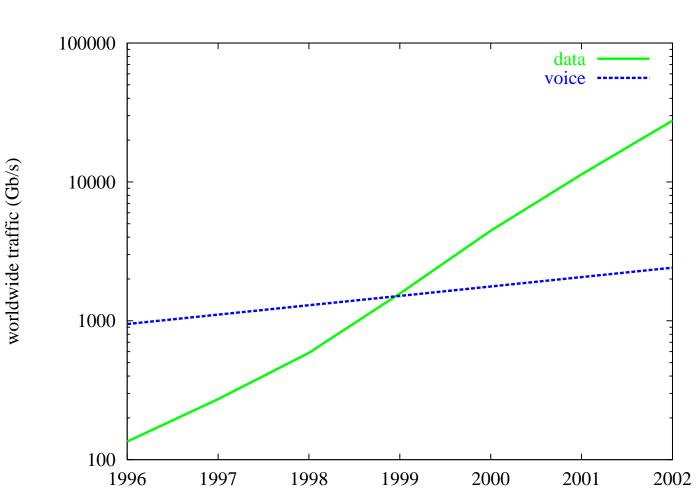
# Internet Multimedia: Technology, Standards and Perspectives

Henning Schulzrinne Dept. of Computer Science Columbia University New York, New York schulzrinne@cs.columbia.edu

Bloomberg

January 11, 2000


### **Overview**

- Internet multimedia applications
- Internet telephony
- media-on-demand
- distribution applications
- multicast
- IPv6

# Integration

Vision: the universal, integrated network

- radio, TV, telephone, data (email, web, chat, ...)
- single network management
- higher redundancy (if done carefully...)
- earlier attempts:
  - PBX with data access
  - ISDN
  - Isochronous Ethernet
  - ATM
- all voice-dominated or voice-cognizant  $\longrightarrow$  failure



### **Voice vs. Data Volume**

# **Media Integration**

CDs/video tapes + Internet telephony + conferences + radio/TV

- few *technical* differences in protocols: share lower layers
- discreet points  $\longrightarrow$  continuum:
  - public vs. private
  - invited vs. announced
  - from one to millions participants
  - symmetric vs. asymmetric
  - delay sensitive vs. distribution
  - media: audio, video, text, but also chat, chess, sensors, ...
- unified terminal, but maybe different emphasis couch potato vs. office work vs. phone

### **Internet Telephony**

- initially motivated by cost:
  - "borrowed" infrastructure
  - bypass inflated international tariffs
  - no FCC access and universal service charges
  - existing PCs
- now, primarily phone-to-phone
- emphasis now on services, integration

# The phone works — why bother with VoIP?

carrier perspective

• variable compression: tin can to broadcast quality

user perspective

- security through encryption
- caller, talker identification
- better user interface (browser)
- internat. calls: TAT transatlantic cable = \$0.03/hr
- no local access fees (3.4c)
- easy: video, whiteboard, ...

- silence suppression  $\blacksquare$  traffic  $\downarrow$
- shared facilities management, redundancy
- advanced services (email/web integration)
- cheaper switching (\$0.005 vs. \$5/kb/s)
- 9.6 kb/s fax as data

# **Internet Telephony Services**

- interactive web response
- integration email + voice mail
- visual caller id
- location-transparent features
- PBX features at home
- . . .

### **Internet Telephony Architecture**

Transport media: RTP, with extensions for DTMF

Set up calls: H.323 and SIP

Find gateways: TRIP

Map phone number to IP addresses: DNS "enum"

**Voice mail:** RTSP + email

# **Internet Telephony: Challenges**

- delay: need  $< 150 \, \text{ms}$
- packet loss: < 5%
- reliability: "5 nines"
- cheap, non-Windows end systems

### **Internet Telephony – as Part of Internet**

- email address = SIP address
- SIP URLs in web pages
- forward to email, web page, chat session, ...
- include web page in invitation response ("web IVR")
- RTSP: choose your own music-on-hold
- include vCard, photo URL in invitation

# **SIP Standardization Status**

- Feb. 2, 1999: IETF Proposed Standard
- March 17, 1999: IETF RFC 2543
- eligible for Draft Standard: 6 months, 2 implementations  $\sqrt{}$
- new SIP working group (move from mmusic)
- working on updated draft based on implementation experience
- mostly clarifications + optional headers, no new version

### **SIP Bake-Off**

- 3 bake-offs: April, August, December
- from 15 to 33 groups
- hardware, PSTN gateways, proxy/redirect servers, clients, test instrument, ...

