
Version Management

with

CVS

for cvs 1.10

Per Cederqvist et al

Copyright c
 1992, 1993 Signum Support AB

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 1: Overview 1

1 Overview

This chapter is for people who have never used cvs, and perhaps have never used version
control software before.

If you are already familiar with cvs and are just trying to learn a particular feature or
remember a certain command, you can probably skip everything here.

1.1 What is CVS?

cvs is a version control system. Using it, you can record the history of your source �les.

For example, bugs sometimes creep in when software is modi�ed, and you might not
detect the bug until a long time after you make the modi�cation. With cvs, you can easily
retrieve old versions to see exactly which change caused the bug. This can sometimes be a
big help.

You could of course save every version of every �le you have ever created. This would
however waste an enormous amount of disk space. cvs stores all the versions of a �le in a
single �le in a clever way that only stores the di�erences between versions.

cvs also helps you if you are part of a group of people working on the same project.
It is all too easy to overwrite each others' changes unless you are extremely careful. Some
editors, like gnu Emacs, try to make sure that the same �le is never modi�ed by two people
at the same time. Unfortunately, if someone is using another editor, that safeguard will
not work. cvs solves this problem by insulating the di�erent developers from each other.
Every developer works in his own directory, and cvs merges the work when each developer
is done.

cvs started out as a bunch of shell scripts written by Dick Grune, posted to the news-
group comp.sources.unix in the volume 6 release of December, 1986. While no actual code
from these shell scripts is present in the current version of cvs much of the cvs con
ict
resolution algorithms come from them.

In April, 1989, Brian Berliner designed and coded cvs. Je� Polk later helped Brian with
the design of the cvs module and vendor branch support.

You can get cvs in a variety of ways, including free download from the internet. For
more information on downloading cvs and other cvs topics, see:

http://www.cyclic.com/
http://www.loria.fr/~molli/cvs-index.html

There is a mailing list, known as info-cvs, devoted to cvs. To subscribe or un-
subscribe write to info-cvs-request@gnu.org. If you prefer a usenet group, the right
group is comp.software.config-mgmt which is for cvs discussions (along with other
con�guration management systems). In the future, it might be possible to create a
comp.software.config-mgmt.cvs, but probably only if there is su�cient cvs tra�c
on comp.software.config-mgmt.

You can also subscribe to the bug-cvs mailing list, described in more detail in Appendix H
[BUGS], page 151. To subscribe send mail to bug-cvs-request@gnu.org.

2 CVS|Concurrent Versions System

1.2 What is CVS not?

cvs can do a lot of things for you, but it does not try to be everything for everyone.

cvs is not a build system.
Though the structure of your repository and modules �le interact with your
build system (e.g. `Makefile's), they are essentially independent.

cvs does not dictate how you build anything. It merely stores �les for retrieval
in a tree structure you devise.

cvs does not dictate how to use disk space in the checked out working directo-
ries. If you write your `Makefile's or scripts in every directory so they have to
know the relative positions of everything else, you wind up requiring the entire
repository to be checked out.

If you modularize your work, and construct a build system that will share �les
(via links, mounts, VPATH in `Makefile's, etc.), you can arrange your disk usage
however you like.

But you have to remember that any such system is a lot of work to construct
and maintain. cvs does not address the issues involved.

Of course, you should place the tools created to support such a build system
(scripts, `Makefile's, etc) under cvs.

Figuring out what �les need to be rebuilt when something changes is, again,
something to be handled outside the scope of cvs. One traditional approach
is to use make for building, and use some automated tool for generating the
dependencies which make uses.

See Chapter 14 [Builds], page 77, for more information on doing builds in
conjunction with cvs.

cvs is not a substitute for management.
Your managers and project leaders are expected to talk to you frequently enough
to make certain you are aware of schedules, merge points, branch names and
release dates. If they don't, cvs can't help.

cvs is an instrument for making sources dance to your tune. But you are the
piper and the composer. No instrument plays itself or writes its own music.

cvs is not a substitute for developer communication.
When faced with con
icts within a single �le, most developers manage to re-
solve them without too much e�ort. But a more general de�nition of \con
ict"
includes problems too di�cult to solve without communication between devel-
opers.

cvs cannot determine when simultaneous changes within a single �le, or across
a whole collection of �les, will logically con
ict with one another. Its concept
of a con
ict is purely textual, arising when two changes to the same base �le
are near enough to spook the merge (i.e. diff3) command.

cvs does not claim to help at all in �guring out non-textual or distributed
con
icts in program logic.

Chapter 1: Overview 3

For example: Say you change the arguments to function X de�ned in �le `A'. At
the same time, someone edits �le `B', adding new calls to function X using the
old arguments. You are outside the realm of cvs's competence.

Acquire the habit of reading specs and talking to your peers.

cvs does not have change control
Change control refers to a number of things. First of all it can mean bug-
tracking, that is being able to keep a database of reported bugs and the sta-
tus of each one (is it �xed? in what release? has the bug submitter agreed
that it is �xed?). For interfacing cvs to an external bug-tracking system, see
the `rcsinfo' and `verifymsg' �les (see Appendix C [Administrative �les],
page 125).

Another aspect of change control is keeping track of the fact that changes to
several �les were in fact changed together as one logical change. If you check in
several �les in a single cvs commit operation, cvs then forgets that those �les
were checked in together, and the fact that they have the same log message is
the only thing tying them together. Keeping a gnu style `ChangeLog' can help
somewhat.

Another aspect of change control, in some systems, is the ability to keep track
of the status of each change. Some changes have been written by a developer,
others have been reviewed by a second developer, and so on. Generally, the way
to do this with cvs is to generate a di� (using cvs diff or diff) and email it
to someone who can then apply it using the patch utility. This is very
exible,
but depends on mechanisms outside cvs to make sure nothing falls through the
cracks.

cvs is not an automated testing program
It should be possible to enforce mandatory use of a testsuite using the
commitinfo �le. I haven't heard a lot about projects trying to do that or
whether there are subtle gotchas, however.

cvs does not have a builtin process model
Some systems provide ways to ensure that changes or releases go through various
steps, with various approvals as needed. Generally, one can accomplish this
with cvs but it might be a little more work. In some cases you'll want to
use the `commitinfo', `loginfo', `rcsinfo', or `verifymsg' �les, to require
that certain steps be performed before cvs will allow a checkin. Also consider
whether features such as branches and tags can be used to perform tasks such
as doing work in a development tree and then merging certain changes over to
a stable tree only once they have been proven.

1.3 A sample session

As a way of introducing cvs, we'll go through a typical work-session using cvs. The �rst
thing to understand is that cvs stores all �les in a centralized repository (see Chapter 2
[Repository], page 7); this section assumes that a repository is set up.

4 CVS|Concurrent Versions System

Suppose you are working on a simple compiler. The source consists of a handful of C
�les and a `Makefile'. The compiler is called `tc' (Trivial Compiler), and the repository is
set up so that there is a module called `tc'.

1.3.1 Getting the source

The �rst thing you must do is to get your own working copy of the source for `tc'. For
this, you use the checkout command:

$ cvs checkout tc

This will create a new directory called `tc' and populate it with the source �les.

$ cd tc
$ ls
CVS Makefile backend.c driver.c frontend.c parser.c

The `CVS' directory is used internally by cvs. Normally, you should not modify or remove
any of the �les in it.

You start your favorite editor, hack away at `backend.c', and a couple of hours later
you have added an optimization pass to the compiler. A note to rcs and sccs users: There
is no need to lock the �les that you want to edit. See Chapter 10 [Multiple developers],
page 57, for an explanation.

1.3.2 Committing your changes

When you have checked that the compiler is still compilable you decide to make a new
version of `backend.c'. This will store your new `backend.c' in the repository and make it
available to anyone else who is using that same repository.

$ cvs commit backend.c

cvs starts an editor, to allow you to enter a log message. You type in \Added an optimiza-
tion pass.", save the temporary �le, and exit the editor.

The environment variable $CVSEDITOR determines which editor is started. If $CVSEDITOR
is not set, then if the environment variable $EDITOR is set, it will be used. If both
$CVSEDITOR and $EDITOR are not set then there is a default which will vary with your
operating system, for example vi for unix or notepad for Windows NT/95.

When cvs starts the editor, it includes a list of �les which are modi�ed. For the cvs
client, this list is based on comparing the modi�cation time of the �le against the mod-
i�cation time that the �le had when it was last gotten or updated. Therefore, if a �le's
modi�cation time has changed but its contents have not, it will show up as modi�ed. The
simplest way to handle this is simply not to worry about it|if you proceed with the commit
cvs will detect that the contents are not modi�ed and treat it as an unmodi�ed �le. The
next update will clue cvs in to the fact that the �le is unmodi�ed, and it will reset its
stored timestamp so that the �le will not show up in future editor sessions.

If you want to avoid starting an editor you can specify the log message on the command
line using the `-m'
ag instead, like this:

$ cvs commit -m "Added an optimization pass" backend.c

Chapter 1: Overview 5

1.3.3 Cleaning up

Before you turn to other tasks you decide to remove your working copy of tc. One
acceptable way to do that is of course

$ cd ..
$ rm -r tc

but a better way is to use the release command (see Section A.15 [release], page 105):

$ cd ..
$ cvs release -d tc
M driver.c
? tc
You have [1] altered files in this repository.
Are you sure you want to release (and delete) module `tc': n
** `release' aborted by user choice.

The release command checks that all your modi�cations have been committed. If
history logging is enabled it also makes a note in the history �le. See Section C.10 [history
�le], page 136.

When you use the `-d'
ag with release, it also removes your working copy.

In the example above, the release command wrote a couple of lines of output. `? tc'
means that the �le `tc' is unknown to cvs. That is nothing to worry about: `tc' is the exe-
cutable compiler, and it should not be stored in the repository. See Section C.9 [cvsignore],
page 135, for information about how to make that warning go away. See Section A.15.2
[release output], page 106, for a complete explanation of all possible output from release.

`M driver.c' is more serious. It means that the �le `driver.c' has been modi�ed since
it was checked out.

The release command always �nishes by telling you how many modi�ed �les you have
in your working copy of the sources, and then asks you for con�rmation before deleting any
�les or making any note in the history �le.

You decide to play it safe and answer n hRETi when release asks for con�rmation.

1.3.4 Viewing di�erences

You do not remember modifying `driver.c', so you want to see what has happened to
that �le.

$ cd tc
$ cvs diff driver.c

This command runs diff to compare the version of `driver.c' that you checked out with
your working copy. When you see the output you remember that you added a command
line option that enabled the optimization pass. You check it in, and release the module.

$ cvs commit -m "Added an optimization pass" driver.c
Checking in driver.c;
/usr/local/cvsroot/tc/driver.c,v <-- driver.c
new revision: 1.2; previous revision: 1.1
done
$ cd ..

6 CVS|Concurrent Versions System

$ cvs release -d tc
? tc
You have [0] altered files in this repository.
Are you sure you want to release (and delete) module `tc': y

Chapter 2: The Repository 7

2 The Repository

The cvs repository stores a complete copy of all the �les and directories which are under
version control.

Normally, you never access any of the �les in the repository directly. Instead, you use
cvs commands to get your own copy of the �les into a working directory, and then work
on that copy. When you've �nished a set of changes, you check (or commit) them back
into the repository. The repository then contains the changes which you have made, as well
as recording exactly what you changed, when you changed it, and other such information.
Note that the repository is not a subdirectory of the working directory, or vice versa; they
should be in separate locations.

Cvs can access a repository by a variety of means. It might be on the local computer,
or it might be on a computer across the room or across the world. To distinguish various
ways to access a repository, the repository name can start with an access method. For
example, the access method :local: means to access a repository directory, so the reposi-
tory :local:/usr/local/cvsroot means that the repository is in `/usr/local/cvsroot'
on the computer running cvs. For information on other access methods, see Section 2.9
[Remote repositories], page 18.

If the access method is omitted, then if the repository does not contain `:', then :local:

is assumed. If it does contain `:' then either :ext: or :server: is assumed. For example,
if you have a local repository in `/usr/local/cvsroot', you can use /usr/local/cvsroot
instead of :local:/usr/local/cvsroot. But if (under Windows NT, for example) your
local repository is `c:\src\cvsroot', then you must specify the access method, as in
:local:c:\src\cvsroot.

The repository is split in two parts. `$CVSROOT/CVSROOT' contains administrative �les
for cvs. The other directories contain the actual user-de�ned modules.

2.1 Telling CVS where your repository is

There are several ways to tell cvs where to �nd the repository. You can name the
repository on the command line explicitly, with the -d (for "directory") option:

cvs -d /usr/local/cvsroot checkout yoyodyne/tc

Or you can set the $CVSROOT environment variable to an absolute path to the root of the
repository, `/usr/local/cvsroot' in this example. To set $CVSROOT, csh and tcsh users
should have this line in their `.cshrc' or `.tcshrc' �les:

setenv CVSROOT /usr/local/cvsroot

sh and bash users should instead have these lines in their `.profile' or `.bashrc':

CVSROOT=/usr/local/cvsroot
export CVSROOT

A repository speci�ed with -d will override the $CVSROOT environment variable. Once
you've checked a working copy out from the repository, it will remember where its repository
is (the information is recorded in the `CVS/Root' �le in the working copy).

The -d option and the `CVS/Root' �le both override the $CVSROOT environment vari-
able. If -d option di�ers from `CVS/Root', the former is used (and specifying -d will cause

8 CVS|Concurrent Versions System

`CVS/Root' to be updated). Of course, for proper operation they should be two ways of
referring to the same repository.

2.2 How data is stored in the repository

For most purposes it isn't important how cvs stores information in the repository. In
fact, the format has changed in the past, and is likely to change in the future. Since in
almost all cases one accesses the repository via cvs commands, such changes need not be
disruptive.

However, in some cases it may be necessary to understand how cvs stores data in
the repository, for example you might need to track down cvs locks (see Section 10.5
[Concurrency], page 61) or you might need to deal with the �le permissions appropriate for
the repository.

2.2.1 Where �les are stored within the repository

The overall structure of the repository is a directory tree corresponding to the directories
in the working directory. For example, supposing the repository is in

/usr/local/cvsroot

here is a possible directory tree (showing only the directories):

/usr
|
+--local
| |
| +--cvsroot
| | |
| | +--CVSROOT

| (administrative files)
|
+--gnu
| |
| +--diff
| | (source code to gnu diff)
| |
| +--rcs
| | (source code to rcs)
| |
| +--cvs
| (source code to cvs)
|
+--yoyodyne

|
+--tc
| |
| +--man
| |
| +--testing

Chapter 2: The Repository 9

|
+--(other Yoyodyne software)

With the directories are history �les for each �le under version control. The name of
the history �le is the name of the corresponding �le with `,v' appended to the end. Here is
what the repository for the `yoyodyne/tc' directory might look like:

$CVSROOT
|
+--yoyodyne
| |
| +--tc
| | |

+--Makefile,v
+--backend.c,v
+--driver.c,v
+--frontend.c,v
+--parser.c,v
+--man
| |
| +--tc.1,v
|
+--testing

|
+--testpgm.t,v
+--test2.t,v

The history �les contain, among other things, enough information to recreate any revision
of the �le, a log of all commit messages and the user-name of the person who committed
the revision. The history �les are known as RCS �les, because the �rst program to store
�les in that format was a version control system known as rcs. For a full description of
the �le format, see the man page rcs�le(5), distributed with rcs, or the �le `doc/RCSFILES'
in the cvs source distribution. This �le format has become very common|many systems
other than cvs or rcs can at least import history �les in this format.

The rcs �les used in cvs di�er in a few ways from the standard format. The biggest
di�erence is magic branches; for more information see Section 5.5 [Magic branch numbers],
page 40. Also in cvs the valid tag names are a subset of what rcs accepts; for cvs's rules
see Section 4.4 [Tags], page 32.

2.2.2 File permissions

All `,v' �les are created read-only, and you should not change the permission of those
�les. The directories inside the repository should be writable by the persons that have
permission to modify the �les in each directory. This normally means that you must create
a UNIX group (see group(5)) consisting of the persons that are to edit the �les in a project,
and set up the repository so that it is that group that owns the directory.

This means that you can only control access to �les on a per-directory basis.

Note that users must also have write access to check out �les, because cvs needs to
create lock �les (see Section 10.5 [Concurrency], page 61).

10 CVS|Concurrent Versions System

Also note that users must have write access to the `CVSROOT/val-tags' �le. Cvs uses
it to keep track of what tags are valid tag names (it is sometimes updated when tags are
used, as well as when they are created).

Each rcs �le will be owned by the user who last checked it in. This has little signi�cance;
what really matters is who owns the directories.

cvs tries to set up reasonable �le permissions for new directories that are added inside the
tree, but you must �x the permissions manually when a new directory should have di�erent
permissions than its parent directory. If you set the CVSUMASK environment variable that
will control the �le permissions which cvs uses in creating directories and/or �les in the
repository. CVSUMASK does not a�ect the �le permissions in the working directory; such
�les have the permissions which are typical for newly created �les, except that sometimes
cvs creates them read-only (see the sections on watches, Section 10.6.1 [Setting a watch],
page 62; -r, Section A.4 [Global options], page 82; or CVSREAD, Appendix D [Environment
variables], page 139).

Note that using the client/server cvs (see Section 2.9 [Remote repositories], page 18),
there is no good way to set CVSUMASK; the setting on the client machine has no e�ect. If you
are connecting with rsh, you can set CVSUMASK in `.bashrc' or `.cshrc', as described in the
documentation for your operating system. This behavior might change in future versions
of cvs; do not rely on the setting of CVSUMASK on the client having no e�ect.

Using pserver, you will generally need stricter permissions on the cvsroot directory
and directories above it in the tree; see Section 2.9.3.3 [Password authentication security],
page 22.

Some operating systems have features which allow a particular program to run with the
ability to perform operations which the caller of the program could not. For example, the
set user ID (setuid) or set group ID (setgid) features of unix or the installed image feature
of VMS. CVS was not written to use such features and therefore attempting to install CVS
in this fashion will provide protection against only accidental lapses; anyone who is trying
to circumvent the measure will be able to do so, and depending on how you have set it
up may gain access to more than just CVS. You may wish to instead consider pserver. It
shares some of the same attributes, in terms of possibly providing a false sense of security or
opening security holes wider than the ones you are trying to �x, so read the documentation
on pserver security carefully if you are considering this option (Section 2.9.3.3 [Password
authentication security], page 22).

2.2.3 File Permission issues speci�c to Windows

Some �le permission issues are speci�c to Windows operating systems (Windows 95,
Windows NT, and presumably future operating systems in this family. Some of the following
might apply to OS/2 but I'm not sure).

If you are using local CVS and the repository is on a networked �le system which is
served by the Samba SMB server, some people have reported problems with permissions.
EnablingWRITE=YES in the samba con�guration is said to �x/workaround it. Disclaimer:
I haven't investigated enough to know the implications of enabling that option, nor do I
know whether there is something which CVS could be doing di�erently in order to avoid

Chapter 2: The Repository 11

the problem. If you �nd something out, please let us know as described in Appendix H
[BUGS], page 151.

2.2.4 The attic

You will notice that sometimes cvs stores an rcs �le in the Attic. For example, if the
cvsroot is `/usr/local/cvsroot' and we are talking about the �le `backend.c' in the
directory `yoyodyne/tc', then the �le normally would be in

/usr/local/cvsroot/yoyodyne/tc/backend.c,v

but if it goes in the attic, it would be in

/usr/local/cvsroot/yoyodyne/tc/Attic/backend.c,v

instead. It should not matter from a user point of view whether a �le is in the attic;
cvs keeps track of this and looks in the attic when it needs to. But in case you want to
know, the rule is that the RCS �le is stored in the attic if and only if the head revision on
the trunk has state dead. A dead state means that �le has been removed, or never added,
for that revision. For example, if you add a �le on a branch, it will have a trunk revision
in dead state, and a branch revision in a non-dead state.

