
Internet Real-Time Laboratory

Henning Schulzrinne Dept. of Computer Science, Columbia University, New York schulzrinne@cs.columbia.edu

http://www.cs.columbia.edu/IRT

IBM – October 12, 1999

IRT Research Topics

- network infrastructure
 - scalable resource reservation protocols
 - QOS measurements and management
 - adaptive services and pricing
- Internet telephony (VoIP)
 - signaling: SIP, translation to ISUP/H.323/MGCP
 - VoIP services and service creation
 - Internet voice mail
 - e*phone Internet "appliance"
- applications
 - "civil society" computing
 - Internet TV and radio
 - distance learning

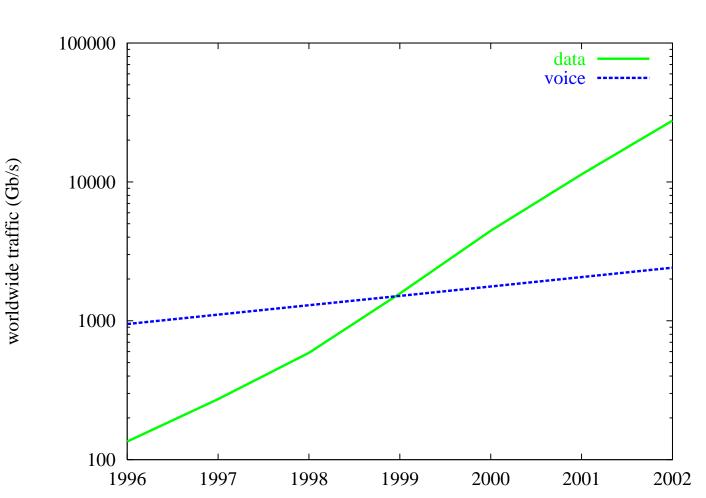
IRT Members: Full-Time PhD Students

Student	CU	IRT	research topic
Jonathan Lennox	F1994	S1997	call processing language
Wenyu Jiang	F1995	F1998	Internet QOS measurements
Xin Wang	F1996	F1996	multicast, QOS, pricing
Maria Papadopouli	F1996	F1997	ad-hoc networks
Fatima Al-Garawi	F1997	F1997	distance learning
Weibin Zhao	F1997	F1997	directory services
Xiaotao Wu	S2000		service creation

IRT Members: Part-Time PhD students

Student	employer	research topic
Lisa Amini	IBM	video on demand
Mandis Beigi	IBM	resource reservation
Ethen. Bommaiah	Bell Labs	media on demand
Ashutosh Dutta	Telcordia	MarconiNet
Christopher Kang	Bell Atlantic	signaling translation
Santosh Krishnan	Bell Labs	scheduling, QOS
Ping Pan	Bell Labs	resource reservation
Jonathan Rosenberg	Bell Labs	Internet telephony

IRT Members: Masters Students and Visitors


Gautam Nair		1999–	Internet telephony
Kundan Singh		1999–	Internet telephony
Jianqi Yin	BUPT, Beijing	1997–1999	Internet telephony
Elin Wedlund	Ericsson, Sweden	1998–1999	mobility
Tony Eyers	U. Wollongong	1999	signaling performance

Internet Telephony and Multimedia

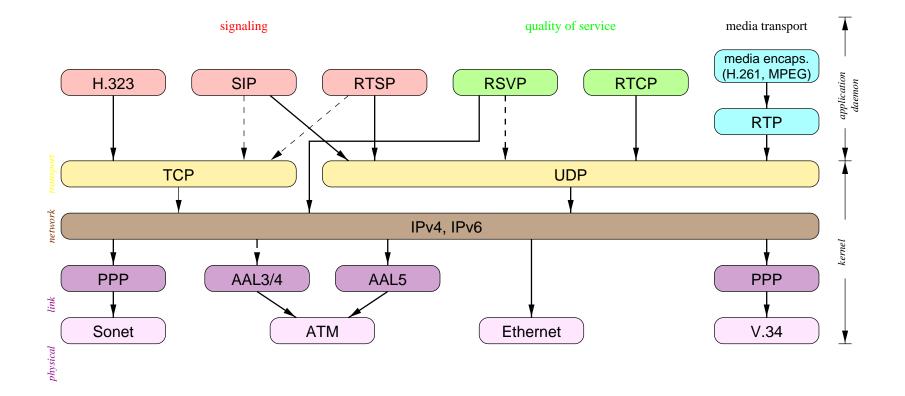
- Internet telephony: motivation and problems
- protocol architecture
- quality of service:
 - light-weight resource reservation
 - forward error control
- services 🖙 signaling
- the "programmable" telephone
- Internet telephony "appliances"
- mobile services

