Header

RFC 791

IPv4

version: always 4

TOS (type of service): precedence (3 bits) and "minimize delay", "maximize throughput", "maximize reliability", "minimize cost" bits ****** rarely used

identifier: identifier, different for each packet from host

TTL: time to live field; initialized to 64; decremented at each router \longrightarrow drop if TTL = 0 (prevent loops!)

protocol: next higher protocol (TCP: 6, UDP: 17)

header checksum: add together 16-bit words using one's complement in optimized for software

IP Fragmentation and Reassembly

data link protocol may limit packets < 65, 536 bytes \implies transport layer packet may be too big to send in single IP packet

IP Fragmentation and Reassembly

split TPDU into *fragments*

- each fragment becomes its own IP packet (routers don't care)
- each fragment has same identifier, source, destination address
- fragment offset field gives offset of data from start of original packet
- more fragments (MF) flag of 0 if last (or only) fragment of packet
- fragments reassembled only at final destination
- routers must handle at least 576 bytes
- *do not fragment* bit prevents fragmentation **m** drop + error message
- avoid multiple fragmentation $(1500 \rightarrow 620) \implies MTU$ discovery

IP Options

Extend functionality of IP without carrying useless information:

- security and handling restrictions for military
- determine route (source route)
- record route
- record route and timestamps

(rarely used \leftrightarrow not all routers support them)

IP Record Route Option

- source creates empty list of \leq 9 IP addresses
- option: length, pointer, list of IP addresses
- routers note outgoing interface in list
- ... and bump pointer

IP Source Route Option

- source determines path taken by packet (≤ 9 hops)
- *loose*: any number of hops in between
- *strict*: every hop; if not directly connected, discard
- same format as record route option
- router overwrites with address of outgoing interface
- must be copied to fragments
- destination should reverse route for return packets
- not too popular \blacksquare router performance \downarrow

ICMP

- used to communicate network-level error conditions and info to IP/TCP/UDP entities or user processes
- often considered part of the IP layer, but
 - IP demultiplexes up to ICMP using IP protocol field
 - ICMP messages sent within IP datagram
- ICMP contents always contain IP header and first 8 bytes of IP contents that caused ICMP error message to be generated

20–byte standard 8 bit IP header ICMP	sype 8 bit ICMP code	16-bit checksum	contents of ICMP msg
--	-------------------------	-----------------	----------------------

type	code	description
0	0	echo reply (to a ping)
3	0	destination network unreachable
3	1	destination host unreachable
3	2	destination protocol unreachable
3	3	destination port unreachable
3	4	fragmentation needed and DF set
3	6	destination network unknown
3	7	destination host unknown
3		other reasons
4	0	source quench (slow down)
5	1	redirect message to host
8	0	echo request (ping)
9	0	IS-ES router advertisement (new)
10	0	ES-IS router discovery (new)
11	0	time exceeded = TTL zero
12	0	IP header bad
17	0	address (subnet) mask request
18	0	address (subnet) mask reply

ping

- checks if host is reachable, alive
- uses ICMP echo request/reply
- copy packet data request \rightarrow reply

```
ping -s gaia.cs.umass.edu
PING gaia.cs.umass.edu: 56 data bytes
64 bytes from gaia.cs.umass.edu (128.119.40.186): icmp_seq=0 time=276 ms
64 bytes from gaia.cs.umass.edu (128.119.40.186): icmp_seq=1 time=281 ms
64 bytes from gaia.cs.umass.edu (128.119.40.186): icmp_seq=2 time=276 ms
^C
----gaia.cs.umass.edu PING Statistics----
4 packets transmitted, 3 packets received, 25% packet loss
round-trip (ms) min/avg/max = 276/277/281
```