2.2.5 The CVS directory in the repository

The `CVS' directory in each repository directory contains information such as �le at-
tributes (in a �le called `CVS/fileattr'; see �leattr.h in the CVS source distribution for
more documentation). In the future additional �les may be added to this directory, so
implementations should silently ignore additional �les.

This behavior is implemented only by cvs 1.7 and later; for details see Section 10.6.5
[Watches Compatibility], page 65.

2.2.6 CVS locks in the repository

For an introduction to CVS locks focusing on user-visible behavior, see Section 10.5
[Concurrency], page 61. The following section is aimed at people who are writing tools
which want to access a CVS repository without interfering with other tools acessing the
same repository. If you �nd yourself confused by concepts described here, like read lock,
write lock, and deadlock, you might consult the literature on operating systems or databases.

Any �le in the repository with a name starting with `#cvs.rfl' is a read lock. Any
�le in the repository with a name starting with `#cvs.wfl' is a write lock. Old versions of
CVS (before CVS 1.5) also created �les with names starting with `#cvs.tfl', but they are
not discussed here. The directory `#cvs.lock' serves as a master lock. That is, one must
obtain this lock �rst before creating any of the other locks.

To obtain a readlock, �rst create the `#cvs.lock' directory. This operation must be
atomic (which should be true for creating a directory under most operating systems). If it
fails because the directory already existed, wait for a while and try again. After obtaining
the `#cvs.lock' lock, create a �le whose name is `#cvs.rfl' followed by information of
your choice (for example, hostname and process identi�cation number). Then remove the
`#cvs.lock' directory to release the master lock. Then proceed with reading the repository.
When you are done, remove the `#cvs.rfl' �le to release the read lock.

12 CVS|Concurrent Versions System

To obtain a writelock, �rst create the `#cvs.lock' directory, as with a readlock. Then
check that there are no �les whose names start with `#cvs.rfl'. If there are, remove
`#cvs.lock', wait for a while, and try again. If there are no readers, then create a �le
whose name is `#cvs.wfl' followed by information of your choice (for example, hostname and
process identi�cation number). Hang on to the `#cvs.lock' lock. Proceed with writing the
repository. When you are done, �rst remove the `#cvs.wfl' �le and then the `#cvs.lock'
directory. Note that unlike the `#cvs.rfl' �le, the `#cvs.wfl' �le is just informational;
it has no e�ect on the locking operation beyond what is provided by holding on to the
`#cvs.lock' lock itself.

Note that each lock (writelock or readlock) only locks a single directory in the repos-
itory, including `Attic' and `CVS' but not including subdirectories which represent other
directories under version control. To lock an entire tree, you need to lock each directory
(note that if you fail to obtain any lock you need, you must release the whole tree before
waiting and trying again, to avoid deadlocks).

Note also that cvs expects writelocks to control access to individual `foo,v' �les. rcs
has a scheme where the `,foo,' �le serves as a lock, but cvs does not implement it and so
taking out a cvs writelock is recommended. See the comments at rcs internal lock�le in
the cvs source code for further discussion/rationale.

2.2.7 How �les are stored in the CVSROOT directory

The `$CVSROOT/CVSROOT' directory contains the various administrative �les. In some
ways this directory is just like any other directory in the repository; it contains rcs �les
whose names end in `,v', and many of the cvs commands operate on it the same way.
However, there are a few di�erences.

For each administrative �le, in addition to the rcs �le, there is also a checked out copy
of the �le. For example, there is an rcs �le `loginfo,v' and a �le `loginfo' which contains
the latest revision contained in `loginfo,v'. When you check in an administrative �le, cvs
should print

cvs commit: Rebuilding administrative file database

and update the checked out copy in `$CVSROOT/CVSROOT'. If it does not, there is something
wrong (see Appendix H [BUGS], page 151). To add your own �les to the �les to be updated
in this fashion, you can add them to the `checkoutlist' administrative �le.

By default, the `modules' �le behaves as described above. If the modules �le is very
large, storing it as a
at text �le may make looking up modules slow (I'm not sure whether
this is as much of a concern now as when cvs �rst evolved this feature; I haven't seen
benchmarks). Therefore, by making appropriate edits to the cvs source code one can store
the modules �le in a database which implements the ndbm interface, such as Berkeley db
or GDBM. If this option is in use, then the modules database will be stored in the �les
`modules.db', `modules.pag', and/or `modules.dir'.

For information on the meaning of the various administrative �les, see Appendix C
[Administrative �les], page 125.

Chapter 2: The Repository 13

2.3 How data is stored in the working directory

While we are discussing cvs internals which may become visible from time to time, we
might as well talk about what cvs puts in the `CVS' directories in the working directories.
As with the repository, cvs handles this information and one can usually access it via cvs
commands. But in some cases it may be useful to look at it, and other programs, such as
the jCVS graphical user interface or the VC package for emacs, may need to look at it. Such
programs should follow the recommendations in this section if they hope to be able to work
with other programs which use those �les, including future versions of the programs just
mentioned and the command-line cvs client.

The `CVS' directory contains several �les. Programs which are reading this directory
should silently ignore �les which are in the directory but which are not documented here,
to allow for future expansion.

`Root' This �le contains the current cvs root, as described in Section 2.1 [Specifying
a repository], page 7.

`Repository'
This �le contains the directory within the repository which the current directory
corresponds with. It can be either an absolute pathname or a relative pathname;
cvs has had the ability to read either format since at least version 1.3 or so.
The relative pathname is relative to the root, and is the more sensible approach,
but the absolute pathname is quite common and implementations should accept
either. For example, after the command

cvs -d :local:/usr/local/cvsroot checkout yoyodyne/tc

`Root' will contain

:local:/usr/local/cvsroot

and `Repository' will contain either

/usr/local/cvsroot/yoyodyne/tc

or

yoyodyne/tc

`Entries' This �le lists the �les and directories in the working directory. It is a text �le
according to the conventions appropriate for the operating system in question.
The �rst character of each line indicates what sort of line it is. If the character
is unrecognized, programs reading the �le should silently skip that line, to allow
for future expansion.

If the �rst character is `/', then the format is:

/name/revision/timestamp[+con
ict]/options/tagdate

where `[' and `]' are not part of the entry, but instead indicate that the `+' and
con
ict marker are optional. name is the name of the �le within the directory.
revision is the revision that the �le in the working derives from, or `0' for an
added �le, or `-' followed by a revision for a removed �le. timestamp is the
timestamp of the �le at the time that cvs created it; if the timestamp di�ers
with the actual modi�cation time of the �le it means the �le has been modi�ed.
It is in Universal Time (UT), stored in the format used by the ISO C asctime()

14 CVS|Concurrent Versions System

function (for example, `Sun Apr 7 01:29:26 1996'). One may write a string
which is not in that format, for example, `Result of merge', to indicate that
the �le should always be considered to be modi�ed. This is not a special case;
to see whether a �le is modi�ed a program should take the timestamp of the
�le and simply do a string compare with timestamp. con
ict indicates that
there was a con
ict; if it is the same as the actual modi�cation time of the �le
it means that the user has obviously not resolved the con
ict. options contains
sticky options (for example `-kb' for a binary �le). tagdate contains `T' followed
by a tag name, or `D' for a date, followed by a sticky tag or date. Note that
if timestamp contains a pair of timestamps separated by a space, rather than
a single timestamp, you are dealing with a version of cvs earlier than cvs 1.5
(not documented here).

If the �rst character of a line in `Entries' is `D', then it indicates a subdirectory.
`D' on a line all by itself indicates that the program which wrote the `Entries'
�le does record subdirectories (therefore, if there is such a line and no other
lines beginning with `D', one knows there are no subdirectories). Otherwise, the
line looks like:

D/name/�ller1/�ller2/�ller3/�ller4

where name is the name of the subdirectory, and all the �ller �elds should be
silently ignored, for future expansion. Programs which modify Entries �les
should preserve these �elds.

`Entries.Log'
This �le does not record any information beyond that in `Entries', but it
does provide a way to update the information without having to rewrite the
entire `Entries' �le, including the ability to preserve the information even if
the program writing `Entries' and `Entries.Log' abruptly aborts. Programs
which are reading the `Entries' �le should also check for `Entries.Log'. If the
latter exists, they should read `Entries' and then apply the changes mentioned
in `Entries.Log'. After applying the changes, the recommended practice is
to rewrite `Entries' and then delete `Entries.Log'. The format of a line in
`Entries.Log' is a single character command followed by a space followed by
a line in the format speci�ed for a line in `Entries'. The single character
command is `A' to indicate that the entry is being added, `R' to indicate that
the entry is being removed, or any other character to indicate that the entire
line in `Entries.Log' should be silently ignored (for future expansion). If the
second character of the line in `Entries.Log' is not a space, then it was written
by an older version of cvs (not documented here).

`Entries.Backup'
This is a temporary �le. Recommended usage is to write a new entries �le
to `Entries.Backup', and then to rename it (atomically, where possible) to
`Entries'.

`Entries.Static'
The only relevant thing about this �le is whether it exists or not. If it exists,
then it means that only part of a directory was gotten and cvs will not create

Chapter 2: The Repository 15

additional �les in that directory. To clear it, use the update command with the
`-d' option, which will get the additional �les and remove `Entries.Static'.

`Tag' This �le contains per-directory sticky tags or dates. The �rst character is `T'
for a branch tag, `N' for a non-branch tag, or `D' for a date, or another character
to mean the �le should be silently ignored, for future expansion. This character
is followed by the tag or date. Note that per-directory sticky tags or dates are
used for things like applying to �les which are newly added; they might not be
the same as the sticky tags or dates on individual �les. For general information
on sticky tags and dates, see Section 4.5 [Sticky tags], page 34.

`Checkin.prog'
`Update.prog'

These �les store the programs speci�ed by the `-i' and `-u' options in the
modules �le, respectively.

`Notify' This �le stores noti�cations (for example, for edit or unedit) which have not
yet been sent to the server. Its format is not yet documented here.

`Notify.tmp'
This �le is to `Notify' as `Entries.Backup' is to `Entries'. That is, to write
`Notify', �rst write the new contents to `Notify.tmp' and then (atomically
where possible), rename it to `Notify'.

`Base' If watches are in use, then an edit command stores the original copy of the �le
in the `Base' directory. This allows the unedit command to operate even if it
is unable to communicate with the server.

`Baserev' The �le lists the revision for each of the �les in the `Base' directory. The format
is:

Bname/rev/expansion

where expansion should be ignored, to allow for future expansion.

`Baserev.tmp'
This �le is to `Baserev' as `Entries.Backup' is to `Entries'. That is, to write
`Baserev', �rst write the new contents to `Baserev.tmp' and then (atomically
where possible), rename it to `Baserev'.

`Template'
This �le contains the template speci�ed by the `rcsinfo' �le (see Section C.8
[rcsinfo], page 134). It is only used by the client; the non-client/server cvs
consults `rcsinfo' directly.

2.4 The administrative �les

The directory `$CVSROOT/CVSROOT' contains some administrative �les. See Appendix C
[Administrative �les], page 125, for a complete description. You can use cvs without any
of these �les, but some commands work better when at least the `modules' �le is properly
set up.

The most important of these �les is the `modules' �le. It de�nes all modules in the
repository. This is a sample `modules' �le.

16 CVS|Concurrent Versions System

CVSROOT CVSROOT
modules CVSROOT modules
cvs gnu/cvs
rcs gnu/rcs
diff gnu/diff
tc yoyodyne/tc

The `modules' �le is line oriented. In its simplest form each line contains the name of
the module, whitespace, and the directory where the module resides. The directory is a
path relative to $CVSROOT. The last four lines in the example above are examples of such
lines.

The line that de�nes the module called `modules' uses features that are not explained
here. See Section C.1 [modules], page 125, for a full explanation of all the available features.

2.4.1 Editing administrative �les

You edit the administrative �les in the same way that you would edit any other module.
Use `cvs checkout CVSROOT' to get a working copy, edit it, and commit your changes in
the normal way.

It is possible to commit an erroneous administrative �le. You can often �x the error and
check in a new revision, but sometimes a particularly bad error in the administrative �le
makes it impossible to commit new revisions.

2.5 Multiple repositories

In some situations it is a good idea to have more than one repository, for instance if you
have two development groups that work on separate projects without sharing any code. All
you have to do to have several repositories is to specify the appropriate repository, using
the CVSROOT environment variable, the `-d' option to cvs, or (once you have checked out a
working directory) by simply allowing cvs to use the repository that was used to check out
the working directory (see Section 2.1 [Specifying a repository], page 7).

The big advantage of having multiple repositories is that they can reside on di�erent
servers. The big disadvantage is that you cannot have a single cvs command recurse into
directories which comes from di�erent repositories. Generally speaking, if you are thinking
of setting up several repositories on the same machine, you might want to consider using
several directories within the same repository.

None of the examples in this manual show multiple repositories.

2.6 Creating a repository

To set up a cvs repository, �rst choose the machine and disk on which you want to store
the revision history of the source �les. CPU and memory requirements are modest, so most
machines should be adequate. For details see Section 2.9.1 [Server requirements], page 18.

To estimate disk space requirements, if you are importing RCS �les from another system,
the size of those �les is the approximate initial size of your repository, or if you are starting
without any version history, a rule of thumb is to allow for the server approximately three

Chapter 2: The Repository 17

times the size of the code to be under CVS for the repository (you will eventually outgrow
this, but not for a while). On the machines on which the developers will be working, you'll
want disk space for approximately one working directory for each developer (either the
entire tree or a portion of it, depending on what each developer uses).

The repository should be accessable (directly or via a networked �le system) from all
machines which want to use cvs in server or local mode; the client machines need not have
any access to it other than via the cvs protocol. It is not possible to use cvs to read from
a repository which one only has read access to; cvs needs to be able to create lock �les (see
Section 10.5 [Concurrency], page 61).

To create a repository, run the cvs init command. It will set up an empty repository in
the cvs root speci�ed in the usual way (see Chapter 2 [Repository], page 7). For example,

cvs -d /usr/local/cvsroot init

cvs init is careful to never overwrite any existing �les in the repository, so no harm is
done if you run cvs init on an already set-up repository.

cvs init will enable history logging; if you don't want that, remove the history �le after
running cvs init. See Section C.10 [history �le], page 136.

2.7 Backing up a repository

There is nothing particularly magical about the �les in the repository; for the most part
it is possible to back them up just like any other �les. However, there are a few issues to
consider.

The �rst is that to be paranoid, one should either not use cvs during the backup, or have
the backup program lock cvs while doing the backup. To not use cvs, you might forbid
logins to machines which can access the repository, turn o� your cvs server, or similar
mechanisms. The details would depend on your operating system and how you have cvs
set up. To lock cvs, you would create `#cvs.rfl' locks in each repository directory. See
Section 10.5 [Concurrency], page 61, for more on cvs locks. Having said all this, if you just
back up without any of these precautions, the results are unlikely to be particularly dire.
Restoring from backup, the repository might be in an inconsistent state, but this would not
be particularly hard to �x manually.

When you restore a repository from backup, assuming that changes in the repository
were made after the time of the backup, working directories which were not a�ected by the
failure may refer to revisions which no longer exist in the repository. Trying to run cvs

in such directories will typically produce an error message. One way to get those changes
back into the repository is as follows:

� Get a new working directory.

� Copy the �les from the working directory from before the failure over to the new
working directory (do not copy the contents of the `CVS' directories, of course).

� Working in the new working directory, use commands such as cvs update and cvs diff

to �gure out what has changed, and then when you are ready, commit the changes into
the repository.

18 CVS|Concurrent Versions System

2.8 Moving a repository

Just as backing up the �les in the repository is pretty much like backing up any other
�les, if you need to move a repository from one place to another it is also pretty much like
just moving any other collection of �les.

The main thing to consider is that working directories point to the repository. The
simplest way to deal with a moved repository is to just get a fresh working directory after
the move. Of course, you'll want to make sure that the old working directory had been
checked in before the move, or you �gured out some other way to make sure that you
don't lose any changes. If you really do want to reuse the existing working directory,
it should be possible with manual surgery on the `CVS/Repository' �les. You can see
Section 2.3 [Working directory storage], page 13, for information on the `CVS/Repository'
and `CVS/Root' �les, but unless you are sure you want to bother, it probably isn't worth it.

2.9 Remote repositories

Your working copy of the sources can be on a di�erent machine than the repository.
Using cvs in this manner is known as client/server operation. You run cvs on a machine
which can mount your working directory, known as the client, and tell it to communicate to
a machine which can mount the repository, known as the server. Generally, using a remote
repository is just like using a local one, except that the format of the repository name is:

:method:user@hostname:/path/to/repository

The details of exactly what needs to be set up depend on how you are connecting to the
server.

If method is not speci�ed, and the repository name contains `:', then the default is ext
or server, depending on your platform; both are described in Section 2.9.2 [Connecting via
rsh], page 19.

2.9.1 Server requirements

The quick answer to what sort of machine is suitable as a server is that requirements
are modest|a server with 32M of memory or even less can handle a fairly large source tree
with a fair amount of activity.

The real answer, of course, is more complicated. Estimating the known areas of large
memory consumption should be su�cient to estimate memory requirements. There are two
such areas documented here; other memory consumption should be small by comparison (if
you �nd that is not the case, let us know, as described in Appendix H [BUGS], page 151,
so we can update this documentation).

The �rst area of big memory consumption is large checkouts, when using the cvs server.
The server consists of two processes for each client that it is serving. Memory consumption
on the child process should remain fairly small. Memory consumption on the parent process,
particularly if the network connection to the client is slow, can be expected to grow to
slightly more than the size of the sources in a single directory, or two megabytes, whichever
is larger.

Multiplying the size of each cvs server by the number of servers which you expect to
have active at one time should give an idea of memory requirements for the server. For the

Chapter 2: The Repository 19

most part, the memory consumed by the parent process probably can be swap space rather
than physical memory.

The second area of large memory consumption is diff, when checking in large �les. This
is required even for binary �les. The rule of thumb is to allow about ten times the size of the
largest �le you will want to check in, although �ve times may be adequate. For example,
if you want to check in a �le which is 10 megabytes, you should have 100 megabytes of
memory on the machine doing the checkin (the server machine for client/server, or the
machine running cvs for non-client/server). This can be swap space rather than physical
memory. Because the memory is only required brie
y, there is no particular need to allow
memory for more than one such checkin at a time.

Resource consumption for the client is even more modest|any machine with enough
capacity to run the operating system in question should have little trouble.

For information on disk space requirements, see Section 2.6 [Creating a repository],
page 16.

2.9.2 Connecting with rsh

CVS uses the `rsh' protocol to perform these operations, so the remote user host needs
to have a `.rhosts' �le which grants access to the local user.

For example, suppose you are the user `mozart' on the local machine `toe.grunge.com',
and the server machine is `chainsaw.yard.com'. On chainsaw, put the following line into
the �le `.rhosts' in `bach''s home directory:

toe.grunge.com mozart

Then test that rsh is working with

rsh -l bach chainsaw.yard.com 'echo $PATH'

Next you have to make sure that rsh will be able to �nd the server. Make sure that
the path which rsh printed in the above example includes the directory containing a pro-
gram named cvs which is the server. You need to set the path in `.bashrc', `.cshrc',
etc., not `.login' or `.profile'. Alternately, you can set the environment variable CVS_

SERVER on the client machine to the �lename of the server you want to use, for example
`/usr/local/bin/cvs-1.6'.

There is no need to edit inetd.conf or start a cvs server daemon.