Historical perspective

- 1876 invention of telephone
- 1915 first transcontinental telephone (NY–SF)
- 1920's first automatic switches
- 1956 TAT-1 transatlantic cable (35 lines)
- 1962 digital transmission (T1)
- 1965 1ESS analog switch
- 1977 4ESS digital switch
- 1980s Signaling System #7 (out-of-band)

Data vs. Voice Traffic

The phone works — why bother with VoIP?

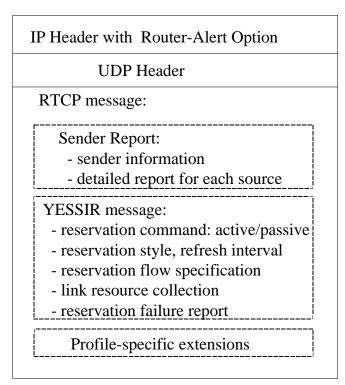

user perspective

carrier perspective

- variable compression: tin can to broadcast quality
- security through encryption
- caller, talker identification
- better user interface (browser)
- internat. calls: TAT transatlantic cable = \$0.03/hr
- no local access fees (3.4c)
- easy: video, whiteboard, ...

- silence suppression \blacksquare traffic \downarrow
- shared facilities management, redundancy
- advanced services (email/web integration)
- cheaper switching (\$0.005 vs. \$5/kb/s)
- 9.6 kb/s fax as data

Internet multimedia protocol stack

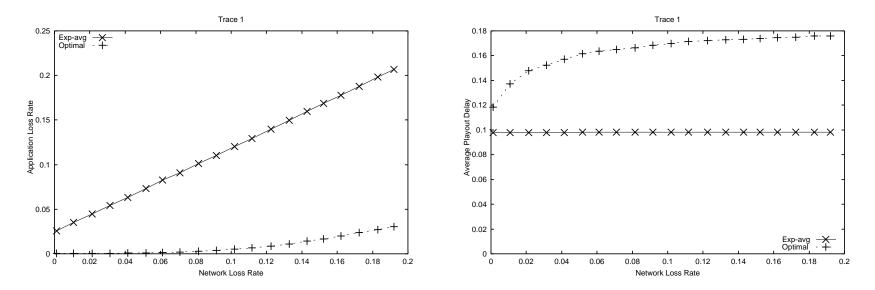


YESSIR: Yet another Sender Session Internet Reservation

- RSVP: separate daemon, API
- integrate into application that needs it (embedded systems!)
- in-band measier firewall
- RTP: common data transport protocol for audio/video
- router alert option in RTCP packets
- resource demands: payload type, measurement, flow specs, ...
- soft-state + RTCP BYE
- partial reservations: add links as session ages \leftrightarrow fragmentation

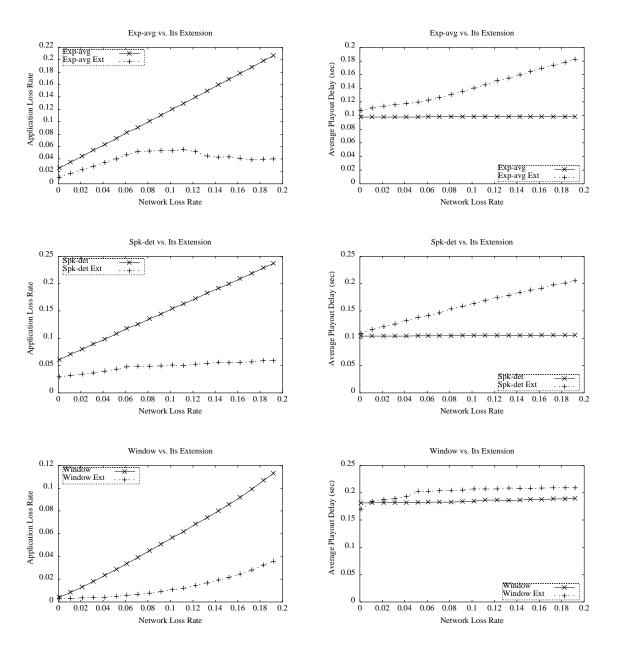
YESSIR

plain RTCP SRs or additional information.


