
Abstract

This paper describes MiddleMan, a collection of coop-
erating proxy servers connected by a local area network
(LAN). MiddleMan differs from majority of existing proxy
research in that it concentrates exclusively on video. Other
approaches are optimized for HTML documents and
images.

MiddleMan offers several advantages. By caching vid-
eos near clients, MiddleMan reduces start-up delays and the
possibility of adverse Internet conditions disrupting video
playback. Additionally, MiddleMan reduces server load by
intercepting a large fraction of server accesses and can eas-
ily scale to a large number of users and web video content.
It can also be extended to provide other services such as
transcoding. 

1. Introduction
The use caching to improve the performance of clients
viewing web documents is well studied. Systems that cache
HTML and images include browsers, such as Internet
Explorer [25] and Netscape Communicator [26], and col-
lections of cooperative proxies, such as Harvest [9] or
Squid [24]. These systems do not normally cache videos,
because video files are usually much larger than other web
documents and hence would fill up the cache quickly. 

This paper describes MiddleMan, a cooperative caching
video server. MiddleMan is a collection of proxy servers
that, as an aggregate, cache video files within a well-con-
nected network (e.g., a campus network or LAN). By coop-
eratively caching video files, MiddleMan can have a large
aggregate cache while placing minimal load on each partic-
ipating client. For instance, if each of 500 clients on a col-
lege campus participated in a MiddleMan cluster, and each
allocated 100 MB of their local disk for the storage of
cached videos, the total cache size would be 50 GB, enough
for caching a significant number of video files. But since
each client rarely views more than one video file at a time,
the typical load on any one client would be less than that
required to service one video file (about 1 Mbit/sec).

The characteristics of videos stored on the Internet
today suggest that caching would be effective. Such fea-
tures include high bandwidth requirements and the fact that
videos rarely change. Our survey of video data on the web
[2] shows that sustained bandwidths of approximately 1

Mbps are required in order to stream most MPEG, AVI, and
QuickTime video files stored on the web today. These
bandwidth requirements make video files susceptible to
Internet brownouts. However, our subsequent investigation
of video access patterns on the web [3] provided the key
insight for our approach: requests to a video server tend to
exhibit locality of reference. Some videos are much more
popular than others. Hence, it is possible to exploit caching
techniques that reduce redundant video accesses to the
server while simultaneously mitigating the unreliability of
the Internet and improving access latency.

In brief, the architecture we propose, called Middle-
Man, consists of a collection of caching video proxy servers
that are organized by coordinators. A coordinator is a pro-
cess that keeps track of the files hosted by each proxy and
redirect requests accordingly. The coordinator also uses the
proxies to manage the copied video files stored at each
machine. If there is no free space left in the system, it is the
coordinator that decides which files to eliminate in order to
make room. 

MiddleMan offers a potentially rich set of benefits in
dealing with VOW (Video on the Web) problems. Our
evaluations show that it achieves high cache hit rates with a
relatively small cache size. By caching videos relatively
close to the clients and ensuring a large number of video
requests are satisfied locally, it reduces overall start-up
delays and the possibility of adverse Internet conditions dis-
rupting video playback. From the point of view of the
server, MiddleMan dramatically reduces load by intercept-
ing a large number of server accesses. Hence the net effect
of MiddleMan is to increase the effective bandwidth of the
video delivery system allowing more clients to be serviced
at any given time.

Several issues must be addressed before MiddleMan
can be built and deployed. This paper describes these prob-
lems and our solutions. Our contributions include:
• Summary of intrinsic VOW file characteristics and

overview of their browsing patterns. Not much is
known about either and, hence, we carried out two stud-
ies [2,3] which yielded several valuable insights into
video files on the web and user access behavior. In this
paper, we summarize relevant findings that contributed
heavily to the design of MiddleMan.
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• MiddleMan Architecture. We present the MiddleMan
architecture and illustrate how the insights from our
studies affected the design.

• Cache Analysis. Via trace driven simulations, we
inspect the effects of various caching algorithms on
MiddleMan performance. 

• Load Balancing Analysis. Since MiddleMan is a distrib-
uted architecture, we examine the load balancing prop-
erties of various caching algorithms. The design
achieves both high hit rates and excellent proxy load
distribution.