# **SIP Bake-Off Participants**

| 3Com                | dynamicsoft     | Mitel    |
|---------------------|-----------------|----------|
| 8x8                 | Ellemtel        | Netspeak |
| Agilent             | Ericsson        | Nortel   |
| Alcatel             | Facet           | Nuera    |
| Broadsoft           | Helsinki Univ.  | OZ.com   |
| British Telecom     | Hewlett-Packard | Pingtel  |
| Catapult            | Indigo          | Radcom   |
| Cisco               | IPcell          | Telogy   |
| Columbia University | Lucent          | Vovida   |
| Dialogic            | MCI Worldcom    | VTEL     |
|                     | Mediatrix       |          |

# **Integrating Signaling and Instant Messaging: Some Ideas**

- "reverse" signaling: callee indicates availability
- buddy lists = special case of *event notification*
- other events: "sensor 17 smells smoke", "Beanie Babies are on sale", "(voice) mail has arrived", ...
- subscribe notify set up call
- useful for call parking
- many SIP mechanisms apply: security, redirection, proxying, content negotiation, ...

# **SIP for Event Notification**

- add two methods: SUBSCRIBE and NOTIFY
- proxy server may intercept SUBSCRIBE
- use message body for event description
- default: presence, indicated by REGISTER
- one of *many* proposals for presence (IETF WG!)

### **Media-on-Demand Services**

*true* on demand vs. (e.g.,) netradio.com

- RealNetworks, Windows MediaPlayer
- mostly proprietary, moving towards standards
- RTSP for controlling delivery, RTP for streaming audio and video
- SMIL (W3C) for content description
- major problem: scaling

### **Distribution Services**

- current architecture:
  - unicast streams  $\longrightarrow$  only hundreds of listeners, needs lots of servers
  - ISP-based replication (Akamai)
  - satellite-based replication (SkyCache)
- multicast

### **Radio Infrastructure**

Internet radio "networks":

- station discovery: SAP, SDP
- content tagging
- local content (e.g., MarconiNet experiments)
- ad insertion

# **Multicast: Applications**

- send only *one* copy
- replicate as late as possible
- applications:
  - data distribution (stock quotes, news, ...)
  - audio/video distribution (Internet radio, TV)
  - near-video on demand: align to nearest station
  - audio/video conferencing
  - resource discovery ("what the nearest foo service?")
  - redundancy and synchronization

### **Multicast: Technology**

- roughly equivalent to radio: just tune to multicast IP address (e.g., 224.2.0.1, IETF-1-VIDEO.mcast.net)
- don't need to know sender
- receive-only or send-only possible
- zero to any number of senders
- subscribe to multicast group if sending

#### **Multicast: Pieces**

- multicast routing via flood-and-prune: DVMRP  $\rightarrow$  PIM-DM
- local groups: MOSPF = extension of OSPF to multicast
- sparse groups: PIM-SM, CBT
- PIM-SM: high protocol complexity
- multicast address allocation: MADCAP (just published) to get address, multicast Address Set Claim (MASC) across domains, Multicast Address Allocation Protocol (AAP) within domain

### **Multicast: Status**

- available in all modern operating systems
- mostly available in Ethernet switches and other LANs
- ATM very iffy
- router support for IGMP, DVMRP available; PIM-SM/DM for Cisco and few others
- operational issues prevent widespread deployment
  - billing?
  - fault location?
  - denial-of-service amplifier
  - most users want on-demand
- overlay network: Mbone

# IPv6

- solve address scarcity problem (→ NATs with private address spaces) by increasing address from 4 to 16 bytes
- add better support for multicast, security, mobility
- remove little-used features from IP header
- need to run both IPv4 and IPv6 for *looong* time

# For more information...

SIP: http://www.cs.columbia.edu/sip
RTSP: http://www.cs.columbia.edu/~hgs/rtsp
RTP: http://www.cs.columbia.edu/~hgs/rtp
Papers: http://www.cs.columbia.edu/IRT