end-to-end refresh (vs. hop-by-hop)

RSVP and YESSIR performance

	setup	refresh
	$\mu { m s}$	
RSVP	1,105	624
YESSIR	356	344


Integrating packet FEC into adaptive voice playout buffers

- playout buffer: trade loss (2...20%) for delay (50...500 ms)
- (n, k) FEC: add n k additional packets for total of n

FEC: virtual delay

- virtual delay = min(arrival, recovery) departure
- playout delay $\approx \alpha \cdot \sigma$
- if loss < target loss, $\alpha \leftarrow \alpha + \delta$
- recover lost and **late** packets
- 20% loss: application loss/5, delay * 2

October 12, 1999

New playout algorithm: delayed optimal

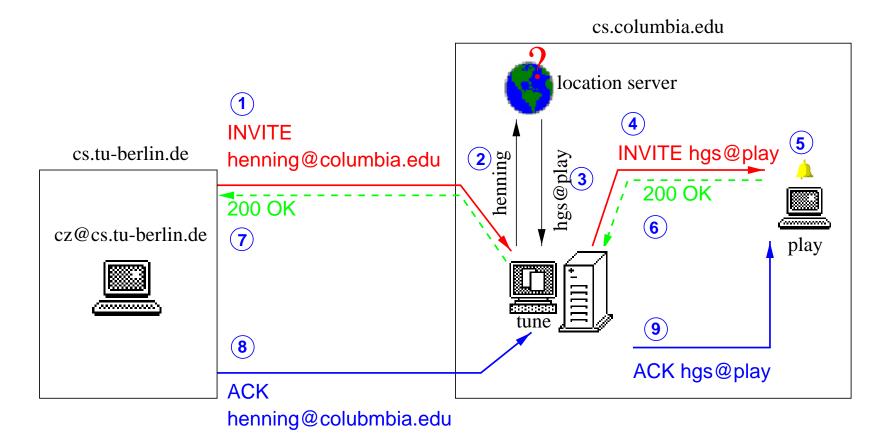
- after talkspurt, one knows optimal delay
- use optimal combination for next talkspurt
- $D_i = \alpha D_{i-1} + (1-\alpha)D_{opt}$
- user perception function: minimal delay that achieves loss target

New playout algorithm: Analytical

- assume independent loss p, delayed randomly d
- compute playout probability
- tabulate delay distribution histogram
- at end of talkspurt, find matching playout delay for target loss rate

