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Motivation

e Current approaches for quality support

— Resource reservation, admission control, differentiated
services

e Pros: QoS expectation

e Cons: insufficient knowledge on data traffics,
conservative, network dynamics not considered, lacks
pricing support for multiple service levels

— Multimedia adaptation to network conditions
* Pros: efficient bandwidth usage
e Cons: users have no motivation to adapt requests
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Objectives

e Develop a resource negotiation and pricing framework
which

— Combines QoS support and user adaptation

— Allows resource commitment for short intervals

— Provides differential pricing for differentiated services, and
usage- and congestion-sensitive pricing to motivate user

adaptation
— Allows provider to trade-off blocking connections and raising
prices
a protocol

through which the user and network (or two network
domains) negotiate network delivery services.
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Protocol Architectures: Centralized (RNAP-C)
—

N ¥,

Access Domain - A

<387

Access Domain - B

Transit Domain
Internal Router Network Resource Negotiator

e Edge Router (UHRND) Host Resource Negotiator
@ Host — —p Data Flow

> RNAP Messages  <---¥ Intra-domain messages
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Protocol Architectures: Distributed (RNAP-D)

Access Domain - A Access Domain - B

Transit Domain

e Internal Router EHRNT Host Resource Negotiator
e Edge Router = =% Data Flow

@ Host < =» RNAP Messages
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RNAP Messages

uotation
Reserve

Quotation
Reserve

8/21/00

' Inquires about available
services, prices

1 Specifies service
availability, accumulates service
statistics and prices

~Requests service(s),
resources

: Admits the service request
at a specific price or denies it.

Tears down negotiation
session

~Releases the resources

IRT, Columbia University 7



RNAP Message Aggregation

First level aggregation Second level aggregation  De—aggregation

O Border routers —» First level aggregate RNAP messages

—+ Per—flow RNAP messages =—# Second level agaregate RNAP messages

First level aggregation Second level aggregation Decaggregation [ yppy

HEMN
— Per—flow ENAP messages

@ Domain NRNs » Fist level aggregate RNAP messages

HEN
O Borderrouters =% g..5nd level agaregate RNAP messages
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RNAP Message Aggregation (cont'd)

e Aggregation when senders share the same destination
network

 Messages merged by source or intermediate domains

 Messages de-aggregated at destination border routers
(RNAP-D), or NRNs (RNAP-C)

e Qriginal messages sent directly to destination/source
domains without interception by intermediate RNAP
agents; aggregate message reserves and collects price at
Intermediate nodes/domains
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Block Negotiation

e Block Negotiation

— Aggregated resources are added/removed In large
blocks to minimize negotiation overhead and
reduce network dynamics

Bandwidth

time
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Two Volume-based Pricing Policies
* Fixed-Price (FP)
— FP-FL: same for all services
— FP-PR: service class dependent
— FP-T: time-of-day dependent
— FP-PR-T: FP-PR + FP-T
— During congestion: higher blocking rate OR higher dropping
rate and delay
» Congestion-Price-based Adaptation (CPA)
— FP + congestion-sensitive price
— CP-FL, CP-PR, CP-T, CP-PR-T

— During congestion: users maintain service by paying more
OR reduce sending rate or lower service class
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Proposed Pricing Strategies

e Holding price and charge:
- phj: al (puj - Py j-l)
— ¢, (n) =py/ri(nt!

e Usage price and charge:

- max [ x/(pt, ps. ... p7) P/ -H(C),
st. r(x(pf2.,ps, - PSSR, JOJ

o Cuij(n) = puj Vi (I’I)

e Congestion price and charge:
— P! (n)=min [{p{ (n-1) + 01 (D), ) x (D-S)/S,0 }*, Pay |
o Ccij (n) = pcj Vi (I’I)
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Usage Price for Differentiated Services

Usage price for a service class based on cost of class
pandwidth: lower target load -> higher QoS , but
nigher per unit bandwidth cost

Parameters:
— Ppasic Dasic rate for fully used bandwidth
— p/: expected load ratio of class |

— xU: effective bandwidth consumption of application i
— A/: constant elasticity demand parameter
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Usage Price for Differentiated Services (cont'd)

Price for class |: p/= p,.../ P’
Demand of class |. ¥(p/)=A/p/
Effective bandwidth consumption:
- X (pS)=A/(p/p’)

Network maximizes profit

— Max [ZI_ (Aj/puj) puj' F(O), puj = pbasic/pj:
s.t. 2 A/(p,/pl)sC

Hence.
- pbasiczzl Aj/C, pu': ZI Aj/(cpj)
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User Adaptation based on Utility

Users adapt service selection and data rate based on utility
which is associated with QoS

Utility expressed in terms of perceived value, e.g.,15 cents /min

Multi-application task (e.g., video-conference) - maximize total
utility of task subject to budget -> dynamic resource allocation
among component applications

User utility optimization:

- U=Z U (X (Tspec, Rspec)]

—max [Z,U(X)-C() ], s.t. ZC(X)<b, x .
— Determine optimal Tspec and Rspec

Not need to reveal utility to the network

<X<X,.,
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User adaptation based on utility: example

User defines utility at discrete bandwidth, QoS levels

Utility is a function of bandwidth at fixed QoS

— An example utility function: U (x) = U, + w log (x / x,,,)

— U, :perceived (opportunity) value at minimum bandwidth
— W sensitivity of the utility to bandwidth

Function of both bandwidth and QoS

- UX=U,+wlog(x/x,)-k,d-kl, forx=x,

— k, : sensitivity to delay

— k; : sensitivity to loss

Optimization:

— max [, U/+w log (X /x,)-kj d-k'l-p x],
s.t. ZpPx<b,xz x,,d<D, I<L

— Without budget constraint: x' =/ p'

— With budget constraint: b’ = b (w'/Z, wk)
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Simulation Model
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Simulation Model

e Network Simulator (NS-2)
 Weighted Round Robin (WRR) scheduler
 Three classes: EF, AF, BE

— EF:

e tail dropping, limited to 50 packets
» expected load threshold 40%, delay bound 2 ms, loss bound 10°

— AF:
o RED-with-In-Out (R10), limited to 100 packets
« expected load threshold 60%, delay bound 5 ms, loss bound 104

— BE:
 Random Early Detection (RED), limited to 200 packets
» expected load threshold 90%, delay bound 100 ms, loss bound 102
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Simulation Model (cont'd)
 Parameter Set-up

— topologyl: 60 users; topology 2: users
— sources: on-off or Pareto on-off (shape parameter: 1.5)
— price adjustment factor: update threshold:

— negotiation period: 30 seconds
— price (for a 64 kb/s transmission):

e usage price min, min, min,
min
 holding price: min, min
— w: 64 kb/s as reference, randomly set based on service type
e EF min - min; AF: min - min ; BE:
min - min.

— average session length 10 minutes,exponentially distributed.

8/21/00 IRT, Columbia University 19



Simulation Model (cont'd.)

e« Performance measures
— Engineering metrics
» Bottleneck traffic arrival rate

e Average packet loss and delay
» User request blocking probability

— Economic metrics
e Average user benefit
 End to end price, and it standard deviation
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Design of Experiments

Performance comparison: FP (usage price + holding price)
and CPA (usage price + holding price + congestion price)

Four groups of experiments.

— Effect of traffic burstiness

— Effect of traffic load

— Load balance between classes
— Effect of admission control

Other experiments (see web page for references ):

— Effect of system control parameters: target reservation rate, price
adjustment step, price adjustment threshold

— Effect of user demand elasticity, session multiplexing

— Effect when part of users adapt, session adaptation and adaptive
reservation
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Effect of Traffic Burstiness

Price average and standard Variation over time of the
deviation of AF class price of AF class
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Effect of Traffic Burstiness (cont’d)

Average packet delay Average packet loss
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Average traffic arrival rate

Bottlenack traffic armival rate

Effect of Traffic Burstiness (cont’d)
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Effect of Traffic Load

Price average and standard Variation over time of the
deviation of AF class price of AF class
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Average packet delay (second)

Effect of Traffic Load (cont'd)

Average packet delay
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Effect of Traffic Load (cont'd)

Average traffic arrival rate  Average user benefit

18 T T T T | I 10 T T T
le—=e EFFP :
| |s—=a AFFP i
I -'1 I e o BE FP | Eﬁ—""'ﬂ'—ﬂ::' - =
|o---o EFGPA | i
@ | |B-=--8 AFCPA| =
o 1.2} | E
™ & <10}
2 =
o 1 , E
é ' . 4 D
E e -ﬂ-\.\_“_,.,—'- ! E
0.8 5’1
g 2
5 g a0/
£ o8 . it e % e—e EFFP .
= 4 =
e \ < B——a  AFFP \
ol |— BEFP -
: a----0 EFCPA
g--—8 AF CPA
BE CGPA ;
pal i i i i i i i , A | -5%- f L ] » i .
%5 o8 07 o8 a8 i 1.1 12 13 14 15 § o0& oy 08 08 1 1.1 12 13 14 138
AF offered loa AF offered load

8/21/00 IRT, Columbia University 27



(=] =] [=] [=] [=] =
h =] “n >

=]

AF Price ($/min for 64kb's bandwidth)

=]
]

=]
=i

Load Balance between Classes

Variation over time of the
price of AF class

-
.

-l

of

0z 04 08 OB i 12 14 16
fime (5]

Ratio of AF class traffic
migrating through class re-
selection

o
Ll

=] =] (=] =] =] =]
LA e h o =4 e ]

f=

Ratio of AF traffic migrating between classes
L]

(=]

-] = ._\_\_\_\_B_\_\_\_ = : x x 5 —
lo—a  AF |

&
(18] 0B 0.7 LF ] o9 1 11 12 1.2 1.4

AF offered load

8/21/00 IRT, Columbia University



Load Balance between Classes (cont’'d)

Average packet delay {semn_d]

Average packet delay Average packet loss
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Effect of Admission Control

Average packet delay Average packet loss
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Effect of Admission Control (cont'd.)

Average and standard deviation User request blocking rate
of AF class price
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Conclusions

e RNAP

— Supports dynamic service negotiation, mechanisms for price
and charge collation

— Allows for both centralized and distributed architectures
— Multi-party negotiation: senders, receivers, both
— Can be stand alone, or embedded inside other protocols
— Reliable and scalable
* Pricing
— Consider both long-term user demand and short-term traffic
fluctuation; use congestion-sensitive component to drive
adaptation in congested network
e Application adaptation

— Bandwidth proportional to user’s willingness to pay
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Conclusions (cont'd)

e Simulation results:

— Differentiated service requires different target loads in each
class

— Without admission control, CPA coupled with user
adaptation allows congestion control, and service
assurances by restricting the load to the targeted level

— With admission control, performance bounds can be assured
even with FP policy, but CPA reduces the request blocking
rate greatly and helps to stabilize price

— Allowing service class migration further stabilizes price
e Future work

— Refine the RNAP protocol, stand alone RNAP
Implementation in progress, experiments over Internet2
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