The remainder of this paper is structured as follows.
Section 2 summarizes the relevant insights from our previ-
ous research of video on the web. Section 3 describes the
architecture of MiddleMan and section 4 describes the eval-
uation of the design. We outline related work in section 5
and, finally, present our conclusions and direction for future
work in section 5.

2. Trace Observations
A thorough understanding of VOW access patterns and file
characteristics is an essential first step prior to architecting
MiddleMan. In the absence of any such publicly available
work, we conducted two studies. The first, an investigation
into the properties of videos on the web [2], involved the
downloading and analysis of over 57000 AVI, QuickTime,
and MPEG files stored on the Web -- approximately 100
GB of data. Observations from this study relevant to Mid-
dleMan are:
1. Web video size: Videos are around 1 Mbytes in size,

orders of magnitude larger than HTML documents
which are usually sized around 1-2 Kbytes. Playback
time is about a minute or less.

2. Videos are WORMs: Web files tend to follow the
write-once-read-many principle. Once a video has been
placed online, chances are that it will stay there. Hence,
cache consistency is not a major issue in video caching
systems. Examination of periodic snapshots of the
VOW server file system used in the second (user
browsing behavior) study further corroborated this
trend.

For the second study, an analysis of how users access
video data, we inspected log file records from the mStar
[17] experiment at Lulea University in Sweden. MStar is a
hardware/software infrastructure developed by the Center
for Distance-spanning Technology at Lulea University for
facilitating distance learning and creating a virtual student
community. Our initial analysis [3] and subsequent follow-
up yielded the following insights that are relevant to the
design of MiddleMan:

3. File size trends: videos are becoming larger as more
network bandwidth becomes available and low bitrate
streaming protocols get deployed in video distribution.
With a high bandwidth network and H.261 based mul-
ticast architecture in place, the median size of files at
the Lulea University video server was 96 MBytes.
Median duration was 70 minutes.

4. Video browsing patterns: users often viewed the initial
part of videos in order to determine if they are inter-
ested or not. If they like what they see, they continue
watching. Otherwise, they stop. We found that about
61% of all playbacks went to completion in our analy-
sis. Most of the remaining 39% stopped very early on
in the movie playback.

5. Temporal Locality: LRU (Least Recently Used) stack
depth analysis [4] of the traces showed that accesses to
videos exhibit strong temporal locality. If a video has
been accessed recently, chances are that it will be
accessed again soon.

Observations 4 and 5 hint that a caching approach could
yield rich dividends. The remaining lessons suggest some
basic requirements for the initial blueprint of MiddleMan:
• Flexibility: it should be able to handle both files with

sizes in the megabyte range (observation 1) as well as
the hundreds of megabyte range (observation 3).

• Partial files: since users are likely to view only part of
the video (observation 5), video files need not be stored
in the local caching system in their entirety. 

• Cache consistency is not a significant issue in the sys-
tem design (observation 2). 

In the next section, we illustrate how we utilize these
observations and requirements for the design of Middle-
Man.

3. The Design of MiddleMan
This section presents the architecture of MiddleMan as well
as the concepts and assumptions behind its design. Initially,
we outline the overall system and its constituent compo-
nents. Next, we describe how video files are stored and
transferred from within MiddleMan. Finally, we sketch
how MiddleMan responds to user requests.

3.1 System Component Configuration
MiddleMan consists of two types of components: proxy
servers and coordinators. A typical configuration consists
of a single coordinator and a number of proxies running
within a local area network. A coordinator keeps track of
proxy contents and makes cache replacement decisions for
the entire system. A proxy can either interface with users or
manage video files. 

MiddleMan defines two different types of proxies: local



and storage proxies. Local proxies can run on the same
machine as the client and are responsible for answering cli-
ent requests. They do not store any data and are function-
ally similar to browser plug-ins. Ideally, a local proxy
would run on every user machine in a domain, but this
might be hard to deploy. Hence, we assume proxies run on
selected machines in the network. Each proxy services a
small collection of browser clients that have been config-
ured to forward their requests for video data to that particu-
lar proxy. Storage proxies, on the other hand, do not
directly service client requests, they just store data. Storage
proxies can be located anywhere on the local area network. 