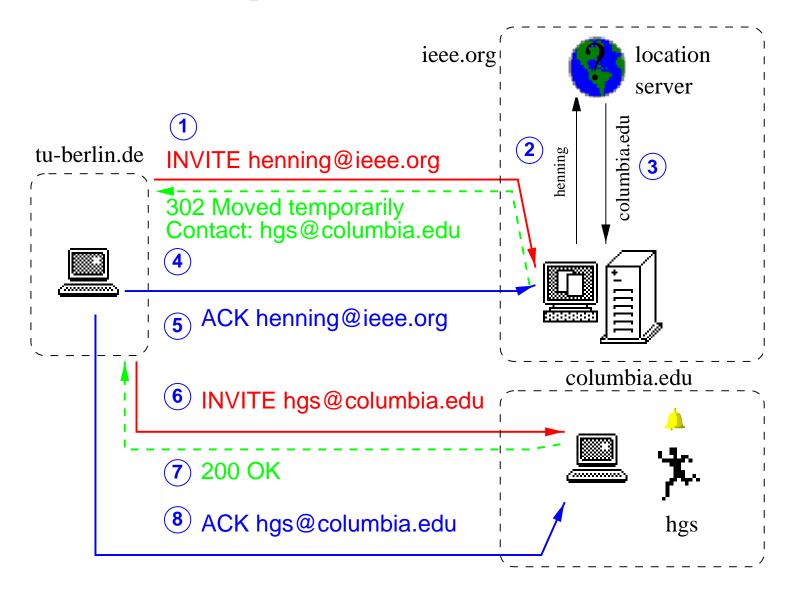
SIP: Session Initiation Protocol

- call user
- re-negotiate call parameters
- manual and automatic forwarding
- call center: reach first (load distribution) or reach all (department conference)
- *personal mobility* (complements data link/IP mobility) change of terminal (PC, digital cordless, palmtop), location
- "forking" of calls
- terminate and transfer calls
- web security, cookies


SIP addresses food chain

yellow pages	"president	t of the United States"	
	$\downarrow WW$	W search engines	
common names	"Bill Clinton, Whitehouse"		
	$\downarrow di$	rectory services	
host-independent	president@whitehouse.gov		
	✓ SIP	$\searrow SIP$	
host-specific	sip:bubba@oval.eop.gov	sip:+1-202-456-1111@net2ph.com	
	$\downarrow DNS$		
IP address	198.137.241.30		

SIP: basic operation


- 1. use directory service (e.g., LDAP) to map name to *user@domain*
- 2. locate SIP servers using DNS SRV, CNAME, A
- 3. called server may map name to user@host
- 4. callee accepts, rejects, forward (\rightarrow new address)
- 5. if new address, go to step 2
- 6. if accept, caller confirms
- 7. ... conversation ...
- 8. caller or callee sends BYE

SIP operation in proxy mode

22

SIP operation in redirect mode

SIP protocol design: robustness

SIP is designed to be robust against server failures:

- no state in proxy servers during call
- responses are "self-routing"
- subsequent requests and retransmissions can take different path (backup server)
- proxy servers can "lose memory" any time ****** still function
- UDP is less state than TCP, no time-wait

Invitation modes

invitation	conference		
	unicast	multicast	
unicast	telephony	Internet TV session	
multicast	reach first	dept. conference	

SIP user location

- SIP is independent of mechanism to locate user
- examples:
 - local multicast of invitation
 - login-based via NFS
 - recursive "finger"-traversal
 - name translation: Alexander.G.Bell m agb
 - active badges
 - SIP:
 - * **REGISTER** announces location, with time limit
 - * **REGISTER** + Location sets new location
 - * forwarding within host (\neq standard port)

Implementations

- 18 implementations at Columbia SIP "bake-off"
- Columbia sipd:
 - registration via unicast and multicast
 - handles mailing lists (ug-students@cs), ambiguous names (lee@cs)
 - maps names (b.clinton@whitehouse)
 - Apache (httpd)-style configuration and logging
 - "basic" authentication
 - how many servers for 2300 requests/second?

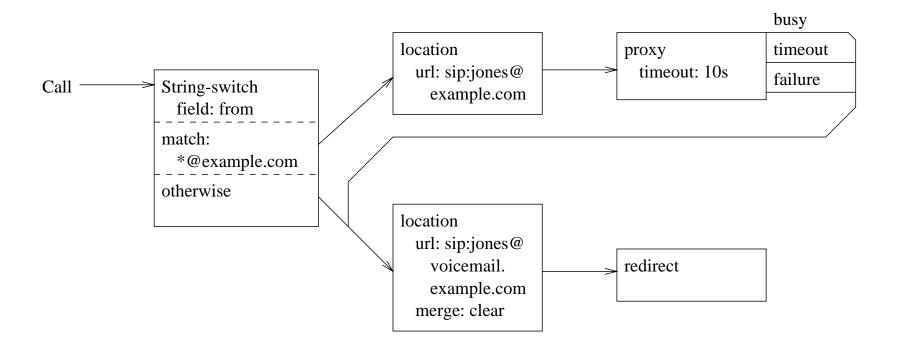
Signaling \leftarrow event notification

- call queueing ... buddy lists ... event notification
- SUBSCRIBE to events
- server NOTIFY
- can use forking
- handle subscriptions using CPL
- transition to multicast if large group of subscribers