There are two access methods that you use in CVSROOT for rsh. :server: speci�es an
internal rsh client, which is supported only by some CVS ports. :ext: speci�es an external
rsh program. By default this is rsh but you may set the CVS_RSH environment variable to
invoke another program which can access the remote server (for example, remsh on HP-UX
9 because rsh is something di�erent). It must be a program which can transmit data to
and from the server without modifying it; for example the Windows NT rsh is not suitable
since it by default translates between CRLF and LF. The OS/2 CVS port has a hack to
pass `-b' to rsh to get around this, but since this could potentially cause problems for
programs other than the standard rsh, it may change in the future. If you set CVS_RSH to
SSH or some other rsh replacement, the instructions in the rest of this section concerning
`.rhosts' and so on are likely to be inapplicable; consult the documentation for your rsh
replacement.

20 CVS|Concurrent Versions System

Continuing our example, supposing you want to access the module `foo' in the repository
`/usr/local/cvsroot/', on machine `chainsaw.yard.com', you are ready to go:

cvs -d :ext:bach@chainsaw.yard.com:/usr/local/cvsroot checkout foo

(The `bach@' can be omitted if the username is the same on both the local and remote
hosts.)

2.9.3 Direct connection with password authentication

The cvs client can also connect to the server using a password protocol. This is partic-
ularly useful if using rsh is not feasible (for example, the server is behind a �rewall), and
Kerberos also is not available.

To use this method, it is necessary to make some adjustments on both the server and
client sides.

2.9.3.1 Setting up the server for password authentication

First of all, you probably want to tighten the permissions on the `$CVSROOT' and
`$CVSROOT/CVSROOT' directories. See Section 2.9.3.3 [Password authentication security],
page 22, for more details.

On the server side, the �le `/etc/inetd.conf' needs to be edited so inetd knows to run
the command cvs pserver when it receives a connection on the right port. By default, the
port number is 2401; it would be di�erent if your client were compiled with CVS_AUTH_PORT

de�ned to something else, though.

If your inetd allows raw port numbers in `/etc/inetd.conf', then the following (all on
a single line in `inetd.conf') should be su�cient:

2401 stream tcp nowait root /usr/local/bin/cvs
cvs --allow-root=/usr/cvsroot pserver

You could also use the `-T' option to specify a temporary directory.

The `--allow-root' option speci�es the allowable cvsroot directory. Clients which
attempt to use a di�erent cvsroot directory will not be allowed to connect. If there is
more than one cvsroot directory which you want to allow, repeat the option.

If your inetd wants a symbolic service name instead of a raw port number, then put
this in `/etc/services':

cvspserver 2401/tcp

and put cvspserver instead of 2401 in `inetd.conf'.

Once the above is taken care of, restart your inetd, or do whatever is necessary to force
it to reread its initialization �les.

Because the client stores and transmits passwords in cleartext (almost|see Sec-
tion 2.9.3.3 [Password authentication security], page 22, for details), a separate cvs

password �le may be used, so people don't compromise their regular passwords when
they access the repository. This �le is `$CVSROOT/CVSROOT/passwd' (see Section 2.4 [Intro
administrative �les], page 15). Its format is similar to `/etc/passwd', except that it only
has two or three �elds, username, password, and optional username for the server to use.
For example:

Chapter 2: The Repository 21

bach:ULtgRLXo7NRxs
cwang:1sOp854gDF3DY

The password is encrypted according to the standard Unix crypt() function, so it is
possible to paste in passwords directly from regular Unix `passwd' �les.

When authenticating a password, the server �rst checks for the user in the cvs `passwd'
�le. If it �nds the user, it compares against that password. If it does not �nd the user, or
if the cvs `passwd' �le does not exist, then the server tries to match the password using
the system's user-lookup routine (using the system's user-lookup routine can be disabled
by setting SystemAuth=no in the con�g �le, see Section C.12 [con�g], page 137). When
using the cvs `passwd' �le, the server runs as the username speci�ed in the third argument
in the entry, or as the �rst argument if there is no third argument (in this way cvs allows
imaginary usernames provided the cvs `passwd' �le indicates corresponding valid system
usernames). In any case, cvs will have no privileges which the (valid) user would not have.

It is possible to \map" cvs-speci�c usernames onto system usernames (i.e., onto system
login names) in the `$CVSROOT/CVSROOT/passwd' �le by appending a colon and the system
username after the password. For example:

cvs:ULtgRLXo7NRxs:kfogel
generic:1sOp854gDF3DY:spwang
anyone:1sOp854gDF3DY:spwang

Thus, someone remotely accessing the repository on `chainsaw.yard.com' with the fol-
lowing command:

cvs -d :pserver:cvs@chainsaw.yard.com:/usr/local/cvsroot checkout foo

would end up running the server under the system identity kfogel, assuming successful
authentication. However, the remote user would not necessarily need to know kfogel's sys-
tem password, as the `$CVSROOT/CVSROOT/passwd' �le might contain a di�erent password,
used only for cvs. And as the example above indicates, it is permissible to map multiple
cvs usernames onto a single system username.

This feature is designed to allow people repository access without full system access (in
particular, see Section 2.10 [Read-only access], page 24); however, also see Section 2.9.3.3
[Password authentication security], page 22. Any sort of repository access very likely implies
a degree of general system access as well.

Right now, the only way to put a password in the cvs `passwd' �le is to paste it there
from somewhere else. Someday, there may be a cvs passwd command.

2.9.3.2 Using the client with password authentication

Before connecting to the server, the client must log in with the command cvs login.
Logging in veri�es a password with the server, and also records the password for later
transactions with the server. The cvs login command needs to know the username, server
hostname, and full repository path, and it gets this information from the repository argu-
ment or the CVSROOT environment variable.

cvs login is interactive | it prompts for a password:

cvs -d :pserver:bach@chainsaw.yard.com:/usr/local/cvsroot login
CVS password:

22 CVS|Concurrent Versions System

The password is checked with the server; if it is correct, the login succeeds, else it fails,
complaining that the password was incorrect.

Once you have logged in, you can force cvs to connect directly to the server and au-
thenticate with the stored password:

cvs -d :pserver:bach@chainsaw.yard.com:/usr/local/cvsroot checkout foo

The `:pserver:' is necessary because without it, cvs will assume it should use rsh to
connect with the server (see Section 2.9.2 [Connecting via rsh], page 19). (Once you have a
working copy checked out and are running cvs commands from within it, there is no longer
any need to specify the repository explicitly, because cvs records it in the working copy's
`CVS' subdirectory.)

Passwords are stored by default in the �le `$HOME/.cvspass'. Its format is human-
readable, but don't edit it unless you know what you are doing. The passwords are not
stored in cleartext, but are trivially encoded to protect them from "innocent" compromise
(i.e., inadvertently being seen by a system administrator who happens to look at that �le).

The password for the currently choosen remote repository can be removed from the
CVS PASSFILE by using the cvs logout command.

The CVS_PASSFILE environment variable overrides this default. If you use this variable,
make sure you set it before cvs login is run. If you were to set it after running cvs login,
then later cvs commands would be unable to look up the password for transmission to the
server.

2.9.3.3 Security considerations with password authentication

The passwords are stored on the client side in a trivial encoding of the cleartext, and
transmitted in the same encoding. The encoding is done only to prevent inadvertent pass-
word compromises (i.e., a system administrator accidentally looking at the �le), and will
not prevent even a naive attacker from gaining the password.

The separate cvs password �le (see Section 2.9.3.1 [Password authentication server],
page 20) allows people to use a di�erent password for repository access than for login
access. On the other hand, once a user has non-read-only access to the repository, she can
execute programs on the server system through a variety of means. Thus, repository access
implies fairly broad system access as well. It might be possible to modify cvs to prevent
that, but no one has done so as of this writing. Furthermore, there may be other ways in
which having access to cvs allows people to gain more general access to the system; no one
has done a careful audit.

Note that because the `$CVSROOT/CVSROOT' directory contains `passwd' and other �les
which are used to check security, you must control the permissions on this directory as
tightly as the permissions on `/etc'. The same applies to the `$CVSROOT' directory itself
and any directory above it in the tree. Anyone who has write access to such a directory
will have the ability to become any user on the system. Note that these permissions are
typically tighter than you would use if you are not using pserver.

In summary, anyone who gets the password gets repository access, and some measure of
general system access as well. The password is available to anyone who can sni� network
packets or read a protected (i.e., user read-only) �le. If you want real security, get Kerberos.

Chapter 2: The Repository 23

2.9.4 Direct connection with GSSAPI

GSSAPI is a generic interface to network security systems such as Kerberos 5. If you
have a working GSSAPI library, you can have cvs connect via a direct tcp connection,
authenticating with GSSAPI.

To do this, cvs needs to be compiled with GSSAPI support; when con�guring cvs it
tries to detect whether GSSAPI libraries using kerberos version 5 are present. You can also
use the `--with-gssapi'
ag to con�gure.

The connection is authenticated using GSSAPI, but the message stream is not authen-
ticated by default. You must use the -a global option to request stream authentication.

The data transmitted is not encrypted by default. Encryption support must be compiled
into both the client and the server; use the `--enable-encrypt' con�gure option to turn it
on. You must then use the -x global option to request encryption.

GSSAPI connections are handled on the server side by the same server which handles
the password authentication server; see Section 2.9.3.1 [Password authentication server],
page 20. If you are using a GSSAPI mechanism such as Kerberos which provides for
strong authentication, you will probably want to disable the ability to authenticate via
cleartext passwords. To do so, create an empty `CVSROOT/passwd' password �le, and set
SystemAuth=no in the con�g �le (see Section C.12 [con�g], page 137).

The GSSAPI server uses a principal name of cvs/hostname, where hostname is the
canonical name of the server host. You will have to set this up as required by your GSSAPI
mechanism.

To connect using GSSAPI, use `:gserver:'. For example,

cvs -d :gserver:chainsaw.yard.com:/usr/local/cvsroot checkout foo

2.9.5 Direct connection with kerberos

The easiest way to use kerberos is to use the kerberos rsh, as described in Section 2.9.2
[Connecting via rsh], page 19. The main disadvantage of using rsh is that all the data needs
to pass through additional programs, so it may be slower. So if you have kerberos installed
you can connect via a direct tcp connection, authenticating with kerberos.

This section concerns the kerberos network security system, version 4. Kerberos version 5
is supported via the GSSAPI generic network security interface, as described in the previous
section.

To do this, cvs needs to be compiled with kerberos support; when con�guring cvs it tries
to detect whether kerberos is present or you can use the `--with-krb4'
ag to con�gure.

The data transmitted is not encrypted by default. Encryption support must be compiled
into both the client and server; use the `--enable-encryption' con�gure option to turn it
on. You must then use the -x global option to request encryption.

You need to edit inetd.conf on the server machine to run cvs kserver. The client uses
port 1999 by default; if you want to use another port specify it in the CVS_CLIENT_PORT

environment variable on the client.

When you want to use cvs, get a ticket in the usual way (generally kinit); it must be
a ticket which allows you to log into the server machine. Then you are ready to go:

24 CVS|Concurrent Versions System

cvs -d :kserver:chainsaw.yard.com:/usr/local/cvsroot checkout foo

Previous versions of cvs would fall back to a connection via rsh; this version will not do
so.

2.10 Read-only repository access

It is possible to grant read-only repository access to people using the password-
authenticated server (see Section 2.9.3 [Password authenticated], page 20). (The other
access methods do not have explicit support for read-only users because those methods
all assume login access to the repository machine anyway, and therefore the user can do
whatever local �le permissions allow her to do.)

A user who has read-only access can do only those cvs operations which do not modify
the repository, except for certain \administrative" �les (such as lock �les and the history
�le). It may be desirable to use this feature in conjunction with user-aliasing (see Sec-
tion 2.9.3.1 [Password authentication server], page 20).

Unlike with previous versions of cvs, read-only users should be able merely to read the
repository, and not to execute programs on the server or otherwise gain unexpected levels
of access. Or to be more accurate, the known holes have been plugged. Because this feature
is new and has not received a comprehensive security audit, you should use whatever level
of caution seems warranted given your attitude concerning security.

There are two ways to specify read-only access for a user: by inclusion, and by exclusion.

"Inclusion" means listing that user speci�cally in the `$CVSROOT/CVSROOT/readers' �le,
which is simply a newline-separated list of users. Here is a sample `readers' �le:

melissa
splotnik
jrandom

(Don't forget the newline after the last user.)

"Exclusion" means explicitly listing everyone who has write access|if the �le

$CVSROOT/CVSROOT/writers

exists, then only those users listed in it have write access, and everyone else has read-only
access (of course, even the read-only users still need to be listed in the cvs `passwd' �le).
The `writers' �le has the same format as the `readers' �le.

Note: if your cvs `passwd' �le maps cvs users onto system users (see Section 2.9.3.1
[Password authentication server], page 20), make sure you deny or grant read-only access
using the cvs usernames, not the system usernames. That is, the `readers' and `writers'
�les contain cvs usernames, which may or may not be the same as system usernames.

Here is a complete description of the server's behavior in deciding whether to grant
read-only or read-write access:

If `readers' exists, and this user is listed in it, then she gets read-only access. Or if
`writers' exists, and this user is NOT listed in it, then she also gets read-only access (this
is true even if `readers' exists but she is not listed there). Otherwise, she gets full read-write
access.

Chapter 2: The Repository 25

Of course there is a con
ict if the user is listed in both �les. This is resolved in the more
conservative way, it being better to protect the repository too much than too little: such a
user gets read-only access.

2.11 Temporary directories for the server

While running, the cvs server creates temporary directories. They are named

cvs-servpid

where pid is the process identi�cation number of the server. They are located in the
directory speci�ed by the `TMPDIR' environment variable (see Appendix D [Environment
variables], page 139), the `-T' global option (see Section A.4 [Global options], page 82), or
failing that `/tmp'.

In most cases the server will remove the temporary directory when it is done, whether
it �nishes normally or abnormally. However, there are a few cases in which the server does
not or cannot remove the temporary directory, for example:

� If the server aborts due to an internal server error, it may preserve the directory to aid
in debugging

� If the server is killed in a way that it has no way of cleaning up (most notably, `kill
-KILL' on unix).

� If the system shuts down without an orderly shutdown, which tells the server to clean
up.

In cases such as this, you will need to manually remove the `cvs-servpid' directories.
As long as there is no server running with process identi�cation number pid, it is safe to do
so.

26 CVS|Concurrent Versions System

Chapter 3: Starting a project with CVS 27

3 Starting a project with CVS

Because renaming �les and moving them between directories is somewhat inconvenient,
the �rst thing you do when you start a new project should be to think through your �le
organization. It is not impossible to rename or move �les, but it does increase the potential
for confusion and cvs does have some quirks particularly in the area of renaming directories.
See Section 7.4 [Moving �les], page 50.

What to do next depends on the situation at hand.

3.1 Setting up the �les

The �rst step is to create the �les inside the repository. This can be done in a couple of
di�erent ways.

3.1.1 Creating a directory tree from a number of �les

When you begin using cvs, you will probably already have several projects that can
be put under cvs control. In these cases the easiest way is to use the import com-
mand. An example is probably the easiest way to explain how to use it. If the �les
you want to install in cvs reside in `wdir', and you want them to appear in the repository
as `$CVSROOT/yoyodyne/rdir', you can do this:

$ cd wdir
$ cvs import -m "Imported sources" yoyodyne/rdir yoyo start

Unless you supply a log message with the `-m'
ag, cvs starts an editor and prompts for
a message. The string `yoyo' is a vendor tag, and `start' is a release tag. They may �ll no
purpose in this context, but since cvs requires them they must be present. See Chapter 13
[Tracking sources], page 73, for more information about them.

You can now verify that it worked, and remove your original source directory.

$ cd ..
$ mv dir dir.orig
$ cvs checkout yoyodyne/dir # Explanation below
$ diff -r dir.orig yoyodyne/dir
$ rm -r dir.orig

Erasing the original sources is a good idea, to make sure that you do not accidentally edit
them in dir, bypassing cvs. Of course, it would be wise to make sure that you have a
backup of the sources before you remove them.

The checkout command can either take a module name as argument (as it has done in
all previous examples) or a path name relative to $CVSROOT, as it did in the example above.

It is a good idea to check that the permissions cvs sets on the directories inside
`$CVSROOT' are reasonable, and that they belong to the proper groups. See Section 2.2.2
[File permissions], page 9.

If some of the �les you want to import are binary, you may want to use the wrappers
features to specify which �les are binary and which are not. See Section C.2 [Wrappers],
page 128.

28 CVS|Concurrent Versions System

3.1.2 Creating Files From Other Version Control Systems

If you have a project which you are maintaining with another version control system,
such as rcs, you may wish to put the �les from that project into cvs, and preserve the
revision history of the �les.

From RCS If you have been using rcs, �nd the rcs �les|usually a �le named `foo.c' will
have its rcs �le in `RCS/foo.c,v' (but it could be other places; consult the rcs
documentation for details). Then create the appropriate directories in cvs if
they do not already exist. Then copy the �les into the appropriate directories
in the cvs repository (the name in the repository must be the name of the
source �le with `,v' added; the �les go directly in the appopriate directory of
the repository, not in an `RCS' subdirectory). This is one of the few times when
it is a good idea to access the cvs repository directly, rather than using cvs
commands. Then you are ready to check out a new working directory.

The rcs �le should not be locked when you move it into cvs; if it is, cvs will
have trouble letting you operate on it.

From another version control system
Many version control systems have the ability to export rcs �les in the stan-
dard format. If yours does, export the rcs �les and then follow the above
instructions.

Failing that, probably your best bet is to write a script that will check out the
�les one revision at a time using the command line interface to the other system,
and then check the revisions into cvs. The `sccs2rcs' script mentioned below
may be a useful example to follow.

From SCCS
There is a script in the `contrib' directory of the cvs source distribution called
`sccs2rcs' which converts sccs �les to rcs �les. Note: you must run it on a
machine which has both sccs and rcs installed, and like everything else in
contrib it is unsupported (your mileage may vary).

From PVCS
There is a script in the `contrib' directory of the cvs source distribution called
`pvcs_to_rcs' which converts pvcs archives to rcs �les. You must run it on
a machine which has both pvcs and rcs installed, and like everything else in
contrib it is unsupported (your mileage may vary). See the comments in the
script for details.

3.1.3 Creating a directory tree from scratch

For a new project, the easiest thing to do is probably to create an empty directory
structure, like this:

$ mkdir tc
$ mkdir tc/man
$ mkdir tc/testing

After that, you use the import command to create the corresponding (empty) directory
structure inside the repository:

Chapter 3: Starting a project with CVS 29

$ cd tc
$ cvs import -m "Created directory structure" yoyodyne/dir yoyo start

Then, use add to add �les (and new directories) as they appear.

Check that the permissions cvs sets on the directories inside `$CVSROOT' are reasonable.

3.2 De�ning the module

The next step is to de�ne the module in the `modules' �le. This is not strictly necessary,
but modules can be convenient in grouping together related �les and directories.

In simple cases these steps are su�cient to de�ne a module.

1. Get a working copy of the modules �le.

$ cvs checkout CVSROOT/modules
$ cd CVSROOT

2. Edit the �le and insert a line that de�nes the module. See Section 2.4 [Intro adminis-
trative �les], page 15, for an introduction. See Section C.1 [modules], page 125, for a
full description of the modules �le. You can use the following line to de�ne the module
`tc':

tc yoyodyne/tc

3. Commit your changes to the modules �le.

$ cvs commit -m "Added the tc module." modules

4. Release the modules module.

$ cd ..
$ cvs release -d CVSROOT

30 CVS|Concurrent Versions System

Chapter 4: Revisions 31

4 Revisions

For many uses of cvs, one doesn't need to worry too much about revision numbers; cvs
assigns numbers such as 1.1, 1.2, and so on, and that is all one needs to know. However,
some people prefer to have more knowledge and control concerning how cvs assigns revision
numbers.

If one wants to keep track of a set of revisions involving more than one �le, such as which
revisions went into a particular release, one uses a tag, which is a symbolic revision which
can be assigned to a numeric revision in each �le.