A collection of both types of proxies running in a LAN
and organized by a single coordinator together form a proxy
cluster. Figure 1 shows an example configuration. Arrang-
ing the system components in the form a of a proxy cluster
provides a number of advantages:
• latency reduction: communication and data transfers

amongst the cluster components can exploit the high
bandwidths of the local area network.

• high aggregate storage space: by running on user
machines, proxies can take advantage of cheap disk
space.

• load reduction: distributing video files on multiple
machines allows the load induced by video requests to
be distributed over multiple machines, a better approach
than a single central proxy that services all local video
requests and becomes a system bottleneck.

• scalability: the capacity of the system can be expanded
by adding more proxies. Globally, multiple clusters can
be linked together by allowing individual coordinators
to communicate. 

There are two possible disadvantages to this approach.
First, since the local proxies consult the coordinator for
every request, its central nature might make it a bottleneck.
However, the relatively large inter-request arrival times for
video, and the fact that the coordinator does not transfer
video data, implies this is not a cause for concern. A second
problem could be that the coordinator is the central point of
failure. In case of a coordinator crash, the system loses
state. One possible solution is the coordinator-cohort
approach where the coordinator maintains a backup coordi-
nator. The coordinator keeps the cohort updated with its
current state so that, in the event of a crash, the cohort takes
over. Since building fault tolerant central servers is a well
studied problem, we did not build such a coordinator. Noth-
ing in the design of MiddleMan prevents making the coor-
dinator fault tolerant, however. 

3.2 Video Storage Policies
As we discovered in section 2, users are far more likely to
view the opening of a movie than play it back until its end.
Hence, unlike HTML documents, an entire video document
does not have to be present in the caching system for a
request to be satisfied. Based on this observation, Middle-
Man incorporates the concept of partial video caching.
When the user requests a video in the cache, it is served by
sending to them the portion of the video locally present
while obtaining the remainder from the main WWW server
and transparently passing it on to the client. 

In order for the partial video caching to work, video
servers and streaming protocols must allow random access.
Fortunately, all major streaming protocols and HTTP 1.1
[23] allow this. 

MiddleMan fragments cached videos into equal sized
file blocks in the storage system, which allows the cached
title to be spread across multiple storage proxies. Hence,
blocks are the minimum unit of replacement for the Middle-
Man cache. Representing video as an ordered sequence of
file blocks simplifies the architecture considerably. It pro-
vides a convenient mechanism for spreading portions of a
single title across multiple proxies, thus allowing for better
load balancing, simplification of cache replacement and
partial video implementation. If a new title T1 needs to be
brought into the cache, yet the entire system is full, blocks
allow MiddleMan to simply eliminate the end portions of
an unpopular title T2 on a block by block basis. Hence,
instead of getting rid of T2 entirely, we can have a portion
of it present in case it is requested in the future. Similarly,
T1 grows on a block by block basis, its ultimate size
depending on how much of it is played back by the user. 

A possible problem with this method of fetching blocks
from multiple proxies and combining them into a contigu-
ous stream might be due to inter-block switching delays.
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This can cause interruptions in the data flow from the proxy
to the user. Delays may be caused by the latencies faced by
the video data receiving client proxy when it is changing its
source from one storage proxy to another. Such switching
delays can be eliminated via fetching data at a higher rate
and pre-rolling/double buffering against latencies. 

3.3 How MiddleMan Responds To Requests
So far we have described the MiddleMan system architec-
ture. In this section, we outline how MiddleMan reacts to
common user scenarios including cache miss i.e. an user
request for a video not cached by MiddleMan, cache hit,
and finally, a request cancellation. We use the example sys-
tem in figure 2 to illustrate the interaction of individual
MiddleMan components. The example system consists of a
proxy cluster and W, a WWW server external to the LAN.
The proxy cluster contains a coordinator C plus local prox-
ies LP1 and LP3 serving two client browsers B1 and B3,
respectively. There are also two storage proxies, SP2 and
SP3, in the system. W hosts a movie M that can be logically
divided into two file blocks, M1 and M2. We now present
how the system reacts to the three scenarios (cache miss,
cache hit, and request cancellation) in the following subsec-
tions.