- allows to follow path taken by packet
- send UDP to unlikely port; 'time exceeded' and 'port unreachable' ICMP replies
- can use source route (-g), but often doesn't work

```
$ traceroute gaia.cs.umass.edu
   gmdbgate (192.35.149.248) 6 ms 2 ms
 1
                                         2 ms
 2
   188.1.132.142 (188.1.132.142) 263 ms 178 ms 188 ms
   gmdisgate.gmd.de (192.54.35.68) 153 ms 187 ms 151 ms
 3
 4
   icm-bonn-1.gmd.de (192.76.246.17) 226 ms 207 ms 242 ms
   icm-dc-1-S2/6-512k.icp.net (192.157.65.209) 320 ms 315 ms 393 ms
 5
 6
   icm-mae-e-H1/0-T3.icp.net (198.67.131.9) 372 ms 297 ms 354 ms
 7
   mae-east (192.41.177.180) 456 ms 537 ms 401 ms
 8
   borderx2-hssi2-0.Washington.mci.net (204.70.74.117) 529 ms
                                                               385 ms
                                                                      340 ms
 9
    core-fddi-1.Washington.mci.net (204.70.3.1) 437 ms 554 ms
                                                              581 ms
10
    core-hssi-3.NewYork.mci.net (204.70.1.6) 418 ms
                                                   547 ms
                                                          492 ms
11
   core-hssi-3.Boston.mci.net (204.70.1.2) 453 ms 595 ms 724 ms
   border1-fddi-0.Boston.mci.net (204.70.2.34) 789 ms
                                                              354 ms
12
                                                      404 ms
   nearnet.Boston.mci.net (204.70.20.6) 393 ms 323 ms 346 ms
13
   mit3-gw.near.net (192.233.33.10) 340 ms 465 ms
14
                                                   399 ms
15
   umass1-gw.near.net (199.94.201.66) 557 ms 316 ms 369 ms
   lgrc-gw.gw.umass.edu (192.80.83.1) 396 ms
16
                                             309 ms
                                                     389 ms
17
    cs-gw.cs.umass.edu (128.119.44.1) 276 ms 490 ms
                                                    307 ms
   gaia.cs.umass.edu (128.119.40.186) 335 ms 317 ms 350 ms
18
```

ARP: IP address \rightarrow MAC address

- for broadcast networks like Ethernet, token ring, ...
- if MAC address unknown, send ARP request and hold on to packet
- ARP request \rightarrow broadcast: sender IP, MAC; target IP, MAC
- *all* machines update their cache **•** efficiency, allow change of interface
- ARP reply \rightarrow requestor: reverse source/target; fill in source MAC
- directly on Ethernet, *not* IP!
- cache ARP replies; drop after 20 minutes

ARP example

arp -a			
Net to	Media Table		
Device	IP Address	Mask Flag	s Phys Addr
le0	hamlet	255.255.255.255	08:00:09:70:7d:16
le0	gaia	255.255.255.255	08:00:20:20:07:03
le0	pern	255.255.255.255	08:00:20:20:75:3c
le0	kite	255.255.255.255	08:00:09:92:0d:d1
le0	condor	255.255.255.255	08:00:20:1c:95:ed

RARP: MAC \rightarrow **IP address**

- determine IP address at boot for diskless workstations
- remember: MAC address is unique and permanent
- host broadcasts RARP request (with its own MAC address)
- RARP server responds with reply
- allows third-party queries
- want several servers for reliability

Proxy ARP

- extend network: router fronts for H3, H4
- router answers ARP requests for H3, H4 from H1, H2 with its *own* hardware address
- assumes trusting relationship
- only needs to be added to single router
- only works for broadcast networks

Transport Layer: UDP and TCP

- UDP service = IP service + checksum + *ports*
- TCP service = UDP service + flow control + congestion control + sequenced, reliable byte stream
- */*TCP for multimedia:
 - loss recovery delay (RTT + ϵ)
 - windowed flow/congestion control w variable bandwidth
 - no multicast

Internet Domain Names

The Internet Domain Name System (DNS)

- hierarchical, dot-separated names
- multi-level delegation
- by country and by type of organization
- needs to be overhauled (59% of all domains = .com!)