4.1 Revision numbers

Each version of a �le has a unique revision number. Revision numbers look like `1.1',
`1.2', `1.3.2.2' or even `1.3.2.2.4.5'. A revision number always has an even number of
period-separated decimal integers. By default revision 1.1 is the �rst revision of a �le. Each
successive revision is given a new number by increasing the rightmost number by one. The
following �gure displays a few revisions, with newer revisions to the right.

+-----+ +-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 !
+-----+ +-----+ +-----+ +-----+ +-----+

It is also possible to end up with numbers containing more than one period, for example
`1.3.2.2'. Such revisions represent revisions on branches (see Chapter 5 [Branching and
merging], page 37); such revision numbers are explained in detail in Section 5.4 [Branches
and revisions], page 39.

4.2 Versions, revisions and releases

A �le can have several versions, as described above. Likewise, a software product can
have several versions. A software product is often given a version number such as `4.1.1'.

Versions in the �rst sense are called revisions in this document, and versions in the
second sense are called releases. To avoid confusion, the word version is almost never used
in this document.

4.3 Assigning revisions

By default, cvs will assign numeric revisions by leaving the �rst number the same and
incrementing the second number. For example, 1.1, 1.2, 1.3, etc.

When adding a new �le, the second number will always be one and the �rst number
will equal the highest �rst number of any �le in that directory. For example, the current
directory contains �les whose highest numbered revisions are 1.7, 3.1, and 4.12, then an
added �le will be given the numeric revision 4.1.

Normally there is no reason to care about the revision numbers|it is easier to treat
them as internal numbers that cvs maintains, and tags provide a better way to distinguish
between things like release 1 versus release 2 of your product (see Section 4.4 [Tags], page 32).
However, if you want to set the numeric revisions, the `-r' option to cvs commit can do

32 CVS|Concurrent Versions System

that. The `-r' option implies the `-f' option, in the sense that it causes the �les to be
committed even if they are not modi�ed.

For example, to bring all your �les up to revision 3.0 (including those that haven't
changed), you might invoke:

$ cvs commit -r 3.0

Note that the number you specify with `-r' must be larger than any existing revision
number. That is, if revision 3.0 exists, you cannot `cvs commit -r 1.3'. If you want to
maintain several releases in parallel, you need to use a branch (see Chapter 5 [Branching
and merging], page 37).

4.4 Tags{Symbolic revisions

The revision numbers live a life of their own. They need not have anything at all to
do with the release numbers of your software product. Depending on how you use cvs the
revision numbers might change several times between two releases. As an example, some of
the source �les that make up rcs 5.6 have the following revision numbers:

ci.c 5.21
co.c 5.9
ident.c 5.3
rcs.c 5.12
rcsbase.h 5.11
rcsdiff.c 5.10
rcsedit.c 5.11
rcsfcmp.c 5.9
rcsgen.c 5.10
rcslex.c 5.11
rcsmap.c 5.2
rcsutil.c 5.10

You can use the tag command to give a symbolic name to a certain revision of a �le.
You can use the `-v'
ag to the status command to see all tags that a �le has, and which
revision numbers they represent. Tag names must start with an uppercase or lowercase
letter and can contain uppercase and lowercase letters, digits, `-', and `_'. The two tag
names BASE and HEAD are reserved for use by cvs. It is expected that future names which
are special to cvs will be specially named, for example by starting with `.', rather than
being named analogously to BASE and HEAD, to avoid con
icts with actual tag names.

You'll want to choose some convention for naming tags, based on information such as the
name of the program and the version number of the release. For example, one might take
the name of the program, immediately followed by the version number with `.' changed to
`-', so that CVS 1.9 would be tagged with the name cvs1-9. If you choose a consistent
convention, then you won't constantly be guessing whether a tag is cvs-1-9 or cvs1_9 or
what. You might even want to consider enforcing your convention in the taginfo �le (see
Section 8.3 [user-de�ned logging], page 53).

The following example shows how you can add a tag to a �le. The commands must be
issued inside your working copy of the module. That is, you should issue the command in
the directory where `backend.c' resides.

Chapter 4: Revisions 33

$ cvs tag rel-0-4 backend.c
T backend.c
$ cvs status -v backend.c
===
File: backend.c Status: Up-to-date

Version: 1.4 Tue Dec 1 14:39:01 1992
RCS Version: 1.4 /u/cvsroot/yoyodyne/tc/backend.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:
rel-0-4 (revision: 1.4)

There is seldom reason to tag a �le in isolation. A more common use is to tag all the �les
that constitute a module with the same tag at strategic points in the development life-cycle,
such as when a release is made.

$ cvs tag rel-1-0 .
cvs tag: Tagging .
T Makefile
T backend.c
T driver.c
T frontend.c
T parser.c

(When you give cvs a directory as argument, it generally applies the operation to all
the �les in that directory, and (recursively), to any subdirectories that it may contain. See
Chapter 6 [Recursive behavior], page 45.)

The checkout command has a
ag, `-r', that lets you check out a certain revision of
a module. This
ag makes it easy to retrieve the sources that make up release 1.0 of the
module `tc' at any time in the future:

$ cvs checkout -r rel-1-0 tc

This is useful, for instance, if someone claims that there is a bug in that release, but you
cannot �nd the bug in the current working copy.

You can also check out a module as it was at any given date. See Section A.7.1 [checkout
options], page 91.

When you tag more than one �le with the same tag you can think about the tag as "a
curve drawn through a matrix of �lename vs. revision number." Say we have 5 �les with
the following revisions:

34 CVS|Concurrent Versions System

file1 file2 file3 file4 file5

1.1 1.1 1.1 1.1 /--1.1* <-*- TAG
1.2*- 1.2 1.2 -1.2*-
1.3 \- 1.3*- 1.3 / 1.3
1.4 \ 1.4 / 1.4

\-1.5*- 1.5
1.6

At some time in the past, the * versions were tagged. You can think of the tag as a
handle attached to the curve drawn through the tagged revisions. When you pull on the
handle, you get all the tagged revisions. Another way to look at it is that you "sight"
through a set of revisions that is "
at" along the tagged revisions, like this:

file1 file2 file3 file4 file5

1.1
1.2

1.1 1.3 _
1.1 1.2 1.4 1.1 /
1.2*----1.3*----1.5*----1.2*----1.1 (--- <--- Look here
1.3 1.6 1.3 _
1.4 1.4

1.5

4.5 Sticky tags

Sometimes a working copy's revision has extra data associated with it, for example it
might be on a branch (see Chapter 5 [Branching and merging], page 37), or restricted to
versions prior to a certain date by `checkout -D' or `update -D'. Because this data persists
{ that is, it applies to subsequent commands in the working copy { we refer to it as sticky.

Most of the time, stickiness is an obscure aspect of cvs that you don't need to think
about. However, even if you don't want to use the feature, you may need to know something
about sticky tags (for example, how to avoid them!).

You can use the status command to see if any sticky tags or dates are set:

$ cvs status driver.c
===
File: driver.c Status: Up-to-date

Version: 1.7.2.1 Sat Dec 5 19:35:03 1992
RCS Version: 1.7.2.1 /u/cvsroot/yoyodyne/tc/driver.c,v
Sticky Tag: rel-1-0-patches (branch: 1.7.2)
Sticky Date: (none)
Sticky Options: (none)

The sticky tags will remain on your working �les until you delete them with `cvs update

-A'. The `-A' option retrieves the version of the �le from the head of the trunk, and forgets
any sticky tags, dates, or options.

Chapter 4: Revisions 35

The most common use of sticky tags is to identify which branch one is working on, as
described in Section 5.3 [Accessing branches], page 38. However, non-branch sticky tags
have uses as well. For example, suppose that you want to avoid updating your working
directory, to isolate yourself from possibly destabilizing changes other people are making.
You can, of course, just refrain from running cvs update. But if you want to avoid updating
only a portion of a larger tree, then sticky tags can help. If you check out a certain revision
(such as 1.4) it will become sticky. Subsequent cvs update commands will not retrieve the
latest revision until you reset the tag with cvs update -A. Likewise, use of the `-D' option
to update or checkout sets a sticky date, which, similarly, causes that date to be used for
future retrievals.

Many times you will want to retrieve an old version of a �le without setting a sticky
tag. The way to do that is with the `-p' option to checkout or update, which sends the
contents of the �le to standard output. For example, suppose you have a �le named `file1'
which existed as revision 1.1, and you then removed it (thus adding a dead revision 1.2).
Now suppose you want to add it again, with the same contents it had previously. Here is
how to do it:

$ cvs update -p -r 1.1 file1 >file1
===
Checking out file1
RCS: /tmp/cvs-sanity/cvsroot/first-dir/Attic/file1,v
VERS: 1.1

$ cvs add file1
cvs add: re-adding file file1 (in place of dead revision 1.2)
cvs add: use 'cvs commit' to add this file permanently
$ cvs commit -m test
Checking in file1;
/tmp/cvs-sanity/cvsroot/first-dir/file1,v <-- file1
new revision: 1.3; previous revision: 1.2
done
$

36 CVS|Concurrent Versions System

Chapter 5: Branching and merging 37

5 Branching and merging

CVS allows you to isolate changes onto a separate line of development, known as a
branch. When you change �les on a branch, those changes do not appear on the main
trunk or other branches.

Later you can move changes from one branch to another branch (or the main trunk)
by merging. Merging involves �rst running cvs update -j, to merge the changes into the
working directory. You can then commit that revision, and thus e�ectively copy the changes
onto another branch.

5.1 What branches are good for

Suppose that release 1.0 of tc has been made. You are continuing to develop tc, planning
to create release 1.1 in a couple of months. After a while your customers start to complain
about a fatal bug. You check out release 1.0 (see Section 4.4 [Tags], page 32) and �nd the
bug (which turns out to have a trivial �x). However, the current revision of the sources are
in a state of
ux and are not expected to be stable for at least another month. There is no
way to make a bug�x release based on the newest sources.

The thing to do in a situation like this is to create a branch on the revision trees for all
the �les that make up release 1.0 of tc. You can then make modi�cations to the branch
without disturbing the main trunk. When the modi�cations are �nished you can elect to
either incorporate them on the main trunk, or leave them on the branch.

5.2 Creating a branch

You can create a branch with tag -b; for example, assuming you're in a working copy:

$ cvs tag -b rel-1-0-patches

This splits o� a branch based on the current revisions in the working copy, assigning
that branch the name `rel-1-0-patches'.

It is important to understand that branches get created in the repository, not in the
working copy. Creating a branch based on current revisions, as the above example does,
will not automatically switch the working copy to be on the new branch. For information
on how to do that, see Section 5.3 [Accessing branches], page 38.

You can also create a branch without reference to any working copy, by using rtag:

$ cvs rtag -b -r rel-1-0 rel-1-0-patches tc

`-r rel-1-0' says that this branch should be rooted at the revision that corresponds
to the tag `rel-1-0'. It need not be the most recent revision { it's often useful to split a
branch o� an old revision (for example, when �xing a bug in a past release otherwise known
to be stable).

As with `tag', the `-b'
ag tells rtag to create a branch (rather than just a symbolic re-
vision name). Note that the numeric revision number that matches `rel-1-0' will probably
be di�erent from �le to �le.

So, the full e�ect of the command is to create a new branch { named `rel-1-0-patches'
{ in module `tc', rooted in the revision tree at the point tagged by `rel-1-0'.

38 CVS|Concurrent Versions System

5.3 Accessing branches

You can retrieve a branch in one of two ways: by checking it out fresh from the repository,
or by switching an existing working copy over to the branch.

To check out a branch from the repository, invoke `checkout' with the `-r'
ag, followed
by the tag name of the branch (see Section 5.2 [Creating a branch], page 37):

$ cvs checkout -r rel-1-0-patches tc

Or, if you already have a working copy, you can switch it to a given branch with `update
-r':

$ cvs update -r rel-1-0-patches tc

or equivalently:

$ cd tc
$ cvs update -r rel-1-0-patches

It does not matter if the working copy was originally on the main trunk or on some
other branch { the above command will switch it to the named branch. And similarly to a
regular `update' command, `update -r' merges any changes you have made, notifying you
of con
icts where they occur.

Once you have a working copy tied to a particular branch, it remains there until you
tell it otherwise. This means that changes checked in from the working copy will add new
revisions on that branch, while leaving the main trunk and other branches una�ected.

To �nd out what branch a working copy is on, you can use the `status' command. In
its output, look for the �eld named `Sticky tag' (see Section 4.5 [Sticky tags], page 34) {
that's cvs's way of telling you the branch, if any, of the current working �les:

$ cvs status -v driver.c backend.c
===
File: driver.c Status: Up-to-date

Version: 1.7 Sat Dec 5 18:25:54 1992
RCS Version: 1.7 /u/cvsroot/yoyodyne/tc/driver.c,v
Sticky Tag: rel-1-0-patches (branch: 1.7.2)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:
rel-1-0-patches (branch: 1.7.2)
rel-1-0 (revision: 1.7)

===
File: backend.c Status: Up-to-date

Version: 1.4 Tue Dec 1 14:39:01 1992
RCS Version: 1.4 /u/cvsroot/yoyodyne/tc/backend.c,v
Sticky Tag: rel-1-0-patches (branch: 1.4.2)
Sticky Date: (none)
Sticky Options: (none)

Chapter 5: Branching and merging 39

Existing Tags:
rel-1-0-patches (branch: 1.4.2)
rel-1-0 (revision: 1.4)
rel-0-4 (revision: 1.4)

Don't be confused by the fact that the branch numbers for each �le are di�erent (`1.7.2'
and `1.4.2' respectively). The branch tag is the same, `rel-1-0-patches', and the �les are
indeed on the same branch. The numbers simply re
ect the point in each �le's revision his-
tory at which the branch was made. In the above example, one can deduce that `driver.c'
had been through more changes than `backend.c' before this branch was created.

See Section 5.4 [Branches and revisions], page 39 for details about how branch numbers
are constructed.

5.4 Branches and revisions

Ordinarily, a �le's revision history is a linear series of increments (see Section 4.1 [Revi-
sion numbers], page 31):

+-----+ +-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 !
+-----+ +-----+ +-----+ +-----+ +-----+

However, cvs is not limited to linear development. The revision tree can be split into
branches, where each branch is a self-maintained line of development. Changes made on
one branch can easily be moved back to the main trunk.

Each branch has a branch number, consisting of an odd number of period-separated
decimal integers. The branch number is created by appending an integer to the revision
number where the corresponding branch forked o�. Having branch numbers allows more
than one branch to be forked o� from a certain revision.

40 CVS|Concurrent Versions System

All revisions on a branch have revision numbers formed by appending an ordinal number
to the branch number. The following �gure illustrates branching with an example.

+-------------+
Branch 1.2.2.3.2 -> ! 1.2.2.3.2.1 !

/ +-------------+
/
/

+---------+ +---------+ +---------+
Branch 1.2.2 -> _! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !

/ +---------+ +---------+ +---------+
/
/

+-----+ +-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk
+-----+ +-----+ +-----+ +-----+ +-----+

!
!
! +---------+ +---------+ +---------+

Branch 1.2.4 -> +---! 1.2.4.1 !----! 1.2.4.2 !----! 1.2.4.3 !
+---------+ +---------+ +---------+

The exact details of how the branch number is constructed is not something you normally
need to be concerned about, but here is how it works: When cvs creates a branch number
it picks the �rst unused even integer, starting with 2. So when you want to create a branch
from revision 6.4 it will be numbered 6.4.2. All branch numbers ending in a zero (such as
6.4.0) are used internally by cvs (see Section 5.5 [Magic branch numbers], page 40). The
branch 1.1.1 has a special meaning. See Chapter 13 [Tracking sources], page 73.

5.5 Magic branch numbers

This section describes a cvs feature called magic branches. For most purposes, you need
not worry about magic branches; cvs handles them for you. However, they are visible to
you in certain circumstances, so it may be useful to have some idea of how it works.

Externally, branch numbers consist of an odd number of dot-separated decimal integers.
See Section 4.1 [Revision numbers], page 31. That is not the whole truth, however. For
e�ciency reasons cvs sometimes inserts an extra 0 in the second rightmost position (1.2.4
becomes 1.2.0.4, 8.9.10.11.12 becomes 8.9.10.11.0.12 and so on).

cvs does a pretty good job at hiding these so called magic branches, but in a few places
the hiding is incomplete:

� The magic branch number appears in the output from cvs log.

� You cannot specify a symbolic branch name to cvs admin.

You can use the admin command to reassign a symbolic name to a branch the way rcs
expects it to be. If R4patches is assigned to the branch 1.4.2 (magic branch number 1.4.0.2)
in �le `numbers.c' you can do this:

$ cvs admin -NR4patches:1.4.2 numbers.c

Chapter 5: Branching and merging 41

It only works if at least one revision is already committed on the branch. Be very careful
so that you do not assign the tag to the wrong number. (There is no way to see how the
tag was assigned yesterday).

5.6 Merging an entire branch

You can merge changes made on a branch into your working copy by giving the `-j
branch'
ag to the update command. With one `-j branch' option it merges the changes
made between the point where the branch forked and newest revision on that branch (into
your working copy).

The `-j' stands for \join".

Consider this revision tree:

+-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 ! <- The main trunk
+-----+ +-----+ +-----+ +-----+

!
!
! +---------+ +---------+

Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !
+---------+ +---------+

The branch 1.2.2 has been given the tag (symbolic name) `R1fix'. The following example
assumes that the module `mod' contains only one �le, `m.c'.

$ cvs checkout mod # Retrieve the latest revision, 1.4

$ cvs update -j R1fix m.c # Merge all changes made on the branch,
i.e. the changes between revision 1.2
and 1.2.2.2, into your working copy
of the �le.

$ cvs commit -m "Included R1fix" # Create revision 1.5.

A con
ict can result from a merge operation. If that happens, you should resolve it
before committing the new revision. See Section 10.3 [Con
icts example], page 59.

The checkout command also supports the `-j branch'
ag. The same e�ect as above
could be achieved with this:

$ cvs checkout -j R1fix mod
$ cvs commit -m "Included R1fix"

5.7 Merging from a branch several times

Continuing our example, the revision tree now looks like this:

+-----+ +-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk
+-----+ +-----+ +-----+ +-----+ +-----+

! *
! *

42 CVS|Concurrent Versions System

! +---------+ +---------+
Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !

+---------+ +---------+

where the starred line represents the merge from the `R1fix' branch to the main trunk,
as just discussed.

Now suppose that development continues on the `R1fix' branch:

+-----+ +-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk
+-----+ +-----+ +-----+ +-----+ +-----+

! *
! *
! +---------+ +---------+ +---------+

Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !
+---------+ +---------+ +---------+

and then you want to merge those new changes onto the main trunk. If you just use the
cvs update -j R1fix m.c command again, cvs will attempt to merge again the changes
which you have already merged, which can have undesirable side e�ects.

So instead you need to specify that you only want to merge the changes on the branch
which have not yet been merged into the trunk. To do that you specify two `-j' options,
and cvs merges the changes from the �rst revision to the second revision. For example, in
this case the simplest way would be

cvs update -j 1.2.2.2 -j R1fix m.c # Merge changes from 1.2.2.2 to the
head of the R1�x branch

The problem with this is that you need to specify the 1.2.2.2 revision manually. A
slightly better approach might be to use the date the last merge was done:

cvs update -j R1fix:yesterday -j R1fix m.c

Better yet, tag the R1�x branch after every merge into the trunk, and then use that tag
for subsequent merges:

cvs update -j merged_from_R1fix_to_trunk -j R1fix m.c

5.8 Merging di�erences between any two revisions

With two `-j revision'
ags, the update (and checkout) command can merge the dif-
ferences between any two revisions into your working �le.

$ cvs update -j 1.5 -j 1.3 backend.c

will remove all changes made between revision 1.3 and 1.5. Note the order of the revisions!

