Differentiated Services

- QoS Problem
- Diffserv Architecture
- Per hop behaviors

Problem: QoS

- Need a mechanism for QoS in the Internet
- Issues to be resolved:
 - Indication of desired service
 - Definition of available services
 - Enforcement of contracts (policing)
 - Providing of service
 - Billing for service

Existing mechanisms: TOS

Current IP TOS/Precendence Bits (RFC 791)

- Must be set by clients doesn't work with existing apps
- Defines service type ("control traffic")
- Defines only a small set of simple services ("minimize delay")
- Billing and network provisioning hard ISP doesn't know what will happen

Existing mechanisms: ATM VCs

- Provides some aggregation
- still requires E2E signaling
- State still a problem

Existing mechanisms: RSVP

- No billing defined useless without
- end-to-end nature makes billing really hard multilateral, with path changes
- no way to aggregate → number of reservations scales with link bandwidth
- message overload → e2e signaling bad
- useless path state if no reservations exist
- Existing apps must be changed (even OS!)

Differentiated services

- Provide QoS < RSVP, > best effort "BBE"
 - No end-to-end signaling
 - Must work with existing applications
 - Move intelligence and service provisioning to edge
 - Simple, well specified behaviors in core
 - Core behavior based on aggregates
 - Aggregation between domains
 - Flexibility for a wide range of services
 - Separate service primitives from implementation

Differentiated service architecture (RFC 2475)

- Service Providers (ISP) define services
- Services are negotiated with customers in the form of potentially complex Service Level Agreements (SLA's)
- Customers can be people or other ISP's or network providers
- At the edge of network, boundary router takes packets and marks, drops, or shapes them based on SLA
- Within the core of the network, routers treat packets solely based on markings they have received
- Markings are in the DS field of IP header (formerly TOS byte)

Defining SLA's

- Service Level Agreement Comprises
 - quantitative performance metrics
 - * absolute/relative loss
 - * absolute/relative delay
 - * absolute/relative throughput
 - service constraints
 - * time of day
 - * locality per source, per destination
 - * application based
 - * traffic contracts leaky bucket
 - customer identity

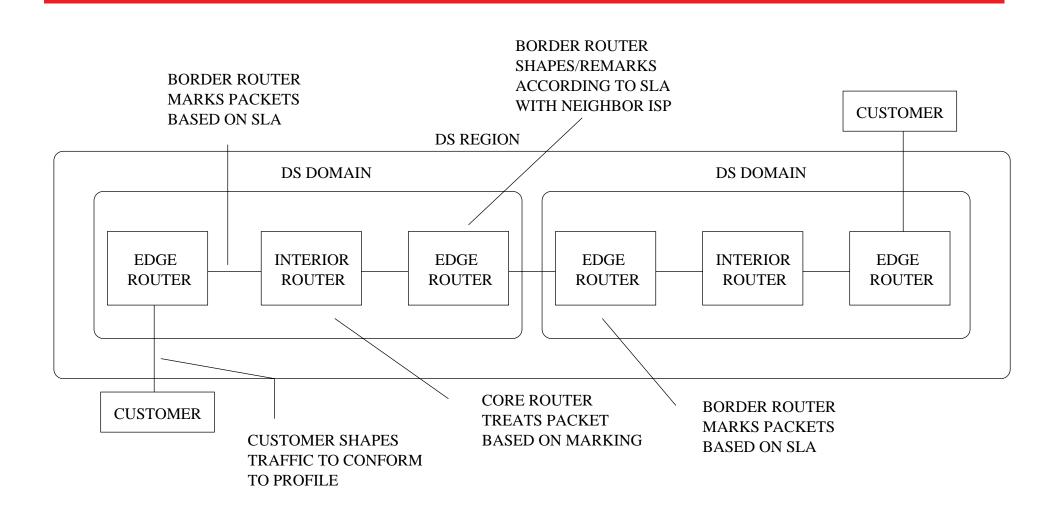
Scope of services

- Services are not defined end to end
- Services are bilateral agreements between peers
 - End user to local ISP
 - Local ISP to Backbone ISP
 - Campus Network to Backbone provider
- Simplifies billing issues
- Provides a clean architecture for provisioning and implementation

Instantiating SLA's

- Two kinds of SLA *static* and *dynamic*
- Static SLA's are pre-provisioned, dyanmic are signalled when needed
- Many ways to instantiate a static SLA in a DS Edge Router
 - **SNMP** Lacks asynchronous notification, replication of data
 - **LDAP** Complex descriptions possible, replication supported, but lacks server to client updates
 - **COPS** Integrates with RSVP policy
 - **DIAMETER** General policy mechanism, meets requirements well
- Instantiating a dynamic SLA is hard RSVP?