Global top-level domains (gTLDs):

- 2 letters: countries
- 3 letters: independent of geography (except edu, gov, mil)

domain	usage	example	hosts (7/97)
com	business (global)	research.att.com	4501039
edu	U.S. 4 yr colleges	cs.columbia.edu	2942714
net	network provider	nis.nsf.net	2164815
mil	U.S. military	arpa.mil	542295
gov	U.S. non-military gov't	whitehouse.gov	418576
org	non-profit orgs (global)	www.ietf.org	327148
us	U.S. geographical	ietf.cnri.reston.va.us	825048
uk	United Kingdom	cs.ucl.ac.uk	878215
de	Germany	fokus.gmd.de	875631

Example

server 128.9.0.107
Default Server: b.root-servers.net
Address: 128.9.0.107

> erlang.cs.columbia.edu
Server: b.root-servers.net
Address: 128.9.0.107

New gTLDs

Proposed for 1998 by CORE, but fate uncertain:

- .firm for businesses, or firms
- .shop for businesses offering goods to purchase
- .web WWW activities
- .arts cultural and entertainment
- .rec recreation/entertainment
- .info information services
- .nom individual or personal nomenclature

DNS Issues

NTIA white paper, June 1998:

- no competition in registration cost
- registries vs. registrars
- additional TLDs?
- trademark disputes
- access to NSI database
- domain name speculators
- scarcity of good names
- IANA \longrightarrow non-profit oversight body

http://www.ntia.doc.gov/ntiahome/domainname/dnsdrft.htm

Domain Name Resolution

- hierarchy of redundant servers with time-limited cache
- each server knows the 13 root servers a.root-servers.net
- each root server knows gTLDs and refers queries to those
- each domain has ≥ 2 servers, often widely distributed
- also: mailbox translation
- *almost* a distributed database

Internet Growth

Architectural Principles

Architectural principles of the Internet

RFC 1958:

- large existing infrastructure **backward compatibility**
- "The goal is connectivity, the tool is the Internet Protocol, and the intelligence is end to end rather than hidden in the network"
- End-to-end functions can best be realised by end-to-end protocols.
- Nobody owns the Internet, there is no centralized control, and nobody can turn it off.

Design principles:

- Heterogeneity is inevitable and must be supported by design.
- If there are several ways of doing the same thing, choose one.

- All designs must scale readily to very many nodes per site and to many millions of sites.
- Performance and cost must be considered as well as functionality.
- Keep it simple.
- In many cases it is better to adopt an almost complete solution now, rather than to wait until a perfect solution can be found.
- Avoid options and parameters whenever possible. Configure them automatically.
- Be strict when sending and tolerant when receiving.
- Be parsimonious with unsolicited packets.
- Circular dependencies must be avoided.
- Objects should be self decribing (include type and size).
- All specifications should use the same terminology and notation, and the same bitand byte-order convention.

• Nothing gets standardised until there are multiple instances of running code.

Names and addresses:

- No hardcoded addresses.
- Single naming structure.
- Names should be case-insensitive ASCII.
- Addresses must be unambiguous.
- Upper-layer protocols must be able to identify end points unambiguously.

Internet Design Principles

- small, single-function protocols ****** re-invent similar functionality
- lower-layer protocols: attention to processing efficiency word alignment, fixed-length fields: CLNP vs. IPv4/IPv6
- incremental: can build small applications easily membedding of email, HTTP, whois, ...

Internet Design Principles

upper-layer protocols are text-based

- + "the universal telnet protocol simulator"
- + lots of tools (\approx Unix) such as Tcl, VisualBasic, Perl, ...
- space overhead
- parsing costs, but usually insignificant
- difficult to represent nested data structures
- +/- typically ASCII \implies internationalization required

but: most upper layer protocols (including NFS, ftp, HTTP, SMTP, RTSP, SIP, ...) are basically RPC
Need to coordinate views of the world in a distributed system

hard state: traditional telecom state is precious:

- handshake, with retransmission on timeout
- explicit teardown of state

soft state: "optimistic" approach **state is restorable**

- send periodic messages to set up or refresh state
- no explicit teardown (except for efficiency) metime-out state
- works even if routers, hosts fail or suffer amnesia
- sometimes allows selective state maintenance
- simpler? higher state overhead? recovery time?