3.3.1 Cache Miss
 The following events occur when B1 requests the title M
and the request is intercepted by LP1.
1. LP1 simultaneously contacts both C and W.
2. C replies in the negative as M is not cached by the sys-

tem. W replies with header information for M.
3. From the header information, LP1 determines M char-

acteristics. LP1 requests the location of a block of
space from C, sufficient to store M1.

4. If sufficient space is available, C replies with the loca-
tion of a block. Space might not be available if the
cache is full. If so, C runs a cache replacement algo-
rithm in order to identify an undesirable block and
return its location to LP1. For our example, we choose
the location to be SP2.

5. LP1 commences receiving M1 (the first part of M)
from W which it then streams to both B1 and SP2. 

6. After M1 has been received in its entirety, LP1 requests
the location of another block from C (in order to
locally cache M2).

7. C returns SP3 as the location for the next block. LP1
continues receiving M2 (the next part of M) from W
which it then streams to both B1 and SP3.

In general, a movie not cached locally by MiddleMan, is
brought into the system and stored on a block by block
basis, depending on how much of the movie is actually
viewed by the user. One possible drawback of this approach
might be the costs of the additional proxy-coordinator com-
munication per block transaction. However, the additional
overhead is insignificant compared to the cost of transfer-
ring the actual videos. 

3.3.2 Cache Hit
If M is now cached in the system and B3 requests M, the
following sequence of events transpire:
1. LP3 simultaneously contacts both C and W.
2. C replies in the affirmative, returning a pointer to a

block housed at SP2. 
3. LP3 closes the connections with W.
4. LP3 contacts SP2 and starts streaming M1 to B1.
5. After M1 has been exhausted, LP1 contacts C again to

obtain the location of the next block.
6. C replies with a pointer to SP3. LP3 contacts SP3 and

starts streaming M2 to B3.
A possible disadvantage of using a custom protocol for

transferring data between local and storage proxy servers is
the added complexity as opposed to the more straightfor-
ward method of using a distributed file system such as NFS.
However, this simplified approach does not scale as it does
not allow local proxies to fetch data from storage proxies in
proxy clusters located in other organizations and networks.

3.3.3 Request Cancellation
Broken requests are a side-effect of how users browse video
- they commence playback of a title and decide to stop if
they do not like what they see. Halting the playback results
in the browser cancelling its local proxy connection while a
cache hit or miss type transaction is taking place.

If the title is being fetched from the local cache during a
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cache hit, dealing with a cancellation is relatively simple.
The proxy, after detecting the closed browser channel, sim-
ply shuts down the other connections associated with the
request and notifies the coordinator that it is done with the
title. 

If the request cancellation occurs during a cache miss,
complications may arise depending on whether other users
in the system are also currently accessing the same file.
Assume a scenario where only a single user B1 decides to
cancel while viewing the second half of M (M2). LP1
detects this and notifies the coordinator. As no other users
are currently accessing this video, the coordinator asks LP1
to close the remaining connections. All references to M2 are
deleted by the coordinator. M1, however, is still cached
locally. 

In a more complicated scenario where both B1 and B3
are concurrently interested in M, B1 decides to cancel dur-
ing the second half of the movie playback. Once again, LP1
detects the closed connection and notifies the coordinator.
However, since B3 is still interested, the coordinator asks
LP1 to continue fetching the file and save it locally to the
storage proxies. One possible disadvantage of this approach
is the additional bandwidth expended by LP1 forwarding
thus affecting access on the local machine by B1. However,
since we assume a high speed local network connecting our
proxies, this should not be an issue.

4. The Analysis of MiddleMan
In this section, we briefly outline the performance of Mid-
dleMan. Factors affecting this include the cache replace-
ment algorithm used, the number of proxies in the cluster,
the size of the file blocks, total cache size, and the request
pattern. However, the most critical design choice is the
cache replacement policy, since this not only affects the
performance of the system but also the balance of load
among the proxies. Load balancing is important because we
want user machines to participate as proxies in the cache.
Users will not agree to this use if the load on their machines
grows too high. Hence, we primarily investigate how differ-
ent cache/load balancing algorithms affect MiddleMan per-
formance.