Internet Telephony Signaling

- touch-tone transmission
- interoperation of SIP with SS7, ISDN and POTS
- large-scale IPtel gateways
- locating IPtel gateways (and other wide-area resources)
- charging for (adaptive) services and resources
- Internet voice mail

Programmable phone service


- "caller proposes, callee disposes, administrator decides"
- web = static pages \longrightarrow cgi-bin \longrightarrow Java
- "if somebody is trying to call for the 3rd time, allow mobile"
- "try office and lab in parallel, if that fails, try home"
- "allow call to mobile if I've talked to person before"
- "if on telemarketing list, forward to dial-a-joke"
- phone: CTI = complex, not generally for end users
- "cgi-bin" for Internet telephones: generate requests, proxy, responses isp-cgi, complete control

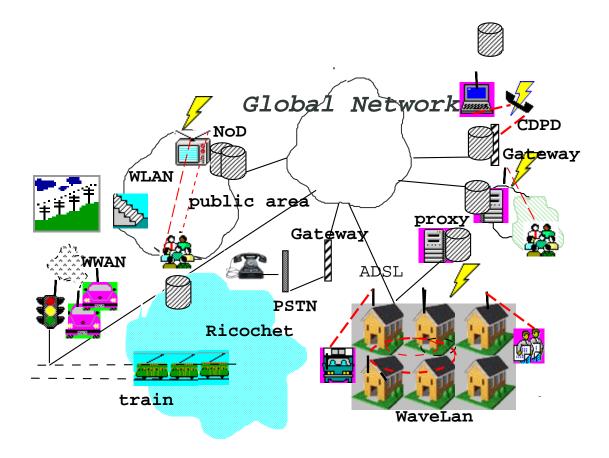
"Active Phone Networks"

language:

- don't want Turing-complete language
- fail safe: make phone calls even if crashes
- predictable resource consumption
- hide parallelism (searches)
- hide timers
- execute in callee's proxy server or end system (or phone button)
- ➡ CPL, an XML-based language

CPL example

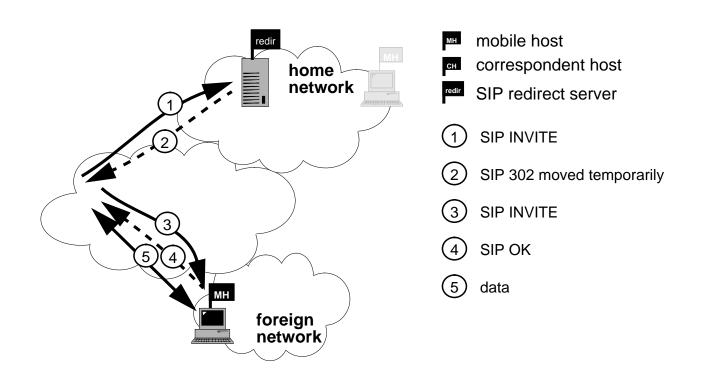
CPL example


```
<call>
  <location url="sip:jones@jonespc.example.com">
     <proxy timeout="8s">
       <busy>
         <location url="sip:jones@voicemail.example.com" merge=
                   id="voicemail" >
            <proxy />
         </location>
       </busy>
       <noanswer>
         <link ref="voicemail" />
       </noanswer>
     </proxy>
  </location>
</call>
```

Internet phone "appliance"

- phone = \$49.99; PC > \$600 (GPF included)
- *Ethernet phone* **••** no PBX for switching
- DSP for voice coding im limited memory (256 kB SRAM!)
- implemented minimal IP stack (IP/UDP/RTP, DHCP, SIP, tftp, DNS)
- no TCP
- MP3 radio
- sensor interfaces to the world: chair, IR, temperature, ...