If you try to use this option when operating on multiple �les, remember that the numeric
revisions will probably be very di�erent between the various �les that make up a module.
You almost always use symbolic tags rather than revision numbers when operating on
multiple �les.

Chapter 5: Branching and merging 43

5.9 Merging can add or remove �les

If the changes which you are merging involve removing or adding some �les, update -j

will re
ect such additions or removals.

For example:

cvs update -A
touch a b c
cvs add a b c ; cvs ci -m "added" a b c
cvs tag -b branchtag
cvs update -r branchtag
touch d ; cvs add d
rm a ; cvs rm a
cvs ci -m "added d, removed a"
cvs update -A
cvs update -jbranchtag

After these commands are executed and a `cvs commit' is done, �le `a' will be removed
and �le `d' added in the main branch.

44 CVS|Concurrent Versions System

Chapter 6: Recursive behavior 45

6 Recursive behavior

Almost all of the subcommands of cvs work recursively when you specify a directory as
an argument. For instance, consider this directory structure:

$HOME
|
+--tc
| |

+--CVS
| (internal cvs files)
+--Makefile
+--backend.c
+--driver.c
+--frontend.c
+--parser.c
+--man
| |
| +--CVS
| | (internal cvs files)
| +--tc.1
|
+--testing

|
+--CVS
| (internal cvs files)
+--testpgm.t
+--test2.t

If `tc' is the current working directory, the following is true:

� `cvs update testing' is equivalent to

cvs update testing/testpgm.t testing/test2.t

� `cvs update testing man' updates all �les in the subdirectories

� `cvs update .' or just `cvs update' updates all �les in the tc module

If no arguments are given to update it will update all �les in the current working directory
and all its subdirectories. In other words, `.' is a default argument to update. This is also
true for most of the cvs subcommands, not only the update command.

The recursive behavior of the cvs subcommands can be turned o� with the `-l' option.
Conversely, the `-R' option can be used to force recursion if `-l' is speci�ed in `~/.cvsrc'
(see Section A.3 [~/.cvsrc], page 82).

$ cvs update -l # Don't update �les in subdirectories

46 CVS|Concurrent Versions System

Chapter 7: Adding, removing, and renaming �les and directories 47

7 Adding, removing, and renaming �les and
directories

In the course of a project, one will often add new �les. Likewise with removing or
renaming, or with directories. The general concept to keep in mind in all these cases is that
instead of making an irreversible change you want cvs to record the fact that a change has
taken place, just as with modifying an existing �le. The exact mechanisms to do this in
cvs vary depending on the situation.

7.1 Adding �les to a directory

To add a new �le to a directory, follow these steps.

� You must have a working copy of the directory. See Section 1.3.1 [Getting the source],
page 4.

� Create the new �le inside your working copy of the directory.

� Use `cvs add �lename' to tell cvs that you want to version control the �le. If the �le
contains binary data, specify `-kb' (see Chapter 9 [Binary �les], page 55).

� Use `cvs commit �lename' to actually check in the �le into the repository. Other de-
velopers cannot see the �le until you perform this step.

You can also use the add command to add a new directory.

Unlike most other commands, the add command is not recursive. You cannot even type
`cvs add foo/bar'! Instead, you have to

$ cd foo
$ cvs add bar

Commandcvs add [-k k
ag] [-m message] �les : : :

Schedule �les to be added to the repository. The �les or directories speci�ed
with add must already exist in the current directory. To add a whole new
directory hierarchy to the source repository (for example, �les received from
a third-party vendor), use the import command instead. See Section A.12
[import], page 100.

The added �les are not placed in the source repository until you use commit to
make the change permanent. Doing an add on a �le that was removed with the
remove command will undo the e�ect of the remove, unless a commit command
intervened. See Section 7.2 [Removing �les], page 48, for an example.

The `-k' option speci�es the default way that this �le will be checked out; for
more information see Section 12.4 [Substitution modes], page 71.

The `-m' option speci�es a description for the �le. This description appears in
the history log (if it is enabled, see Section C.10 [history �le], page 136). It
will also be saved in the version history inside the repository when the �le is
committed. The log command displays this description. The description can
be changed using `admin -t'. See Section A.6 [admin], page 87. If you omit the
`-m description'
ag, an empty string will be used. You will not be prompted
for a description.

48 CVS|Concurrent Versions System

For example, the following commands add the �le `backend.c' to the repository:

$ cvs add backend.c
$ cvs commit -m "Early version. Not yet compilable." backend.c

When you add a �le it is added only on the branch which you are working on (see
Chapter 5 [Branching and merging], page 37). You can later merge the additions to another
branch if you want (see Section 5.9 [Merging adds and removals], page 43).

7.2 Removing �les

Modules change. New �les are added, and old �les disappear. Still, you want to be able
to retrieve an exact copy of old releases.

Here is what you can do to remove a �le, but remain able to retrieve old revisions:

� Make sure that you have not made any uncommitted modi�cations to the �le. See
Section 1.3.4 [Viewing di�erences], page 5, for one way to do that. You can also use
the status or update command. If you remove the �le without committing your
changes, you will of course not be able to retrieve the �le as it was immediately before
you deleted it.

� Remove the �le from your working copy of the directory. You can for instance use rm.

� Use `cvs remove �lename' to tell cvs that you really want to delete the �le.

� Use `cvs commit �lename' to actually perform the removal of the �le from the reposi-
tory.

When you commit the removal of the �le, cvs records the fact that the �le no longer
exists. It is possible for a �le to exist on only some branches and not on others, or to re-add
another �le with the same name later. CVS will correctly create or not create the �le, based
on the `-r' and `-D' options speci�ed to checkout or update.

Commandcvs remove [options] �les : : :

Schedule �le(s) to be removed from the repository (�les which have not already
been removed from the working directory are not processed). This command
does not actually remove the �le from the repository until you commit the
removal. For a full list of options, see Appendix B [Invoking CVS], page 113.

Here is an example of removing several �les:

$ cd test
$ rm *.c
$ cvs remove
cvs remove: Removing .
cvs remove: scheduling a.c for removal
cvs remove: scheduling b.c for removal
cvs remove: use 'cvs commit' to remove these files permanently
$ cvs ci -m "Removed unneeded files"
cvs commit: Examining .
cvs commit: Committing .

As a convenience you can remove the �le and cvs remove it in one step, by specifying
the `-f' option. For example, the above example could also be done like this:

Chapter 7: Adding, removing, and renaming �les and directories 49

$ cd test
$ cvs remove -f *.c
cvs remove: scheduling a.c for removal
cvs remove: scheduling b.c for removal
cvs remove: use 'cvs commit' to remove these files permanently
$ cvs ci -m "Removed unneeded files"
cvs commit: Examining .
cvs commit: Committing .

If you execute remove for a �le, and then change your mind before you commit, you can
undo the remove with an add command.

$ ls
CVS ja.h oj.c
$ rm oj.c
$ cvs remove oj.c
cvs remove: scheduling oj.c for removal
cvs remove: use 'cvs commit' to remove this file permanently
$ cvs add oj.c
U oj.c
cvs add: oj.c, version 1.1.1.1, resurrected

If you realize your mistake before you run the remove command you can use update to
resurrect the �le:

$ rm oj.c
$ cvs update oj.c
cvs update: warning: oj.c was lost
U oj.c

When you remove a �le it is removed only on the branch which you are working on (see
Chapter 5 [Branching and merging], page 37). You can later merge the removals to another
branch if you want (see Section 5.9 [Merging adds and removals], page 43).

7.3 Removing directories

In concept removing directories is somewhat similar to removing �les|you want the
directory to not exist in your current working directories, but you also want to be able to
retrieve old releases in which the directory existed.

The way that you remove a directory is to remove all the �les in it. You don't remove
the directory itself; there is no way to do that. Instead you specify the `-P' option to cvs

update, cvs checkout, or cvs export, which will cause cvs to remove empty directories
from working directories. Probably the best way to do this is to always specify `-P'; if you
want an empty directory then put a dummy �le (for example `.keepme') in it to prevent
`-P' from removing it.

Note that `-P' is implied by the `-r' or `-D' options of checkout and export. This way
cvs will be able to correctly create the directory or not depending on whether the particular
version you are checking out contains any �les in that directory.

50 CVS|Concurrent Versions System

7.4 Moving and renaming �les

Moving �les to a di�erent directory or renaming them is not di�cult, but some of the
ways in which this works may be non-obvious. (Moving or renaming a directory is even
harder. See Section 7.5 [Moving directories], page 51.).

The examples below assume that the �le old is renamed to new.

7.4.1 The Normal way to Rename

The normal way to move a �le is to copy old to new, and then issue the normal cvs
commands to remove old from the repository, and add new to it.

$ mv old new
$ cvs remove old
$ cvs add new
$ cvs commit -m "Renamed old to new" old new

This is the simplest way to move a �le, it is not error-prone, and it preserves the history
of what was done. Note that to access the history of the �le you must specify the old or
the new name, depending on what portion of the history you are accessing. For example,
cvs log old will give the log up until the time of the rename.

When new is committed its revision numbers will start again, usually at 1.1, so if that
bothers you, use the `-r rev' option to commit. For more information see Section 4.3
[Assigning revisions], page 31.

7.4.2 Moving the history �le

This method is more dangerous, since it involves moving �les inside the repository. Read
this entire section before trying it out!

$ cd $CVSROOT/module
$ mv old,v new,v

Advantages:

� The log of changes is maintained intact.

� The revision numbers are not a�ected.

Disadvantages:

� Old releases of the module cannot easily be fetched from the repository. (The �le will
show up as new even in revisions from the time before it was renamed).

� There is no log information of when the �le was renamed.

� Nasty things might happen if someone accesses the history �le while you are moving
it. Make sure no one else runs any of the cvs commands while you move it.

7.4.3 Copying the history �le

This way also involves direct modi�cations to the repository. It is safe, but not without
drawbacks.

Chapter 7: Adding, removing, and renaming �les and directories 51

Copy the rcs �le inside the repository
$ cd $CVSROOT/module
$ cp old,v new,v
Remove the old �le
$ cd ~/module
$ rm old
$ cvs remove old
$ cvs commit old
Remove all tags from new
$ cvs update new
$ cvs log new # Remember the non-branch tag names
$ cvs tag -d tag1 new
$ cvs tag -d tag2 new
: : :

By removing the tags you will be able to check out old revisions of the module.

Advantages:

� Checking out old revisions works correctly, as long as you use `-rtag ' and not `-Ddate'
to retrieve the revisions.

� The log of changes is maintained intact.

� The revision numbers are not a�ected.

Disadvantages:

� You cannot easily see the history of the �le across the rename.

7.5 Moving and renaming directories

The normal way to rename or move a directory is to rename or move each �le within it
as described in Section 7.4.1 [Outside], page 50. Then check out with the `-P' option, as
described in Section 7.3 [Removing directories], page 49.

If you really want to hack the repository to rename or delete a directory in the repository,
you can do it like this:

1. Inform everyone who has a copy of the module that the directory will be renamed.
They should commit all their changes, and remove their working copies of the module,
before you take the steps below.

2. Rename the directory inside the repository.

$ cd $CVSROOT/module
$ mv old-dir new-dir

3. Fix the cvs administrative �les, if necessary (for instance if you renamed an entire
module).

4. Tell everyone that they can check out the module and continue working.

If someone had a working copy of the module the cvs commands will cease to work for
him, until he removes the directory that disappeared inside the repository.

It is almost always better to move the �les in the directory instead of moving the direc-
tory. If you move the directory you are unlikely to be able to retrieve old releases correctly,
since they probably depend on the name of the directories.

52 CVS|Concurrent Versions System

Chapter 8: History browsing 53

8 History browsing

Once you have used cvs to store a version control history|what �les have changed when,
how, and by whom, there are a variety of mechanisms for looking through the history.

8.1 Log messages

Whenever you commit a �le you specify a log message.

To look through the log messages which have been speci�ed for every revision which has
been committed, use the cvs log command (see Section A.13 [log], page 102).

8.2 The history database

You can use the history �le (see Section C.10 [history �le], page 136) to log various cvs
actions. To retrieve the information from the history �le, use the cvs history command
(see Section A.11 [history], page 98).

8.3 User-de�ned logging

You can customize cvs to log various kinds of actions, in whatever manner you choose.
These mechanisms operate by executing a script at various times. The script might append
a message to a �le listing the information and the programmer who created it, or send
mail to a group of developers, or, perhaps, post a message to a particular newsgroup. To
log commits, use the `loginfo' �le (see Section C.7 [loginfo], page 133). To log commits,
checkouts, exports, and tags, respectively, you can also use the `-i', `-o', `-e', and `-t'
options in the modules �le. For a more
exible way of giving noti�cations to various users,
which requires less in the way of keeping centralized scripts up to date, use the cvs watch

add command (see Section 10.6.2 [Getting Noti�ed], page 63); this command is useful even
if you are not using cvs watch on.

The `taginfo' �le de�nes programs to execute when someone executes a tag or rtag
command. The `taginfo' �le has the standard form for administrative �les (see Appendix C
[Administrative �les], page 125), where each line is a regular expression followed by a
command to execute. The arguments passed to the command are, in order, the tagname,
operation (add for tag, mov for tag -F, and del for tag -d), repository, and any remaining
are pairs of �lename revision. A non-zero exit of the �lter program will cause the tag to be
aborted.

Here is an example of using taginfo to log tag and rtag commands. In the taginfo �le
put:

ALL /usr/local/cvsroot/CVSROOT/loggit

Where `/usr/local/cvsroot/CVSROOT/loggit' contains the following script:

#!/bin/sh
echo "$@" >>/home/kingdon/cvsroot/CVSROOT/taglog

54 CVS|Concurrent Versions System

8.4 Annotate command

Commandcvs annotate [-flR] [-r rev|-D date] �les : : :

For each �le in �les, print the head revision of the trunk, together with infor-
mation on the last modi�cation for each line. For example:

$ cvs annotate ssfile
Annotations for ssfile

1.1 (mary 27-Mar-96): ssfile line 1
1.2 (joe 28-Mar-96): ssfile line 2

The �le `ssfile' currently contains two lines. The ssfile line 1 line was
checked in by mary on March 27. Then, on March 28, joe added a line ssfile
line 2, without modifying the ssfile line 1 line. This report doesn't tell you
anything about lines which have been deleted or replaced; you need to use cvs
diff for that (see Section A.9 [di�], page 95).

The options to cvs annotate are listed in Appendix B [Invoking CVS], page 113, and
can be used to select the �les and revisions to annotate. The options are described in more
detail in Section A.5 [Common options], page 84.

Chapter 9: Handling binary �les 55

9 Handling binary �les

The most common use for cvs is to store text �les. With text �les, cvs can merge
revisions, display the di�erences between revisions in a human-visible fashion, and other
such operations. However, if you are willing to give up a few of these abilities, cvs can
store binary �les. For example, one might store a web site in cvs including both text �les
and binary images.

9.1 The issues with binary �les

While the need to manage binary �les may seem obvious if the �les that you customarily
work with are binary, putting them into version control does present some additional issues.

One basic function of version control is to show the di�erences between two revisions.
For example, if someone else checked in a new version of a �le, you may wish to look at what
they changed and determine whether their changes are good. For text �les, cvs provides
this functionality via the cvs diff command. For binary �les, it may be possible to extract
the two revisions and then compare them with a tool external to cvs (for example, word
processing software often has such a feature). If there is no such tool, one must track changes
via other mechanisms, such as urging people to write good log messages, and hoping that
the changes they actually made were the changes that they intended to make.

Another ability of a version control system is the ability to merge two revisions. For cvs
this happens in two contexts. The �rst is when users make changes in separate working
directories (see Chapter 10 [Multiple developers], page 57). The second is when one merges
explicitly with the `update -j' command (see Chapter 5 [Branching and merging], page 37).

In the case of text �les, cvs can merge changes made independently, and signal a con
ict
if the changes con
ict. With binary �les, the best that cvs can do is present the two di�erent
copies of the �le, and leave it to the user to resolve the con
ict. The user may choose one
copy or the other, or may run an external merge tool which knows about that particular
�le format, if one exists. Note that having the user merge relies primarily on the user to
not accidentally omit some changes, and thus is potentially error prone.

If this process is thought to be undesirable, the best choice may be to avoid merging.
To avoid the merges that result from separate working directories, see the discussion of
reserved checkouts (�le locking) in Chapter 10 [Multiple developers], page 57. To avoid the
merges resulting from branches, restrict use of branches.

9.2 How to store binary �les

There are two issues with using cvs to store binary �les. The �rst is that cvs by default
converts line endings between the canonical form in which they are stored in the repository
(linefeed only), and the form appropriate to the operating system in use on the client (for
example, carriage return followed by line feed for Windows NT).

The second is that a binary �le might happen to contain data which looks like a keyword
(see Chapter 12 [Keyword substitution], page 69), so keyword expansion must be turned
o�.

56 CVS|Concurrent Versions System

The `-kb' option available with some cvs commands insures that neither line ending
conversion nor keyword expansion will be done.

Here is an example of how you can create a new �le using the `-kb'
ag:

$ echo 'Id' > kotest
$ cvs add -kb -m"A test file" kotest
$ cvs ci -m"First checkin; contains a keyword" kotest

If a �le accidentally gets added without `-kb', one can use the cvs admin command to
recover. For example:

$ echo 'Id' > kotest
$ cvs add -m"A test file" kotest
$ cvs ci -m"First checkin; contains a keyword" kotest
$ cvs admin -kb kotest
$ cvs update -A kotest
For non-unix systems:
Copy in a good copy of the �le from outside CVS
$ cvs commit -m "make it binary" kotest

When you check in the �le `kotest' the �le is not preserved as a binary �le, because you
did not check it in as a binary �le. The cvs admin -kb command sets the default keyword
substitution method for this �le, but it does not alter the working copy of the �le that
you have. If you need to cope with line endings (that is, you are using cvs on a non-unix
system), then you need to check in a new copy of the �le, as shown by the cvs commit

command above. On unix, the cvs update -A command su�ces.

However, in using cvs admin -k to change the keyword expansion, be aware that the
keyword expansion mode is not version controlled. This means that, for example, that if
you have a text �le in old releases, and a binary �le with the same name in new releases,
cvs provides no way to check out the �le in text or binary mode depending on what version
you are checking out. There is no good workaround for this problem.

You can also set a default for whether cvs add and cvs import treat a �le as binary
based on its name; for example you could say that �les who names end in `.exe' are binary.
See Section C.2 [Wrappers], page 128. There is currently no way to have cvs detect whether
a �le is binary based on its contents. The main di�culty with designing such a feature is
that it is not clear how to distinguish between binary and non-binary �les, and the rules to
apply would vary considerably with the operating system.

Chapter 10: Multiple developers 57

10 Multiple developers

When more than one person works on a software project things often get complicated.
Often, two people try to edit the same �le simultaneously. One solution, known as �le
locking or reserved checkouts, is to allow only one person to edit each �le at a time. This
is the only solution with some version control systems, including rcs and sccs. Currently
the usual way to get reserved checkouts with cvs is the cvs admin -l command (see Sec-
tion A.6.1 [admin options], page 87). This is not as nicely integrated into cvs as the watch
features, described below, but it seems that most people with a need for reserved checkouts
�nd it adequate. It also may be possible to use the watches features described below, to-
gether with suitable procedures (not enforced by software), to avoid having two people edit
at the same time.

The default model with cvs is known as unreserved checkouts. In this model, developers
can edit their own working copy of a �le simultaneously. The �rst person that commits his
changes has no automatic way of knowing that another has started to edit it. Others will
get an error message when they try to commit the �le. They must then use cvs commands
to bring their working copy up to date with the repository revision. This process is almost
automatic.

Cvs also supports mechanisms which facilitate various kinds of communcation, without
actually enforcing rules like reserved checkouts do.