 We selected the simulation approach for evaluating
MiddleMan. The simulator we developed, MiddleSim, con-
sists of about 5000 lines of Java code. It is a trace driven
discrete-event simulator. For the actual simulation runs, we
used the traces from the mStar project [17]. This consisted
of accesses to the mMOD video server from three subnets
on the Lulea University (lulea.se) campus. The requests
spanned a period ranging late August 1997 to mid October
1999, more than two years in total. The three subnets con-

sisted of cdt.luth.se (1775 accesses in total for the period
measured), campus.luth.se (2374 requests), and sm.luth.se
(3190 requests). The requests were to 235 video files on the
mMOD web server. Video content ranged from classroom
lectures and seminars to traditional movies.

In addition to our message passing assumptions and
failure model, we also fixed the file block size of Mid-
dleSim at 1 Mbyte. This value allows MiddleMan to easily
store both the relatively small web video files analyzed in
[2] and the much larger video recordings analyzed in [3].
Files of the latter type have much lower bitrates than web
video (median bitrate of 150 kbps as opposed to 700 kbps
for web video). Hence, in the partial storage case, a file
block from a video with bitrate of 150 kbps is likely to pro-
vide a proxy with a gap of about a minute before the proxy
has to contact the coordinator again. Such a long interval
reduces the load on the coordinator, especially if it is
involved with a number of simultaneous connections.

In the subsequent sections, we first describe the simula-
tor parameters for our experiments, our performance met-
rics, and finally, the results we obtained. 

4.1 Simulator Parameters
A number of MiddleSim parameters can be varied prior to
starting a simulation run. However, we concentrated on
two: the total proxy cache size and the cache algorithms.

4.1.1 Proxy Cache Size
The aggregate size of all the files stored by the mMOD
server is about 25 GBytes. The total size of the proxy
caches can be a small fraction of this total. For ease of com-
parison, we fixed the total number of proxies in the system
to be the same as the smallest group of active machines
from the three traces, namely 44 from cdt. Ultimately, we
selected three proxy cache size configurations: the first
allocated 12 Mbytes of cache space to each proxy for a total
of 44*12 or 528 Mbytes of global cache storage (about
2.1% of the total size of all the video files). The second con-
figuration allowed 25 Mbytes*44 or a global cache size of
1.07 GBytes (about 4.3% of total file size) and the third
configuration provided 50 Mbytes per proxy for a total of
2.14 GBytes or 8.6% of total file size.

4.1.2 Cache Replacement Policies
We investigated a number of cache replacement policies.
These included Least Recently Used (LRU [20]), Least Fre-
quently Used (LFU [20]), First In First Out (FIFO [20]),
LRU-k and HistLRUpick. The LRU-k algorithm [15] main-
tains a history of the previous k accesses to each title in the
cache. The k-distance of a title at a given time is defined as
the difference between the current time and the time at
which the k-th access was made to that title. LRU-k
chooses to replace the end-most block in the title with the
largest k-distance. It resolves ties by picking the title which



has been referenced least recently i.e. running the LRU
algorithm on the tied candidates. LRU itself is a special
case of LRU-k where k is 1.

The HistLRUpick algorithm is based on LRU-k. We
developed this approach in order to explicitly integrate load
balancing with cache replacement. HistLRUpick runs
LRU-2, LRU-3, and LRU-4. Ties are resolved by picking
the block that is managed by the least loaded proxy. The
criteria for choosing the least loaded proxy is based on the
HistLoad metric for each proxy. Essentially, it is a measure
of the load experienced by a proxy in the past hour. The
metric empirically combines the number of bytes that have
passed through the proxy, peak number of connections, and
the peak bandwidth used by the proxy, all evaluated over
the past hour. Since the metric calculates the load on a
proxy relative to its counterparts, the proxy-specific terms
are normalized by the aggregate values computed over the
entire system i.e. the total number of bytes that have passed
through the system, the peak number of connections and
peak bandwidth used by the entire system. When comput-
ing the load, preference is given to the recent number of
bytes that have passed through the proxy, since ultimately,
our goal was to minimize the variations in byte traffic of the
individual proxies within a cluster. The instantaneous rates
and connection terms are given less precedence but are
included, since it is also desirable to detect and prevent sud-
den fluctuations.