Internet mobile services

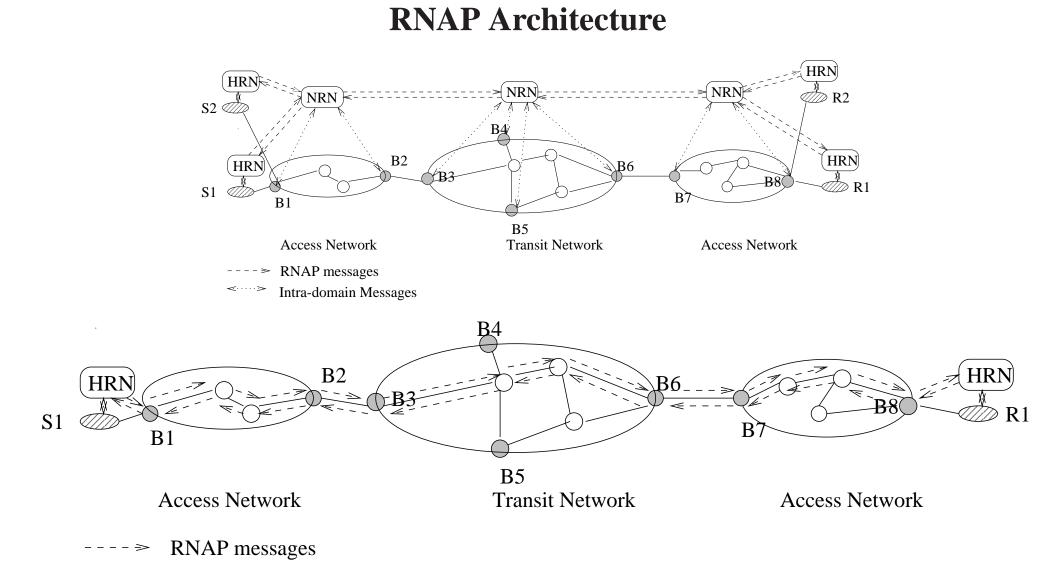

Internet mobile services: "social" ad-hoc networks

- connection sharing
 - multiple wireless networks: 2–10 Mb/s (WL Ethernet, IR) to 28 kb/s (Ricochet, CDPD)
 - share wide-area connections with neighbors
 - load sharing with mobile or in-home gateways
- social caching
 - subway model: in-car high-speed receiver updated in stations
 - socially optimal retrieval
 - anticipatory caching of streaming media
 - "leave the newspaper behind"

Internet cellular phone

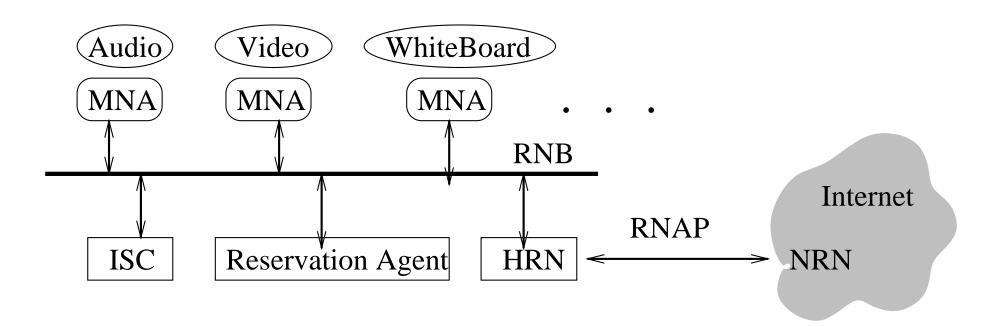
- mobile IP: mask mobility to TCP connections
- imposes overhead:
 - all registrations to home agent
 - triangle routing (mostly)
 - encapsulation, address filtering problems
- **w** use SIP and RTP for mobility management

SIP mobility



QOS

- RSVP refresh mechanisms
- aggregation of reservations (BGRP)
- quality-of-service characterization for IP telephony
- TCP-friendly adaptive services


Pricing Adaptive Multimedia Services

- pricing schemes that consider the holding cost, usage cost, and congestion cost as well as supports differential quality and advance reservation in the Internet.
- develop a network infrastructure that supports dynamic resource negotiation and pricing across Internet domains and users IP RNAP