The rest of this chapter describes how these various models work, and some of the issues
involved in choosing between them.

10.1 File status

Based on what operations you have performed on a checked out �le, and what operations
others have performed to that �le in the repository, one can classify a �le in a number of
states. The states, as reported by the status command, are:

Up-to-date
The �le is identical with the latest revision in the repository for the branch in
use.

Locally Modi�ed
You have edited the �le, and not yet committed your changes.

Locally Added
You have added the �le with add, and not yet committed your changes.

Locally Removed
You have removed the �le with remove, and not yet committed your changes.

Needs Checkout
Someone else has committed a newer revision to the repository. The name is
slightly misleading; you will ordinarily use update rather than checkout to get
that newer revision.

Needs Patch
Like Needs Checkout, but the cvs server will send a patch rather than the entire
�le. Sending a patch or sending an entire �le accomplishes the same thing.

58 CVS|Concurrent Versions System

Needs Merge
Someone else has committed a newer revision to the repository, and you have
also made modi�cations to the �le.

File had con
icts on merge
This is like Locally Modi�ed, except that a previous update command gave a
con
ict. If you have not already done so, you need to resolve the con
ict as
described in Section 10.3 [Con
icts example], page 59.

Unknown Cvs doesn't know anything about this �le. For example, you have created a
new �le and have not run add.

To help clarify the �le status, status also reports the Working revision which is the
revision that the �le in the working directory derives from, and the Repository revision

which is the latest revision in the repository for the branch in use.

The options to status are listed in Appendix B [Invoking CVS], page 113. For informa-
tion on its Sticky tag and Sticky date output, see Section 4.5 [Sticky tags], page 34. For
information on its Sticky options output, see the `-k' option in Section A.18.1 [update
options], page 109.

You can think of the status and update commands as somewhat complementary. You
use update to bring your �les up to date, and you can use status to give you some idea of
what an update would do (of course, the state of the repository might change before you
actually run update). In fact, if you want a command to display �le status in a more brief
format than is displayed by the status command, you can invoke

$ cvs -n -q update

The `-n' option means to not actually do the update, but merely to display statuses; the
`-q' option avoids printing the name of each directory. For more information on the update
command, and these options, see Appendix B [Invoking CVS], page 113.

10.2 Bringing a �le up to date

When you want to update or merge a �le, use the update command. For �les that are
not up to date this is roughly equivalent to a checkout command: the newest revision of
the �le is extracted from the repository and put in your working copy of the module.

Your modi�cations to a �le are never lost when you use update. If no newer revision
exists, running update has no e�ect. If you have edited the �le, and a newer revision is
available, cvs will merge all changes into your working copy.

For instance, imagine that you checked out revision 1.4 and started editing it. In the
meantime someone else committed revision 1.5, and shortly after that revision 1.6. If you
run update on the �le now, cvs will incorporate all changes between revision 1.4 and 1.6
into your �le.

If any of the changes between 1.4 and 1.6 were made too close to any of the changes
you have made, an overlap occurs. In such cases a warning is printed, and the resulting
�le includes both versions of the lines that overlap, delimited by special markers. See
Section A.18 [update], page 108, for a complete description of the update command.

Chapter 10: Multiple developers 59

10.3 Con
icts example

Suppose revision 1.4 of `driver.c' contains this:

#include <stdio.h>

void main()
{

parse();
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
exit(nerr == 0 ? 0 : 1);

}

Revision 1.6 of `driver.c' contains this:

#include <stdio.h>

int main(int argc,
char **argv)

{
parse();
if (argc != 1)
{

fprintf(stderr, "tc: No args expected.\n");
exit(1);

}
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
exit(!!nerr);

}

Your working copy of `driver.c', based on revision 1.4, contains this before you run `cvs
update':

#include <stdlib.h>
#include <stdio.h>

void main()
{

init_scanner();
parse();
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

60 CVS|Concurrent Versions System

You run `cvs update':

$ cvs update driver.c
RCS file: /usr/local/cvsroot/yoyodyne/tc/driver.c,v
retrieving revision 1.4
retrieving revision 1.6
Merging differences between 1.4 and 1.6 into driver.c
rcsmerge warning: overlaps during merge
cvs update: conflicts found in driver.c
C driver.c

cvs tells you that there were some con
icts. Your original working �le is saved unmodi�ed
in `.#driver.c.1.4'. The new version of `driver.c' contains this:

#include <stdlib.h>
#include <stdio.h>

int main(int argc,
char **argv)

{
init_scanner();
parse();
if (argc != 1)
{

fprintf(stderr, "tc: No args expected.\n");
exit(1);

}
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
<<<<<<< driver.c

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
=======

exit(!!nerr);
>>>>>>> 1.6
}

Note how all non-overlapping modi�cations are incorporated in your working copy, and
that the overlapping section is clearly marked with `<<<<<<<', `=======' and `>>>>>>>'.

You resolve the con
ict by editing the �le, removing the markers and the erroneous line.
Suppose you end up with this �le:

#include <stdlib.h>
#include <stdio.h>

int main(int argc,
char **argv)

{
init_scanner();
parse();

Chapter 10: Multiple developers 61

if (argc != 1)
{

fprintf(stderr, "tc: No args expected.\n");
exit(1);

}
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

You can now go ahead and commit this as revision 1.7.

$ cvs commit -m "Initialize scanner. Use symbolic exit values." driver.c
Checking in driver.c;
/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.c
new revision: 1.7; previous revision: 1.6
done

For your protection, cvs will refuse to check in a �le if a con
ict occurred and you have
not resolved the con
ict. Currently to resolve a con
ict, you must change the timestamp
on the �le. In previous versions of cvs, you also needed to insure that the �le contains
no con
ict markers. Because your �le may legitimately contain con
ict markers (that is,
occurrences of `>>>>>>> ' at the start of a line that don't mark a con
ict), the current
version of cvs will print a warning and proceed to check in the �le.

If you use release 1.04 or later of pcl-cvs (a gnu Emacs front-end for cvs) you can use
an Emacs package called emerge to help you resolve con
icts. See the documentation for
pcl-cvs.

10.4 Informing others about commits

It is often useful to inform others when you commit a new revision of a �le. The `-i'
option of the `modules' �le, or the `loginfo' �le, can be used to automate this process.
See Section C.1 [modules], page 125. See Section C.7 [loginfo], page 133. You can use these
features of cvs to, for instance, instruct cvs to mail a message to all developers, or post a
message to a local newsgroup.

10.5 Several developers simultaneously attempting to run
CVS

If several developers try to run cvs at the same time, one may get the following message:

[11:43:23] waiting for bach's lock in /usr/local/cvsroot/foo

cvs will try again every 30 seconds, and either continue with the operation or print
the message again, if it still needs to wait. If a lock seems to stick around for an undue
amount of time, �nd the person holding the lock and ask them about the cvs command they
are running. If they aren't running a cvs command, look in the repository directory men-
tioned in the message and remove �les which they own whose names start with `#cvs.rfl',
`#cvs.wfl', or `#cvs.lock'.

62 CVS|Concurrent Versions System

Note that these locks are to protect cvs's internal data structures and have no relation-
ship to the word lock in the sense used by rcs|which refers to reserved checkouts (see
Chapter 10 [Multiple developers], page 57).

Any number of people can be reading from a given repository at a time; only when
someone is writing do the locks prevent other people from reading or writing.

One might hope for the following property

If someone commits some changes in one cvs command,
then an update by someone else will either get all the
changes, or none of them.

but cvs does not have this property. For example, given the �les

a/one.c
a/two.c
b/three.c
b/four.c

if someone runs

cvs ci a/two.c b/three.c

and someone else runs cvs update at the same time, the person running update might
get only the change to `b/three.c' and not the change to `a/two.c'.

10.6 Mechanisms to track who is editing �les

For many groups, use of cvs in its default mode is perfectly satisfactory. Users may
sometimes go to check in a modi�cation only to �nd that another modi�cation has inter-
vened, but they deal with it and proceed with their check in. Other groups prefer to be
able to know who is editing what �les, so that if two people try to edit the same �le they
can choose to talk about who is doing what when rather than be surprised at check in
time. The features in this section allow such coordination, while retaining the ability of two
developers to edit the same �le at the same time.

For maximum bene�t developers should use cvs edit (not chmod) to make �les read-
write to edit them, and cvs release (not rm) to discard a working directory which is no
longer in use, but cvs is not able to enforce this behavior.

10.6.1 Telling CVS to watch certain �les

To enable the watch features, you �rst specify that certain �les are to be watched.

Commandcvs watch on [-lR] �les : : :

Specify that developers should run cvs edit before editing �les. CVS will
create working copies of �les read-only, to remind developers to run the cvs

edit command before working on them.

If �les includes the name of a directory, CVS arranges to watch all �les added
to the corresponding repository directory, and sets a default for �les added in
the future; this allows the user to set noti�cation policies on a per-directory
basis. The contents of the directory are processed recursively, unless the -l

Chapter 10: Multiple developers 63

option is given. The -R option can be used to force recursion if the -l option
is set in `~/.cvsrc' (see Section A.3 [~/.cvsrc], page 82).

If �les is omitted, it defaults to the current directory.

Commandcvs watch o� [-lR] �les : : :

Do not provide noti�cation about work on �les. CVS will create working copies
of �les read-write.

The �les and options are processed as for cvs watch on.

10.6.2 Telling CVS to notify you

You can tell cvs that you want to receive noti�cations about various actions taken on
a �le. You can do this without using cvs watch on for the �le, but generally you will want
to use cvs watch on, so that developers use the cvs edit command.

Commandcvs watch add [-a action] [-lR] �les : : :

Add the current user to the list of people to receive noti�cation of work done
on �les.

The -a option speci�es what kinds of events CVS should notify the user about.
action is one of the following:

edit Another user has applied the cvs edit command (described below)
to a �le.

unedit Another user has applied the cvs unedit command (described be-
low) or the cvs release command to a �le, or has deleted the �le
and allowed cvs update to recreate it.

commit Another user has committed changes to a �le.

all All of the above.

none None of the above. (This is useful with cvs edit, described below.)

The -a option may appear more than once, or not at all. If omitted, the action
defaults to all.

The �les and options are processed as for the cvs watch commands.

Commandcvs watch remove [-a action] [-lR] �les : : :

Remove a noti�cation request established using cvs watch add; the arguments
are the same. If the -a option is present, only watches for the speci�ed actions
are removed.

When the conditions exist for noti�cation, cvs calls the `notify' administrative �le.
Edit `notify' as one edits the other administrative �les (see Section 2.4 [Intro adminis-
trative �les], page 15). This �le follows the usual conventions for administrative �les (see
Section C.3.1 [syntax], page 129), where each line is a regular expression followed by a
command to execute. The command should contain a single ocurrence of `%s' which will be
replaced by the user to notify; the rest of the information regarding the noti�cation will be
supplied to the command on standard input. The standard thing to put in the notify �le
is the single line:

64 CVS|Concurrent Versions System

ALL mail %s -s \"CVS notification\"

This causes users to be noti�ed by electronic mail.

Note that if you set this up in the straightforward way, users receive noti�cations on the
server machine. One could of course write a `notify' script which directed noti�cations
elsewhere, but to make this easy, cvs allows you to associate a noti�cation address for each
user. To do so create a �le `users' in `CVSROOT' with a line for each user in the format
user:value. Then instead of passing the name of the user to be noti�ed to `notify', cvs
will pass the value (normally an email address on some other machine).

Cvs does not notify you for your own changes. Currently this check is done based on
whether the user name of the person taking the action which triggers noti�cation matches
the user name of the person getting noti�cation. In fact, in general, the watches features
only track one edit by each user. It probably would be more useful if watches tracked each
working directory separately, so this behavior might be worth changing.

10.6.3 How to edit a �le which is being watched

Since a �le which is being watched is checked out read-only, you cannot simply edit it.
To make it read-write, and inform others that you are planning to edit it, use the cvs edit

command. Some systems call this a checkout, but cvs uses that term for obtaining a copy
of the sources (see Section 1.3.1 [Getting the source], page 4), an operation which those
systems call a get or a fetch.

Commandcvs edit [options] �les : : :

Prepare to edit the working �les �les. CVS makes the �les read-write, and
noti�es users who have requested edit noti�cation for any of �les.

The cvs edit command accepts the same options as the cvs watch add com-
mand, and establishes a temporary watch for the user on �les; CVS will remove
the watch when �les are unedited or committed. If the user does not wish to
receive noti�cations, she should specify -a none.

The �les and options are processed as for the cvs watch commands.

Caution: If the PreservePermissions option is enabled in the repository (see
Section C.12 [con�g], page 137), CVS will not change the permissions on any
of the �les. The reason for this change is to ensure that using `cvs edit' does
not interfere with the ability to store �le permissions in the CVS repository.

Normally when you are done with a set of changes, you use the cvs commit command,
which checks in your changes and returns the watched �les to their usual read-only state.
But if you instead decide to abandon your changes, or not to make any changes, you can
use the cvs unedit command.

Commandcvs unedit [-lR] �les : : :

Abandon work on the working �les �les, and revert them to the repository
versions on which they are based. CVS makes those �les read-only for which
users have requested noti�cation using cvs watch on. CVS noti�es users who
have requested unedit noti�cation for any of �les.

The �les and options are processed as for the cvs watch commands.

Chapter 10: Multiple developers 65

If watches are not in use, the unedit command probably does not work, and
the way to revert to the repository version is to remove the �le and then use cvs
update to get a new copy. The meaning is not precisely the same; removing
and updating may also bring in some changes which have been made in the
repository since the last time you updated.

When using client/server cvs, you can use the cvs edit and cvs unedit commands
even if cvs is unable to succesfully communicate with the server; the noti�cations will be
sent upon the next successful cvs command.

10.6.4 Information about who is watching and editing

Commandcvs watchers [-lR] �les : : :

List the users currently watching changes to �les. The report includes the �les
being watched, and the mail address of each watcher.

The �les and options are processed as for the cvs watch commands.

Commandcvs editors [-lR] �les : : :

List the users currently working on �les. The report includes the mail address
of each user, the time when the user began working with the �le, and the host
and path of the working directory containing the �le.

The �les and options are processed as for the cvs watch commands.

10.6.5 Using watches with old versions of CVS

If you use the watch features on a repository, it creates `CVS' directories in the repository
and stores the information about watches in that directory. If you attempt to use cvs 1.6
or earlier with the repository, you get an error message such as the following (all on one
line):

cvs update: cannot open CVS/Entries for reading:
No such file or directory

and your operation will likely be aborted. To use the watch features, you must upgrade
all copies of cvs which use that repository in local or server mode. If you cannot upgrade,
use the watch off and watch remove commands to remove all watches, and that will restore
the repository to a state which cvs 1.6 can cope with.

10.7 Choosing between reserved or unreserved checkouts

Reserved and unreserved checkouts each have pros and cons. Let it be said that a lot of
this is a matter of opinion or what works given di�erent groups' working styles, but here
is a brief description of some of the issues. There are many ways to organize a team of
developers. cvs does not try to enforce a certain organization. It is a tool that can be used
in several ways.

Reserved checkouts can be very counter-productive. If two persons want to edit di�erent
parts of a �le, there may be no reason to prevent either of them from doing so. Also, it is

66 CVS|Concurrent Versions System

common for someone to take out a lock on a �le, because they are planning to edit it, but
then forget to release the lock.

People, especially people who are familiar with reserved checkouts, often wonder how
often con
icts occur if unreserved checkouts are used, and how di�cult they are to re-
solve. The experience with many groups is that they occur rarely and usually are relatively
straightforward to resolve.

The rarity of serious con
icts may be surprising, until one realizes that they occur
only when two developers disagree on the proper design for a given section of code; such
a disagreement suggests that the team has not been communicating properly in the �rst
place. In order to collaborate under any source management regimen, developers must
agree on the general design of the system; given this agreement, overlapping changes are
usually straightforward to merge.

In some cases unreserved checkouts are clearly inappropriate. If no merge tool exists
for the kind of �le you are managing (for example word processor �les or �les edited by
Computer Aided Design programs), and it is not desirable to change to a program which
uses a mergeable data format, then resolving con
icts is going to be unpleasant enough
that you generally will be better o� to simply avoid the con
icts instead, by using reserved
checkouts.

The watches features described above in Section 10.6 [Watches], page 62 can be con-
sidered to be an intermediate model between reserved checkouts and unreserved checkouts.
When you go to edit a �le, it is possible to �nd out who else is editing it. And rather
than having the system simply forbid both people editing the �le, it can tell you what the
situation is and let you �gure out whether it is a problem in that particular case or not.
Therefore, for some groups it can be considered the best of both the reserved checkout and
unreserved checkout worlds.

Chapter 11: Revision management 67

11 Revision management

If you have read this far, you probably have a pretty good grasp on what cvs can do for
you. This chapter talks a little about things that you still have to decide.

If you are doing development on your own using cvs you could probably skip this chapter.
The questions this chapter takes up become more important when more than one person is
working in a repository.

11.1 When to commit?

Your group should decide which policy to use regarding commits. Several policies are
possible, and as your experience with cvs grows you will probably �nd out what works for
you.

If you commit �les too quickly you might commit �les that do not even compile. If
your partner updates his working sources to include your buggy �le, he will be unable to
compile the code. On the other hand, other persons will not be able to bene�t from the
improvements you make to the code if you commit very seldom, and con
icts will probably
be more common.

It is common to only commit �les after making sure that they can be compiled. Some
sites require that the �les pass a test suite. Policies like this can be enforced using the
commitinfo �le (see Section C.4 [commitinfo], page 130), but you should think twice before
you enforce such a convention. By making the development environment too controlled it
might become too regimented and thus counter-productive to the real goal, which is to get
software written.

68 CVS|Concurrent Versions System

Chapter 12: Keyword substitution 69

12 Keyword substitution

As long as you edit source �les inside your working copy of a module you can always
�nd out the state of your �les via `cvs status' and `cvs log'. But as soon as you export
the �les from your development environment it becomes harder to identify which revisions
they are.

CVS can use a mechanism known as keyword substitution (or keyword expansion) to
help identifying the �les. Embedded strings of the form $keyword$ and $keyword:: : :$ in
a �le are replaced with strings of the form $keyword:value$ whenever you obtain a new
revision of the �le.

12.1 Keyword List

This is a list of the keywords:

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time (UTC) the revision was checked in.

$Header$ A standard header containing the full pathname of the rcs �le, the revision
number, the date (UTC), the author, the state, and the locker (if locked). Files
will normally never be locked when you use cvs.

Id Same as $Header$, except that the rcs �lename is without a path.

$Name$ Tag name used to check out this �le.

$Locker$ The login name of the user who locked the revision (empty if not locked, and
thus almost always useless when you are using cvs).

Log The log message supplied during commit, preceded by a header containing the
rcs �lename, the revision number, the author, and the date (UTC). Existing
log messages are not replaced. Instead, the new log message is inserted after
$Log:: : :$. Each new line is pre�xed with the same string which precedes the
$Log keyword. For example, if the �le contains

/* Here is what people have been up to:
*
* $Log: frob.c,v $
* Revision 1.1 1997/01/03 14:23:51 joe
* Add the superfrobnicate option
*
*/

then additional lines which are added when expanding the $Log keyword will
be preceded by ` * '. Unlike previous versions of cvs and rcs, the comment
leader from the rcs �le is not used. The $Log keyword is useful for accumu-
lating a complete change log in a source �le, but for several reasons it can be
problematic. See Section 12.5 [Log keyword], page 71.

$RCSfile$

The name of the RCS �le without a path.

70 CVS|Concurrent Versions System

$Revision$

The revision number assigned to the revision.

$Source$ The full pathname of the RCS �le.

$State$ The state assigned to the revision. States can be assigned with cvs admin

-s|see Section A.6.1 [admin options], page 87.