To compare the effectiveness of these algorithms, we
implemented an additional approach Perfect. This is an
ideal cache replacement mechanism [20] that uses knowl-
edge of the future to replace the cache block that will not be
used for the longest time. It can be shown that, given a
finite cache size, this algorithm is optimal. 

4.2 Measuring MiddleMan Performance
We employed MiddleSim to evaluate both the static and
dynamic performance of the various MiddleMan configura-
tions. A static measurement indicates overall system behav-
ior after it has completed a simulation run. On the other
hand, a dynamic measurement reports on performance dur-
ing a run, indicating how well the system adjusts to sudden
changes in input. 

 In the remainder of this section, we report the results of
testing both the dynamic and static performance of various
parameters and configurations of MiddleMan. We first
describe the overall caching performance, then select two
of the caching algorithms for further analysis of their load
balancing capabilities. Our final results concern Middle-
Man load balancing scenarios when the number of proxies
are reduced in the system, yet total global cache size
remains the same.

4.2.1 Overall Cache Performance
We used the byte hit rate (BHR) metric to evaluate overall

caching performance of various MiddleMan configurations.
The BHR of a run is defined as:

BHR = (total bytes served from the cache)/(total bytes read by all 
clients) (EQ 1)

A BHR close to 1 implies good performance since most
of the bytes requested by the users are served from the local
cache.

Table 1 reports the BHR values for all the algorithms

discussed in section 4.1.2 with the exception of LRU-k.
Instead of providing the results for LRU-2, LRU-3, and
LRU-4, we simply present LRU-3 as being the most repre-
sentative for LRU-k. The following trends emerge from the
investigation:
• Larger global cache sizes increase the overall hit rate.

As the perfect run for the 44*50M scenario indicates, it
is possible to approach very high hit rates while
employing a global cache size that is only 8.6% of the
total file size.

• The difference between the replacement policies and
perfect tends to be less pronounced with decreasing glo-
bal cache size. This indicates that lack of storage

 Table 1: Byte Hit Rates Under Various System 
Configurations

Trace cdt campus sm

Configuration 44 machines * 12 Mbytes (2.1%)

Perfect 49.8% 52.7% 56.9%

LRU 43.2% 48.7% 52.4%

LFU 42.6% 47.9% 52.1% 

FIFO 41.0% 46.7% 50.4% 

LRU-3 44.7% 48.8% 53.5% 

histLRUpick 45.0% 49.3% 53.4%

Configuration 44 machines * 25 Mbytes (4.3%)

Perfect 64.8% 69.1% 71.5% 

LRU 51.2% 59.6% 58.8%

LFU 53.7% 60.3% 60.4% 

FIFO 49.2% 56.4% 58.7% 

LRU-3 56.5% 62.4% 64.7% 

histLRUpick 56.9% 62.5% 64.9%

Configuration 44 machines * 50 Mbytes (8.6%)

Perfect 78.3% 83.9% 83.9%

LRU 60.5% 72.2% 68.6%

LFU 69.8% 72.8% 71.1%

FIFO 63.4% 67.6% 65.1%

LRU-3 72.4% 77.6% 76.5%

histLRUpick 72.9% 78.2% 76.8%



resource is more of a barrier to performance than
replacement policies when the cache size is small.

• LRU-k and HistLRUpick (which is based on LRU-k)
show the highest BHR values at large cache sizes. This
can be attributed to the ability of LRU-k to exploit tem-
poral locality better than the other caching policies.
Examination of the traces revealed that user requests for
a particular file tend to arrive at the web server in clus-
ters. By saving the last k references and choosing on
basis of the k-th reference, LRU-k ensures that movies
which have been referenced multiple times recently are
less likely to be removed from the cache since they will
have smaller k-distances. Since these same movies will
most probably be referenced soon in the future, LRU-k
can achieve high hit rates.