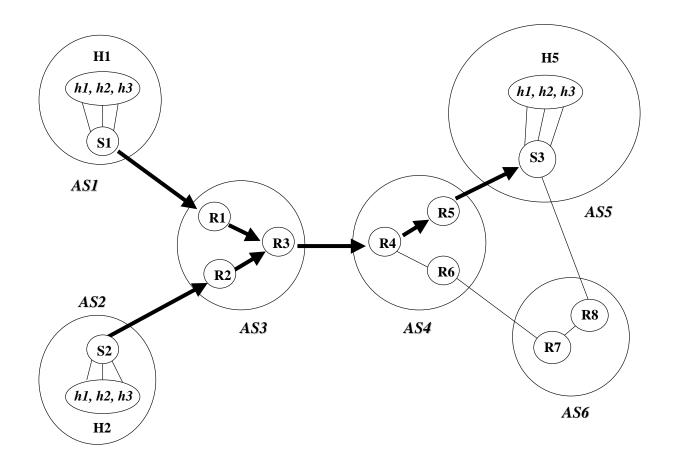
Adaptive Multimedia Services

- design an incentive-compatible adaptation framework that optimizes user satisfication and network revenue, minimizes connection rejections.
- cross-media adaptation scheme to optimize system wide performance;
- designing test methods for user utility functions for different tasks

IP Multicast and Network Reliability

- performance analysis of different multicast protocols (DVMRP, MOSPF, CBT, PIM-DM, PIM-SM)
- failure tests of routing protocols PIM-DM and PIM-SM
- implementation of multicast protocols (PIM-DM, PIM-SM) in Opnet environment.

Reservation Aggregation: BGRP


- RSVP: per-flow reservation \longrightarrow scales N^2 with users
- need to bundle reservations
- BGRP: construct *sink tree* of data to common destination
- use hysteresis and over-reservation on trunks

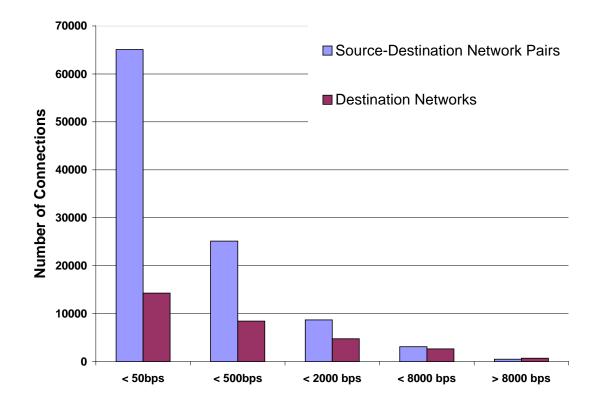
Reservation Scaling

Flows and aggregations based on 90 s packet trace from MAE-West

Granularity	flow discriminators	flows
Application	source address, port	143,243
	dest. address, port, proto.	208,559
	5-tuple	339,245
IP Host	source address	56,935
	dest. address	40,538
	source-dest. pairs	131,009
Network	source network	13,917
	dest. network	20,887
	source-dest. pairs	79,786
AS	source AS	2,244
	dest. AS	2,891
	source-dest. pairs	20,857

BGRP Model

BGRP


- *inter*-domain routing, soft-state
- PROBE from source to sink, stops when it meets tree
- GRAFT back to source(s), source-routed
- REFRESH between peers
- TEAR to accelerate tear-down
- RSVP: *shared* reservations; BGRP: *summed* reservations

Hysteresis

• allocate in reservation quantums Q to reduce signaling traffic

ρ				Q		
	2	5	10	15	20	25
10	4.1	30	830	3,000	4,000	63,000
100	4.7	26	110	270	590	1,400

BGRP Load Effect

Internet radio & TV

- control of streaming services (******* RTSP)
- "trunking" of RTP streams
- reliability and recovery of multicast routing protocols
- program insertion, "networks" for Internet radio and TV
- large-group scaling of RTCP feedback

More information

Internet and telecom statistics:

http://www.cs.columbia.edu/~hgs/internet

Papers: http://www.cs.columbia.edu/~hgs/research/irt

RTP: http://www.cs.columbia.edu/~hgs/rtp

RTSP: http://www.cs.columbia.edu/~hgs/rtsp

SIP: http://www.cs.columbia.edu/~hgs/sip