12.2 Using keywords

To include a keyword string you simply include the relevant text string, such as Id,
inside the �le, and commit the �le. cvs will automatically expand the string as part of the
commit operation.

It is common to embed the Id string in the source �les so that it gets passed through
to generated �les. For example, if you are managing computer program source code, you
might include a variable which is initialized to contain that string. Or some C compilers
may provide a #pragma ident directive. Or a document management system might provide
a way to pass a string through to generated �les.

The ident command (which is part of the rcs package) can be used to extract keywords
and their values from a �le. This can be handy for text �les, but it is even more useful for
extracting keywords from binary �les.

$ ident samp.c
samp.c:

$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $
$ gcc samp.c
$ ident a.out
a.out:

$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $

Sccs is another popular revision control system. It has a command, what, which is very
similar to ident and used for the same purpose. Many sites without rcs have sccs. Since
what looks for the character sequence @(#) it is easy to include keywords that are detected
by either command. Simply pre�x the rcs keyword with the magic sccs phrase, like this:

static char *id="@(#) $Id: ab.c,v 1.5 1993/10/19 14:57:32 ceder Exp $";

12.3 Avoiding substitution

Keyword substitution has its disadvantages. Sometimes you might want the literal text
string `$Author$' to appear inside a �le without cvs interpreting it as a keyword and
expanding it into something like `$Author: ceder $'.

There is unfortunately no way to selectively turn o� keyword substitution. You can
use `-ko' (see Section 12.4 [Substitution modes], page 71) to turn o� keyword substitution
entirely.

In many cases you can avoid using keywords in the source, even though they appear
in the �nal product. For example, the source for this manual contains `$@asis{}Author$'
whenever the text `$Author$' should appear. In nroff and troff you can embed the
null-character \& inside the keyword for a similar e�ect.

Chapter 12: Keyword substitution 71

12.4 Substitution modes

Each �le has a stored default substitution mode, and each working directory copy of a
�le also has a substitution mode. The former is set by the `-k' option to cvs add and cvs

admin; the latter is set by the `-k' or `-A' options to cvs checkout or cvs update. cvs

diff also has a `-k' option. For some examples, see Chapter 9 [Binary �les], page 55.

The modes available are:

`-kkv' Generate keyword strings using the default form, e.g. $Revision: 5.7 $ for
the Revision keyword.

`-kkvl' Like `-kkv', except that a locker's name is always inserted if the given revision
is currently locked. This option is normally not useful when cvs is used.

`-kk' Generate only keyword names in keyword strings; omit their values. For ex-
ample, for the Revision keyword, generate the string $Revision$ instead of
$Revision: 5.7 $. This option is useful to ignore di�erences due to keyword
substitution when comparing di�erent revisions of a �le.

`-ko' Generate the old keyword string, present in the working �le just before it
was checked in. For example, for the Revision keyword, generate the string
$Revision: 1.1 $ instead of $Revision: 5.7 $ if that is how the string ap-
peared when the �le was checked in.

`-kb' Like `-ko', but also inhibit conversion of line endings between the canonical
form in which they are stored in the repository (linefeed only), and the form
appropriate to the operating system in use on the client. For systems, like unix,
which use linefeed only to terminate lines, this is the same as `-ko'. For more
information on binary �les, see Chapter 9 [Binary �les], page 55.

`-kv' Generate only keyword values for keyword strings. For example, for the
Revision keyword, generate the string 5.7 instead of $Revision: 5.7 $. This
can help generate �les in programming languages where it is hard to strip
keyword delimiters like $Revision: $ from a string. However, further keyword
substitution cannot be performed once the keyword names are removed, so this
option should be used with care.

One often would like to use `-kv' with cvs export|see Section A.10 [export],
page 97. But be aware that doesn't handle an export containing binary �les
correctly.

12.5 Problems with the Log keyword.

The Log keyword is somewhat controversial. As long as you are working on your
development system the information is easily accessible even if you do not use the Log

keyword|just do a cvs log. Once you export the �le the history information might be
useless anyhow.

A more serious concern is that cvs is not good at handling Log entries when a branch
is merged onto the main trunk. Con
icts often result from the merging operation.

72 CVS|Concurrent Versions System

People also tend to "�x" the log entries in the �le (correcting spellingmistakes and maybe
even factual errors). If that is done the information from cvs log will not be consistent
with the information inside the �le. This may or may not be a problem in real life.

It has been suggested that the Log keyword should be inserted last in the �le, and not
in the �les header, if it is to be used at all. That way the long list of change messages will
not interfere with everyday source �le browsing.

Chapter 13: Tracking third-party sources 73

13 Tracking third-party sources

If you modify a program to better �t your site, you probably want to include your
modi�cations when the next release of the program arrives. cvs can help you with this
task.

In the terminology used in cvs, the supplier of the program is called a vendor. The
unmodi�ed distribution from the vendor is checked in on its own branch, the vendor branch.
cvs reserves branch 1.1.1 for this use.

When you modify the source and commit it, your revision will end up on the main trunk.
When a new release is made by the vendor, you commit it on the vendor branch and copy
the modi�cations onto the main trunk.

Use the import command to create and update the vendor branch. When you import a
new �le, the vendor branch is made the `head' revision, so anyone that checks out a copy of
the �le gets that revision. When a local modi�cation is committed it is placed on the main
trunk, and made the `head' revision.

13.1 Importing a module for the �rst time

Use the import command to check in the sources for the �rst time. When you use the
import command to track third-party sources, the vendor tag and release tags are useful.
The vendor tag is a symbolic name for the branch (which is always 1.1.1, unless you use
the `-b branch'
ag|See Section 13.6 [Multiple vendor branches], page 75.). The release
tags are symbolic names for a particular release, such as `FSF_0_04'.

Note that import does not change the directory in which you invoke it. In particular,
it does not set up that directory as a cvs working directory; if you want to work with the
sources import them �rst and then check them out into a di�erent directory (see Section 1.3.1
[Getting the source], page 4).

Suppose you have the sources to a program called wdiff in a directory `wdiff-0.04',
and are going to make private modi�cations that you want to be able to use even when new
releases are made in the future. You start by importing the source to your repository:

$ cd wdiff-0.04
$ cvs import -m "Import of FSF v. 0.04" fsf/wdiff FSF_DIST WDIFF_0_04

The vendor tag is named `FSF_DIST' in the above example, and the only release tag
assigned is `WDIFF_0_04'.

13.2 Updating a module with the import command

When a new release of the source arrives, you import it into the repository with the
same import command that you used to set up the repository in the �rst place. The only
di�erence is that you specify a di�erent release tag this time.

$ tar xfz wdiff-0.05.tar.gz
$ cd wdiff-0.05
$ cvs import -m "Import of FSF v. 0.05" fsf/wdiff FSF_DIST WDIFF_0_05

74 CVS|Concurrent Versions System

For �les that have not been modi�ed locally, the newly created revision becomes the
head revision. If you have made local changes, import will warn you that you must merge
the changes into the main trunk, and tell you to use `checkout -j' to do so.

$ cvs checkout -jFSF_DIST:yesterday -jFSF_DIST wdiff

The above command will check out the latest revision of `wdiff', merging the changes made
on the vendor branch `FSF_DIST' since yesterday into the working copy. If any con
icts arise
during the merge they should be resolved in the normal way (see Section 10.3 [Con
icts
example], page 59). Then, the modi�ed �les may be committed.

Using a date, as suggested above, assumes that you do not import more than one release
of a product per day. If you do, you can always use something like this instead:

$ cvs checkout -jWDIFF_0_04 -jWDIFF_0_05 wdiff

In this case, the two above commands are equivalent.

13.3 Reverting to the latest vendor release

You can also revert local changes completely and return to the latest vendor release by
changing the `head' revision back to the vendor branch on all �les. For example, if you
have a checked-out copy of the sources in `~/work.d/wdiff', and you want to revert to the
vendor's version for all the �les in that directory, you would type:

$ cd ~/work.d/wdiff
$ cvs admin -bWDIFF .

You must specify the `-bWDIFF' without any space after the `-b'. See Section A.6.1 [admin
options], page 87.

13.4 How to handle binary �les with cvs import

Use the `-k' wrapper option to tell import which �les are binary. See Section C.2
[Wrappers], page 128.

13.5 How to handle keyword substitution with cvs import

The sources which you are importing may contain keywords (see Chapter 12 [Keyword
substitution], page 69). For example, the vendor may use cvs or some other system which
uses similar keyword expansion syntax. If you just import the �les in the default fashion,
then the keyword expansions supplied by the vendor will be replaced by keyword expansions
supplied by your own copy of cvs. It may be more convenient to maintain the expansions
supplied by the vendor, so that this information can supply information about the sources
that you imported from the vendor.

To maintain the keyword expansions supplied by the vendor, supply the `-ko' option to
cvs import the �rst time you import the �le. This will turn o� keyword expansion for that
�le entirely, so if you want to be more selective you'll have to think about what you want
and use the `-k' option to cvs update or cvs admin as appropriate.

Chapter 13: Tracking third-party sources 75

13.6 Multiple vendor branches

All the examples so far assume that there is only one vendor from which you are getting
sources. In some situations you might get sources from a variety of places. For example,
suppose that you are dealing with a project where many di�erent people and teams are
modifying the software. There are a variety of ways to handle this, but in some cases you
have a bunch of source trees lying around and what you want to do more than anything
else is just to all put them in CVS so that you at least have them in one place.

For handling situations in which there may be more than one vendor, you may specify
the `-b' option to cvs import. It takes as an argument the vendor branch to import to.
The default is `-b 1.1.1'.

For example, suppose that there are two teams, the red team and the blue team, that
are sending you sources. You want to import the red team's e�orts to branch 1.1.1 and use
the vendor tag RED. You want to import the blue team's e�orts to branch 1.1.3 and use
the vendor tag BLUE. So the commands you might use are:

$ cvs import dir RED RED_1-0
$ cvs import -b 1.1.3 dir BLUE BLUE_1-5

Note that if your vendor tag does not match your `-b' option, CVS will not detect this
case! For example,

$ cvs import -b 1.1.3 dir RED RED_1-0

Be careful; this kind of mismatch is sure to sow confusion or worse. I can't think of a useful
purpose for the ability to specify a mismatch here, but if you discover such a use, don't.
CVS is likely to make this an error in some future release.

76 CVS|Concurrent Versions System

Chapter 14: How your build system interacts with CVS 77

14 How your build system interacts with CVS

As mentioned in the introduction, cvs does not contain software for building your soft-
ware from source code. This section describes how various aspects of your build system
might interact with cvs.

One common question, especially from people who are accustomed to rcs, is how to
make their build get an up to date copy of the sources. The answer to this with cvs is
two-fold. First of all, since cvs itself can recurse through directories, there is no need to
modify your `Makefile' (or whatever con�guration �le your build tool uses) to make sure
each �le is up to date. Instead, just use two commands, �rst cvs -q update and then make

or whatever the command is to invoke your build tool. Secondly, you do not necessarily
want to get a copy of a change someone else made until you have �nished your own work.
One suggested approach is to �rst update your sources, then implement, build and test the
change you were thinking of, and then commit your sources (updating �rst if necessary). By
periodically (in between changes, using the approach just described) updating your entire
tree, you ensure that your sources are su�ciently up to date.

One common need is to record which versions of which source �les went into a particular
build. This kind of functionality is sometimes called bill of materials or something similar.
The best way to do this with cvs is to use the tag command to record which versions went
into a given build (see Section 4.4 [Tags], page 32).

Using cvs in the most straightforward manner possible, each developer will have a copy
of the entire source tree which is used in a particular build. If the source tree is small, or if
developers are geographically dispersed, this is the preferred solution. In fact one approach
for larger projects is to break a project down into smaller separately-compiled subsystems,
and arrange a way of releasing them internally so that each developer need check out only
those subsystems which are they are actively working on.

Another approach is to set up a structure which allows developers to have their own
copies of some �les, and for other �les to access source �les from a central location. Many
people have come up with some such a system using features such as the symbolic link
feature found in many operating systems, or the VPATH feature found in many versions
of make. One build tool which is designed to help with this kind of thing is Odin (see
ftp://ftp.cs.colorado.edu/pub/distribs/odin).

78 CVS|Concurrent Versions System

Chapter 15: Special Files 79

15 Special Files

In normal circumstances, CVS works only with regular �les. Every �le in a project is
assumed to be persistent; it must be possible to open, read and close them; and so on.
CVS also ignores �le permissions and ownerships, leaving such issues to be resolved by the
developer at installation time. In other words, it is not possible to "check in" a device into
a repository; if the device �le cannot be opened, CVS will refuse to handle it. Files also
lose their ownerships and permissions during repository transactions.

If the con�guration variable PreservePermissions (see Section C.12 [con�g], page 137)
is set in the repository, CVS will save the following �le characteristics in the repository:

� user and group ownership

� permissions

� major and minor device numbers

� symbolic links

� hard link structure

Using the PreservePermissions option a�ects the behavior of CVS in several ways.
First, some of the new operations supported by CVS are not accessible to all users. In par-
ticular, �le ownership and special �le characteristics may only be changed by the superuser.
When the PreservePermissions con�guration variable is set, therefore, users will have to
be `root' in order to perform CVS operations.

When PreservePermissions is in use, some CVS operations (such as `cvs status')
will not recognize a �le's hard link structure, and so will emit spurious warnings about
mismatching hard links. The reason is that CVS's internal structure does not make it easy
for these operations to collect all the necessary data about hard links, so they check for �le
con
icts with inaccurate data.

A more subtle di�erence is that CVS considers a �le to have changed only if its contents
have changed (speci�cally, if the modi�cation time of the working �le does not match that
of the repository's �le). Therefore, if only the permissions, ownership or hard linkage have
changed, or if a device's major or minor numbers have changed, CVS will not notice. In
order to commit such a change to the repository, you must force the commit with `cvs
commit -f'. This also means that if a �le's permissions have changed and the repository �le
is newer than the working copy, performing `cvs update' will silently change the permissions
on the working copy.

Changing hard links in a CVS repository is particularly delicate. Suppose that �le `foo'
is linked to �le `old', but is later relinked to �le `new'. You can wind up in the unusual
situation where, although `foo', `old' and `new' have all had their underlying link patterns
changed, only `foo' and `new' have been modi�ed, so `old' is not considered a candidate
for checking in. It can be very easy to produce inconsistent results this way. Therefore, we
recommend that when it is important to save hard links in a repository, the prudent course
of action is to touch any �le whose linkage or status has changed since the last checkin.
Indeed, it may be wise to touch * before each commit in a directory with complex hard
link structures.

It is worth noting that only regular �les may be merged, for reasons that hopefully are
obvious. If `cvs update' or `cvs checkout -j' attempts to merge a symbolic link with a

80 CVS|Concurrent Versions System

regular �le, or two device �les for di�erent kinds of devices, CVS will report a con
ict and
refuse to perform the merge. At the same time, `cvs diff' will not report any di�erences
between these �les, since no meaningful textual comparisons can be made on �les which
contain no text.

The PreservePermissions features do not work with client/server cvs. Another limi-
tation is that hard links must be to other �les within the same directory; hard links across
directories are not supported.

Appendix A: Guide to CVS commands 81

Appendix A Guide to CVS commands

This appendix describes the overall structure of cvs commands, and describes some
commands in detail (others are described elsewhere; for a quick reference to cvs commands,
see Appendix B [Invoking CVS], page 113).

A.1 Overall structure of CVS commands

The overall format of all cvs commands is:

cvs [cvs_options] cvs_command [command_options] [command_args]

cvs The name of the cvs program.

cvs_options

Some options that a�ect all sub-commands of cvs. These are described below.

cvs_command

One of several di�erent sub-commands. Some of the commands have aliases that
can be used instead; those aliases are noted in the reference manual for that
command. There are only two situations where you may omit `cvs_command':
`cvs -H' elicits a list of available commands, and `cvs -v' displays version in-
formation on cvs itself.

command_options

Options that are speci�c for the command.

command_args

Arguments to the commands.

There is unfortunately some confusion between cvs_options and command_options.
`-l', when given as a cvs_option, only a�ects some of the commands. When it is given
as a command_option is has a di�erent meaning, and is accepted by more commands. In
other words, do not take the above categorization too seriously. Look at the documentation
instead.

A.2 CVS's exit status

CVS can indicate to the calling environment whether it succeeded or failed by setting its
exit status. The exact way of testing the exit status will vary from one operating system to
another. For example in a unix shell script the `$?' variable will be 0 if the last command
returned a successful exit status, or greater than 0 if the exit status indicated failure.

If CVS is successful, it returns a successful status; if there is an error, it prints an error
message and returns a failure status. The one exception to this is the cvs diff command.
It will return a successful status if it found no di�erences, or a failure status if there were
di�erences or if there was an error. Because this behavior provides no good way to detect
errors, in the future it is possible that cvs diff will be changed to behave like the other
cvs commands.

82 CVS|Concurrent Versions System

A.3 Default options and the ~/.cvsrc �le

There are some command_options that are used so often that you might have set up an
alias or some other means to make sure you always specify that option. One example (the
one that drove the implementation of the `.cvsrc' support, actually) is that many people
�nd the default output of the `diff' command to be very hard to read, and that either
context di�s or unidi�s are much easier to understand.

The `~/.cvsrc' �le is a way that you can add default options to cvs_commands within
cvs, instead of relying on aliases or other shell scripts.

The format of the `~/.cvsrc' �le is simple. The �le is searched for a line that begins
with the same name as the cvs_command being executed. If a match is found, then the
remainder of the line is split up (at whitespace characters) into separate options and added
to the command arguments before any options from the command line.

If a command has two names (e.g., checkout and co), the o�cial name, not necessarily
the one used on the command line, will be used to match against the �le. So if this is the
contents of the user's `~/.cvsrc' �le:

log -N
diff -u
update -P
checkout -P

the command `cvs checkout foo' would have the `-P' option added to the arguments, as
well as `cvs co foo'.

With the example �le above, the output from `cvs diff foobar' will be in unidi� format.
`cvs diff -c foobar' will provide context di�s, as usual. Getting "old" format di�s would
be slightly more complicated, because diff doesn't have an option to specify use of the
"old" format, so you would need `cvs -f diff foobar'.

In place of the command name you can use cvs to specify global options (see Section A.4
[Global options], page 82). For example the following line in `.cvsrc'

cvs -z6

causes cvs to use compression level 6.

A.4 Global options

The available `cvs_options' (that are given to the left of `cvs_command') are:

--allow-root=rootdir
Specify legal cvsroot directory. See Section 2.9.3.1 [Password authentication
server], page 20.

-a Authenticate all communication between the client and the server. Only has an
e�ect on the cvs client. As of this writing, this is only implemented when using
a GSSAPI connection (see Section 2.9.4 [GSSAPI authenticated], page 23).
Authentication prevents certain sorts of attacks involving hijacking the active
tcp connection. Enabling authentication does not enable encryption.

Appendix A: Guide to CVS commands 83

-b bindir In cvs 1.9.18 and older, this speci�ed that rcs programs are in the bindir
directory. Current versions of cvs do not run rcs programs; for compatibility
this option is accepted, but it does nothing.

-T tempdir
Use tempdir as the directory where temporary �les are located. Overrides the
setting of the $TMPDIR environment variable and any precompiled directory.
This parameter should be speci�ed as an absolute pathname.

-d cvs_root_directory
Use cvs root directory as the root directory pathname of the repository. Over-
rides the setting of the $CVSROOT environment variable. See Chapter 2 [Repos-
itory], page 7.

-e editor Use editor to enter revision log information. Overrides the setting of the
$CVSEDITOR and $EDITOR environment variables. For more information, see
Section 1.3.2 [Committing your changes], page 4.