DiffServ functional elements


DS Edge Router: Connects to an edge router in a neighboring domain

DS Interior Router: Router inside core of network

DS Domain: Set of routers under a single policy authority

DS Region: Set of contiguous DS Domains

Diffserv functional elements

DiffServ edge routers

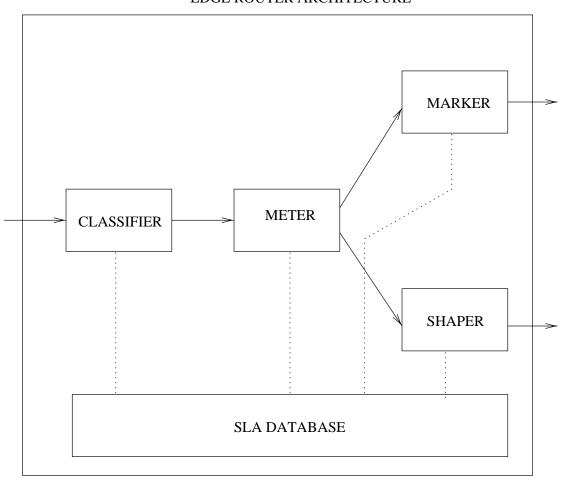
• Edge Router contains a number of elements

Classifier: Looks at fields in the packets to determine what SLA/treatment to given them

Micro Flow Classifier: Based on 5-tuple

Bandwidth Aggregate Classifier: DS field

Meter: Determines traffic char. of classified packets;


Marker: Sets DS field based on meter & classifier;

Dropper: drops out-of-bound packets ("policing");

Shaper: Shapes traffic by adding delay

DiffServ edge router

EDGE ROUTER ARCHITECTURE

Per-Hop Behaviors (PHB)

- DS field consists of a 6 bit *codepoint*, identifies a *Per Hop Behavior* (*PHB*)
 - Defines low level service treatment the packet should get
 - Does not specify implementation, just service
 - Not dependent on 5-tuple
- codepoints mapped to PHB's via a lookup table
- some PHB's standard, others experimental/proprietary
- PHB's that only have meaning relative to others form a PHB Group
- likely there will be a small number of PHB's

Per-Hop Behaviors

• Example PHBs and PHB Groups

Best Effort: Current best effort service

Assured: Two PHB's in this group: high drop priority and low drop priority.

Premium

• Services are created by intelligently classifying, metering, and then assigning packets to a small number of PHB's

Assured Service (RFC 2597)

- mark packets as "in" or "out" based on profile
- **RIO**: schedule based on variation of random early drop (RED):
 - if average queue size below minth, don't drop
 - if average between minth and maxth, drop with prob. 0 to maxp
 - if above maxth, drop all
 - OUT packets: measure whole queue
 - IN packets: count only "in" packets

Premium, Expedited Forwarding (EF) (RFC 2598)

Packets should experience almost no queueing delays – "virtual leased line"

- priority service
- weighted round robin (WRR)
- class-based queueing (CBQ)

must drop excess packets

Receiver-Based

- DS mechanisms sender oriented
- Receiver oriented is much harder
- Requires reverse congestion notification
- Requires co-operating sources
- Exception receiver policies for access links

The DS field (RFC 2474)

- BA: behavior aggregate (DS field)
- MF: multi-field (DS field + source, destination, ...)

DSCP CU

TOS BYTE IN IPV4 HEADER

X0: Standardized

11: Experimental, not standards tracked

01: Experimental, used in standards if needed

DSCP: Differentiated Services Code Point CU: Currently Unused

may be rewritten in the network

Interoperability with Intserv

• Three modes:

- Parallel both exist, no interaction
- IntServ over Diffserv Diffserv agreements purchase tunnels over which RSVP can be used to finely manage bandwidth
- IntServ aggregation use Intserv, but aggregate at edges into diffserv

Admission control

in-band: reserve "pipes" or "trunks" via RSVP or specialized protocol

out-of-band: bandwidth broker; track usage within domain

m

needs to keep congestion map

Example SLAs with a single PHB

- Single PHB 1: packets receive almost no delay or loss
- SLA 1:
 - User can send up to 100 kb/s with no loss on Saturdays, 50 kb/s during week
 - Implementation: Classifier selects customers packets. On Saturdays, traffic is leaky bucket shaped to 100 kb/s, 50 kb/s during week. Packets leaving shaper have PHB of 1.

Example SLAs

Toll quality IP telephony:

• Implementation: Classifier detects customers IP telephony traffic based on port/protocol field in headers (not easy...). All telephony classified traffic is marked with PHB 1, else PHB 0 (best effort)