4.2.2 Proxy Connections
 Having inspected the overall BHR values of the cach-

ing algorithms, we now inspect their run-time load balanc-
ing performance. In order to examine dynamic load
variations during a MiddleMan run, we graphed its proxy
connection parameter. The proxy connection plot graphs
the number of connections currently in the proxy system
together with the max connection, the maximum number of
connections currently at a proxy. Max connection is plotted
on the negative axis for ease of comparison with the total
number of connections in the system. Essentially, this plot
indicates the current load imbalance. A well balanced proxy
system will have a relatively small maximum connection,
even if the total number of connections in the system is
high. We define a well balanced system as one that evenly
distributes load across proxies. At any given time, for
example, the busy proxies in such a system will have simi-
lar loads.

The proxy connections plots for the system with LRU
and HistLRUpick for the first six months of the trace are
illustrated by figures 3 and 4 respectively. The black region
in the plots show the total number of connections served by
the proxy at any given time whereas the gray areas display
the maximum number of connections on a proxy in the sys-
tem at the same instant, on the negative axis. Ideally, we
would like the gray areas to be small compared to the black
regions. This would imply that since the most loaded proxy
was not heavily burdened, the remaining load was distrib-
uted over the other proxies. We would also prefer the maxi-
mum connection plot to be relatively smooth. Otherwise,
excessive fluctuations would hint at sudden load changes
on proxies, an undesirable property for a load balancing
algorithm.

Comparison of figures 3 and 4 show that with the
exception of day 140, HistLRUpick produces a smoother
max connection plot that is more bounded than LRU. On
day 140, both LRU and HistLRUpick have the same maxi-

mum number of connections (5) on their maximally loaded
proxy. However, the peak max values of LRU exceed this
threshold a number of times (on days 5, 40, 60, and 170, for
instance) whereas HistLRUpick always stays below (or in
the case of day 140, equal to) this cutoff value.

4.2.3 Reducing The Number of Proxies
In this subsection, we investigate the effects of reducing the
number of proxies but increasing the storage space of each
proxy so as to maintain the same global cache size. Figure 5
displays an alternate way of viewing the effects of reducing
the number of proxies in MiddleMan. This graph shows
overall load imbalance for each configuration by plotting
the most aggregate bytes served by a proxy (Max) against
the proxy with the least bytes served (Min). We show the
results for the campus trace and 44*50, 22*100, 11*200
MByte configurations for MiddleMan. Under LRU, there is
a great difference between the most and least loaded prox-
ies. However, in each case, HistLRUpick reduces the over-
all disparity by reducing the traffic on the heavily loaded
proxy and increasing traffic to the lightly loaded one.

5. Related Work
Current research on proxy caching has concentrated on
caching HTML documents and images [1, 6, 11]. Rela-
tively little prior work has been done on video proxy cach-
ing. Most of the current proxy caching work is not
applicable to MiddleMan for the following reasons: 
• Document sizes: web proxy designs and algorithms are

optimized for HTML documents and images, which are
generally much smaller than web video files [7, 22].
Video files are undesirable in these systems since if they
were to be stored in the cache, they would potentially
displace many HTML files. As HTML files are likely to
be referenced much more frequently than video files,
cache hit rates would suffer.

• Proxy architectures: MiddleMan has an unique archi-
tecture. The proxy architecture most frequently sug-
gested for videos is a centralized server [14,18,19]. As
discussed in section 3, this is not an efficient design for
a video proxy server. 
Squid or Harvest [9, 24] use a hierarchical design based
a tree structure. In these systems, if neighbors of a proxy
cannot satisfy a request, the misses propagate upwards
through the hierarchy. The miss and propagation combi-
nation can add significant latency to final response.
Additionally, parents and children caches can poten-
tially store the same files, leading to inefficient use of
cache storage space. Hence, such designs have signifi-
cant drawbacks for caching video. 

• Browsing patterns: MiddleMan is optimized for video
browsing patterns. It supports the notion of partial cach-
ing - only portions of video files may be present in the



Figure 3: Proxy Connection, LRU, 44*50 MByte

Figure 4: Proxy Connection, histLRUpick, 44*50 MByte



system. Such an approach is not acceptable for HTML
documents or images.

• Cache coherence: due to the WORM nature of the vast
majority of web videos, this is not a factor for video
proxy caches. However, other types of web documents
experience high turnover rates and standard proxy
caches must deal seriously with cache consistency
issues.

The work by Brubeck and Rowe [8] is closest to ours.
They introduce the concept of multiple video servers that
can be accessed via the web. These video servers manage
other tertiary storage systems - popular movies are cached
on their local disks. They also pioneer the concept of a
movie being comprised of media objects scattered over
proxy servers. Other existing work on video proxies
[14,18,19] concentrates more on keeping selected segments
of videos locally in a central proxy and, for subsequent
requests, blending this data with the original stream to
ensure smoother viewing. Such an approach is orthogonal
to our work. and in fact could be used in conjunction with
MiddleMan to improve playback.

Tewari et al [21] present a resource based caching algo-
rithm for web proxies and servers that is able to handle a
variety of object types based on their size and bandwidth
requirements. However, they still assume a central non-
cooperating architecture.

In addition to multimedia research, distributed file sys-
tems work also influenced our design. In particular, we
used the xFS [5] concepts of network striping and indepen-

dent location of file blocks in MiddleMan. Additionally,
Fox et al [10] provided justification in our decision to cen-
tralize the caching/load balancing in the proxy cluster.

6. Conclusion And Future Work
In this paper, we have investigated the performance of Mid-
dleMan, a video caching web proxy system. We found
LRU-k to provide the highest hit rates but a variation,
HistLRUpick, yielded good hit rates as well as effective
load balancing. A relatively small global cache size of 2.14
GBbytes (44*50 Mbytes, about 8.6% of total file sizes)
resulted in very high byte hit rates. From the point of view
of the server, MiddleMan dramatically reduces load by
intercepting a large number of server accesses. Hence, the
net effect of MiddleMan is to greatly increase the effective
bandwidth of the entire video delivery system by a factor
between three and ten, allowing more clients to be serviced
at any given time.

MiddleMan shows promise but raises a number of
issues that need to be addressed. These include:
• Fault Tolerance: the current architecture of MiddleMan

renders it susceptible to proxy or coordinator crashes. In
particular, a coordinator crash causes the system to
become unusable since only the coordinator maintains
global system state. Standard techniques such as reli-
able backup servers may provide a possible solution but
leads to two further problems. First, proxies must be
able to detect the location of the new coordinator. Sec-
ond, the process of switching from one coordinator to

Figure 5: Overall max/min load report for campus trace
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another might stall ongoing proxy-client connections.
One possible approach to the first problem is to main-
tain a separate multicast channel within the cluster
which can be used to inform all proxies of any configu-
ration changes. The second problem might be avoided
by the proxy bypassing MiddleMan and fetching the
next block directly from the WWW server.

• Fast-forward/Rewind Support: clients may wish to fast
forward or rewind through video material. Currently,
MiddleMan does not explicitly support such functional-
ity. However, both the proxies and the cache replace-
ment policy can be altered so that once the proxy detects
a fast-forward or rewind request from the client, it is
able to request the right sequence of blocks from the
coordinator.

• Security/Authentication: the proxy cache might contain
“pay per view” type movies which, if not checked,
might allow clients to access titles without authorization
from the original movie provider. Hence, an authentica-
tion scheme is necessary which would allow Middle-
Man to verify whether a client is allowed to retrieve a
certain title from the cache. It might also be necessary to
encrypt cache contents to prevent unauthorized access
to files.

• Proxy Cluster Cooperation: in this paper we have
investigated the functioning of a single proxy cluster.
An obvious next step would be to increase the scope of
the system by allowing multiple proxy clusters to inter-
act. In this scenario, if a file was not available in the
local proxy, the coordinator might redirect the request
to a proxy in a different cluster which does have the file
cached. One possible method for achieving such coop-
eration is for coordinators to periodically exchange data
about cache contents on some well known multicast
channel.

Future work on MiddleMan will focus on addressing
these issues as well as building and deploying a prototype.
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