-f Do not read the `~/.cvsrc' �le. This option is most often used because of the
non-orthogonality of the cvs option set. For example, the `cvs log' option `-N'
(turn o� display of tag names) does not have a corresponding option to turn
the display on. So if you have `-N' in the `~/.cvsrc' entry for `log', you may
need to use `-f' to show the tag names.

-H

--help Display usage information about the speci�ed `cvs_command' (but do not ac-
tually execute the command). If you don't specify a command name, `cvs -H'
displays overall help for cvs, including a list of other help options.

-l Do not log the `cvs_command' in the command history (but execute it anyway).
See Section A.11 [history], page 98, for information on command history.

-n Do not change any �les. Attempt to execute the `cvs_command', but only to
issue reports; do not remove, update, or merge any existing �les, or create any
new �les.

Note that cvs will not necessarily produce exactly the same output as without
`-n'. In some cases the output will be the same, but in other cases cvs will
skip some of the processing that would have been required to produce the exact
same output.

-Q Cause the command to be really quiet; the command will only generate output
for serious problems.

-q Cause the command to be somewhat quiet; informational messages, such as
reports of recursion through subdirectories, are suppressed.

-r Make new working �les read-only. Same e�ect as if the $CVSREAD environment
variable is set (see Appendix D [Environment variables], page 139). The de-
fault is to make working �les writable, unless watches are on (see Section 10.6
[Watches], page 62).

-s variable=value
Set a user variable (see Section C.11 [Variables], page 136).

84 CVS|Concurrent Versions System

-t Trace program execution; display messages showing the steps of cvs activity.
Particularly useful with `-n' to explore the potential impact of an unfamiliar
command.

-v

--version

Display version and copyright information for cvs.

-w Make new working �les read-write. Overrides the setting of the $CVSREAD en-
vironment variable. Files are created read-write by default, unless $CVSREAD is
set or `-r' is given.

-x Encrypt all communication between the client and the server. Only has an ef-
fect on the cvs client. As of this writing, this is only implemented when using
a GSSAPI connection (see Section 2.9.4 [GSSAPI authenticated], page 23) or a
Kerberos connection (see Section 2.9.5 [Kerberos authenticated], page 23). En-
abling encryption implies that message tra�c is also authenticated. Encryption
support is not available by default; it must be enabled using a special con�gure
option, `--enable-encryption', when you build cvs.

-z gzip-level
Set the compression level. Only has an e�ect on the cvs client.

A.5 Common command options

This section describes the `command_options' that are available across several cvs com-
mands. These options are always given to the right of `cvs_command'. Not all commands
support all of these options; each option is only supported for commands where it makes
sense. However, when a command has one of these options you can almost always count on
the same behavior of the option as in other commands. (Other command options, which are
listed with the individual commands, may have di�erent behavior from one cvs command
to the other).

Warning: the `history' command is an exception; it supports many options that con
ict
even with these standard options.

-D date_spec
Use the most recent revision no later than date spec. date spec is a single
argument, a date description specifying a date in the past.

The speci�cation is sticky when you use it to make a private copy of a source �le;
that is, when you get a working �le using `-D', cvs records the date you speci�ed,
so that further updates in the same directory will use the same date (for more
information on sticky tags/dates, see Section 4.5 [Sticky tags], page 34).

`-D' is available with the checkout, diff, export, history, rdiff, rtag, and
update commands. (The history command uses this option in a slightly dif-
ferent way; see Section A.11.1 [history options], page 99).

A wide variety of date formats are supported by cvs. The most standard ones
are ISO8601 (from the International Standards Organization) and the Internet
e-mail standard (speci�ed in RFC822 as amended by RFC1123).

Appendix A: Guide to CVS commands 85

ISO8601 dates have many variants but a few examples are:

1972-09-24
1972-09-24 20:05

For more details about ISO8601 dates, see:

http://www.ft.uni-erlangen.de/~mskuhn/iso-time.html

In addition to the dates allowed in Internet e-mail itself, cvs also allows some
of the �elds to be omitted. For example:

24 Sep 1972 20:05
24 Sep

The date is interpreted as being in the local timezone, unless a speci�c timezone
is speci�ed.

These two date formats are preferred. However, cvs currently accepts a wide
variety of other date formats. They are intentionally not documented here in
any detail, and future versions of cvs might not accept all of them.

One such format is month/day/year. This may confuse people who are accus-
tomed to having the month and day in the other order; `1/4/96' is January 4,
not April 1.

Remember to quote the argument to the `-D'
ag so that your shell doesn't
interpret spaces as argument separators. A command using the `-D'
ag can
look like this:

$ cvs diff -D "1 hour ago" cvs.texinfo

-f When you specify a particular date or tag to cvs commands, they normally
ignore �les that do not contain the tag (or did not exist prior to the date) that
you speci�ed. Use the `-f' option if you want �les retrieved even when there
is no match for the tag or date. (The most recent revision of the �le will be
used).

`-f' is available with these commands: annotate, checkout, export, rdiff,
rtag, and update.

Warning: The commit and remove commands also have a `-f' option, but it has
a di�erent behavior for those commands. See Section A.8.1 [commit options],
page 94, and Section 7.2 [Removing �les], page 48.

-k k
ag Alter the default processing of keywords. See Chapter 12 [Keyword substitu-
tion], page 69, for the meaning of k
ag. Your k
ag speci�cation is sticky when
you use it to create a private copy of a source �le; that is, when you use this
option with the checkout or update commands, cvs associates your selected
k
ag with the �le, and continues to use it with future update commands on the
same �le until you specify otherwise.

The `-k' option is available with the add, checkout, diff, import and update

commands.

-l Local; run only in current working directory, rather than recursing through
subdirectories.

Warning: this is not the same as the overall `cvs -l' option, which you can
specify to the left of a cvs command!

86 CVS|Concurrent Versions System

Available with the following commands: annotate, checkout, commit, diff,
edit, editors, export, log, rdiff, remove, rtag, status, tag, unedit,
update, watch, and watchers.

-m message
Use message as log information, instead of invoking an editor.

Available with the following commands: add, commit and import.

-n Do not run any checkout/commit/tag program. (A program can be speci�ed
to run on each of these activities, in the modules database (see Section C.1
[modules], page 125); this option bypasses it).

Warning: this is not the same as the overall `cvs -n' option, which you can
specify to the left of a cvs command!

Available with the checkout, commit, export, and rtag commands.

-P Prune empty directories. See Section 7.3 [Removing directories], page 49.

-p Pipe the �les retrieved from the repository to standard output, rather than
writing them in the current directory. Available with the checkout and update

commands.

-R Process directories recursively. This is on by default.

Available with the following commands: annotate, checkout, commit, diff,
edit, editors, export, rdiff, remove, rtag, status, tag, unedit, update,
watch, and watchers.

-r tag Use the revision speci�ed by the tag argument instead of the default head
revision. As well as arbitrary tags de�ned with the tag or rtag command,
two special tags are always available: `HEAD' refers to the most recent version
available in the repository, and `BASE' refers to the revision you last checked
out into the current working directory.

The tag speci�cation is sticky when you use this with checkout or update to
make your own copy of a �le: cvs remembers the tag and continues to use it
on future update commands, until you specify otherwise (for more information
on sticky tags/dates, see Section 4.5 [Sticky tags], page 34). The tag can be
either a symbolic or numeric tag. See Section 4.4 [Tags], page 32.

Specifying the `-q' global option along with the `-r' command option is often
useful, to suppress the warning messages when the rcs �le does not contain the
speci�ed tag.

Warning: this is not the same as the overall `cvs -r' option, which you can
specify to the left of a cvs command!

`-r' is available with the checkout, commit, diff, history, export, rdiff,
rtag, and update commands.

-W Specify �le names that should be �ltered. You can use this option repeatedly.
The spec can be a �le name pattern of the same type that you can specify in
the `.cvswrappers' �le. Available with the following commands: import, and
update.

Appendix A: Guide to CVS commands 87

A.6 admin|Administration

� Requires: repository, working directory.

� Changes: repository.

� Synonym: rcs

This is the cvs interface to assorted administrative facilities. Some of them have ques-
tionable usefulness for cvs but exist for historical purposes. Some of the questionable
options are likely to disappear in the future. This command does work recursively, so
extreme care should be used.

On unix, if there is a group named cvsadmin, only members of that group can run cvs

admin. This group should exist on the server, or any system running the non-client/server
cvs. To disallow cvs admin for all users, create a group with no users in it. On NT, the
cvsadmin feature does not exist and all users can run cvs admin.

A.6.1 admin options

Some of these options have questionable usefulness for cvs but exist for historical pur-
poses. Some even make it impossible to use cvs until you undo the e�ect!

-Aold�le Might not work together with cvs. Append the access list of old�le to the
access list of the rcs �le.

-alogins Might not work together with cvs. Append the login names appearing in the
comma-separated list logins to the access list of the rcs �le.

-b[rev] Set the default branch to rev. In cvs, you normally do not manipulate default
branches; sticky tags (see Section 4.5 [Sticky tags], page 34) are a better way
to decide which branch you want to work on. There is one reason to run cvs

admin -b: to revert to the vendor's version when using vendor branches (see
Section 13.3 [Reverting local changes], page 74). There can be no space between
`-b' and its argument.

-cstring Sets the comment leader to string. The comment leader is not used by current
versions of cvs or rcs 5.7. Therefore, you can almost surely not worry about
it. See Chapter 12 [Keyword substitution], page 69.

-e[logins]
Might not work together with cvs. Erase the login names appearing in the
comma-separated list logins from the access list of the RCS �le. If logins is
omitted, erase the entire access list.

-I Run interactively, even if the standard input is not a terminal. This option
does not work with the client/server cvs and is likely to disappear in a future
release of cvs.

-i Useless with cvs. This creates and initializes a new rcs �le, without depositing
a revision. With cvs, add �les with the cvs add command (see Section 7.1
[Adding �les], page 47).

88 CVS|Concurrent Versions System

-ksubst Set the default keyword substitution to subst. See Chapter 12 [Keyword sub-
stitution], page 69. Giving an explicit `-k' option to cvs update, cvs export,
or cvs checkout overrides this default.

-l[rev] Lock the revision with number rev. If a branch is given, lock the latest revision
on that branch. If rev is omitted, lock the latest revision on the default branch.
There can be no space between `-l' and its argument.

This can be used in conjunction with the `rcslock.pl' script in the `contrib'
directory of the cvs source distribution to provide reserved checkouts (where
only one user can be editing a given �le at a time). See the comments in that
�le for details (and see the `README' �le in that directory for disclaimers about
the unsupported nature of contrib). According to comments in that �le, locking
must set to strict (which is the default).

-L Set locking to strict. Strict locking means that the owner of an RCS �le is not
exempt from locking for checkin. For use with cvs, strict locking must be set;
see the discussion under the `-l' option above.

-mrev:msg
Replace the log message of revision rev with msg.

-Nname[:[rev]]
Act like `-n', except override any previous assignment of name. For use with
magic branches, see Section 5.5 [Magic branch numbers], page 40.

-nname[:[rev]]
Associate the symbolic name name with the branch or revision rev. It is nor-
mally better to use `cvs tag' or `cvs rtag' instead. Delete the symbolic name
if both `:' and rev are omitted; otherwise, print an error message if name is al-
ready associated with another number. If rev is symbolic, it is expanded before
association. A rev consisting of a branch number followed by a `.' stands for
the current latest revision in the branch. A `:' with an empty rev stands for the
current latest revision on the default branch, normally the trunk. For exam-
ple, `cvs admin -nname:' associates name with the current latest revision of all
the RCS �les; this contrasts with `cvs admin -nname:$' which associates name
with the revision numbers extracted from keyword strings in the corresponding
working �les.

-orange Deletes (outdates) the revisions given by range.

Note that this command can be quite dangerous unless you know exactly what
you are doing (for example see the warnings below about how the rev1:rev2
syntax is confusing).

If you are short on disc this option might help you. But think twice before using
it|there is no way short of restoring the latest backup to undo this command!
If you delete di�erent revisions than you planned, either due to carelessness or
(heaven forbid) a CVS bug, there is no opportunity to correct the error before
the revisions are deleted. It probably would be a good idea to experiment on a
copy of the repository �rst.

Specify range in one of the following ways:

Appendix A: Guide to CVS commands 89

rev1::rev2
Collapse all revisions between rev1 and rev2, so that CVS only
stores the di�erences associated with going from rev1 to rev2, not
intermediate steps. For example, after `-o 1.3::1.5' one can re-
trieve revision 1.3, revision 1.5, or the di�erences to get from 1.3 to
1.5, but not the revision 1.4, or the di�erences between 1.3 and 1.4.
Other examples: `-o 1.3::1.4' and `-o 1.3::1.3' have no e�ect,
because there are no intermediate revisions to remove.

::rev Collapse revisions between the beginning of the branch containing
rev and rev itself. The branchpoint and rev are left intact. For
example, `-o ::1.3.2.6' deletes revision 1.3.2.1, revision 1.3.2.5,
and everything in between, but leaves 1.3 and 1.3.2.6 intact.

rev:: Collapse revisions between rev and the end of the branch containing
rev. Revision rev is left intact but the head revision is deleted.

rev Delete the revision rev. For example, `-o 1.3' is equivalent to `-o
1.2::1.4'.

rev1:rev2 Delete the revisions from rev1 to rev2, inclusive, on the same
branch. One will not be able to retrieve rev1 or rev2 or any of
the revisions in between. For example, the command `cvs admin

-oR_1_01:R_1_02 .' is rarely useful. It means to delete revisions
up to, and including, the tag R 1 02. But beware! If there are
�les that have not changed between R 1 02 and R 1 03 the �le
will have the same numerical revision number assigned to the tags
R 1 02 and R 1 03. So not only will it be impossible to retrieve
R 1 02; R 1 03 will also have to be restored from the tapes! In
most cases you want to specify rev1::rev2 instead.

:rev Delete revisions from the beginning of the branch containing rev
up to and including rev.

rev: Delete revisions from revision rev, including rev itself, to the end
of the branch containing rev.

None of the revisions to be deleted may have branches or locks.

If any of the revisions to be deleted have symbolic names, and one speci�es one
of the `::' syntaxes, then cvs will give an error and not delete any revisions.
If you really want to delete both the symbolic names and the revisions, �rst
delete the symbolic names with cvs tag -d, then run cvs admin -o. If one
speci�es the non-`::' syntaxes, then cvs will delete the revisions but leave the
symbolic names pointing to nonexistent revisions. This behavior is preserved
for compatibility with previous versions of cvs, but because it isn't very useful,
in the future it may change to be like the `::' case.

Due to the way cvs handles branches rev cannot be speci�ed symbolically if it is
a branch. See Section 5.5 [Magic branch numbers], page 40, for an explanation.

Make sure that no-one has checked out a copy of the revision you outdate.
Strange things will happen if he starts to edit it and tries to check it back in. For

90 CVS|Concurrent Versions System

this reason, this option is not a good way to take back a bogus commit; commit
a new revision undoing the bogus change instead (see Section 5.8 [Merging two
revisions], page 42).

-q Run quietly; do not print diagnostics.

-sstate[:rev]
Useful with cvs. Set the state attribute of the revision rev to state. If rev is
a branch number, assume the latest revision on that branch. If rev is omitted,
assume the latest revision on the default branch. Any identi�er is acceptable for
state. A useful set of states is `Exp' (for experimental), `Stab' (for stable), and
`Rel' (for released). By default, the state of a new revision is set to `Exp' when
it is created. The state is visible in the output from cvs log (see Section A.13
[log], page 102), and in the `Log' and `$State$' keywords (see Chapter 12
[Keyword substitution], page 69). Note that cvs uses the dead state for its
own purposes; to take a �le to or from the dead state use commands like cvs

remove and cvs add, not cvs admin -s.

-t[�le] Useful with cvs. Write descriptive text from the contents of the named �le
into the RCS �le, deleting the existing text. The �le pathname may not begin
with `-'. The descriptive text can be seen in the output from `cvs log' (see
Section A.13 [log], page 102). There can be no space between `-t' and its
argument.

If �le is omitted, obtain the text from standard input, terminated by end-of-�le
or by a line containing `.' by itself. Prompt for the text if interaction is possible;
see `-I'. Reading from standard input does not work for client/server cvs and
may change in a future release of cvs.

-t-string Similar to `-t�le'. Write descriptive text from the string into the rcs �le,
deleting the existing text. There can be no space between `-t' and its argument.

-U Set locking to non-strict. Non-strict locking means that the owner of a �le need
not lock a revision for checkin. For use with cvs, strict locking must be set;
see the discussion under the `-l' option above.

-u[rev] See the option `-l' above, for a discussion of using this option with cvs. Unlock
the revision with number rev. If a branch is given, unlock the latest revision
on that branch. If rev is omitted, remove the latest lock held by the caller.
Normally, only the locker of a revision may unlock it. Somebody else unlocking
a revision breaks the lock. This causes a mail message to be sent to the original
locker. The message contains a commentary solicited from the breaker. The
commentary is terminated by end-of-�le or by a line containing . by itself.
There can be no space between `-u' and its argument.

-Vn In previous versions of cvs, this option meant to write an rcs �le which would
be acceptable to rcs version n, but it is now obsolete and specifying it will
produce an error.

-xsu�xes In previous versions of cvs, this was documented as a way of specifying the
names of the rcs �les. However, cvs has always required that the rcs �les
used by cvs end in `,v', so this option has never done anything useful.

Appendix A: Guide to CVS commands 91

A.7 checkout|Check out sources for editing

� Synopsis: checkout [options] modules: : :

� Requires: repository.

� Changes: working directory.

� Synonyms: co, get

Create or update a working directory containing copies of the source �les speci�ed by
modules. You must execute checkout before using most of the other cvs commands, since
most of them operate on your working directory.

The modules are either symbolic names for some collection of source directories and
�les, or paths to directories or �les in the repository. The symbolic names are de�ned in
the `modules' �le. See Section C.1 [modules], page 125.

Depending on the modules you specify, checkout may recursively create directories and
populate them with the appropriate source �les. You can then edit these source �les at any
time (regardless of whether other software developers are editing their own copies of the
sources); update them to include new changes applied by others to the source repository;
or commit your work as a permanent change to the source repository.

Note that checkout is used to create directories. The top-level directory created is
always added to the directory where checkout is invoked, and usually has the same name
as the speci�ed module. In the case of a module alias, the created sub-directory may have
a di�erent name, but you can be sure that it will be a sub-directory, and that checkout
will show the relative path leading to each �le as it is extracted into your private work area
(unless you specify the `-Q' global option).

The �les created by checkout are created read-write, unless the `-r' option to cvs (see
Section A.4 [Global options], page 82) is speci�ed, the CVSREAD environment variable is
speci�ed (see Appendix D [Environment variables], page 139), or a watch is in e�ect for
that �le (see Section 10.6 [Watches], page 62).

Note that running checkout on a directory that was already built by a prior checkout
is also permitted. This is similar to specifying the `-d' option to the update command
in the sense that new directories that have been created in the repository will appear in
your work area. However, checkout takes a module name whereas update takes a directory
name. Also to use checkout this way it must be run from the top level directory (where you
originally ran checkout from), so before you run checkout to update an existing directory,
don't forget to change your directory to the top level directory.

For the output produced by the checkout command see Section A.18.2 [update output],
page 110.

A.7.1 checkout options

These standard options are supported by checkout (see Section A.5 [Common options],
page 84, for a complete description of them):

-D date Use the most recent revision no later than date. This option is sticky, and
implies `-P'. See Section 4.5 [Sticky tags], page 34, for more information on
sticky tags/dates.

92 CVS|Concurrent Versions System

-f Only useful with the `-D date' or `-r tag '
ags. If no matching revision is found,
retrieve the most recent revision (instead of ignoring the �le).

-k k
ag Process keywords according to k
ag. See Chapter 12 [Keyword substitution],
page 69. This option is sticky; future updates of this �le in this working direc-
tory will use the same k
ag. The status command can be viewed to see the
sticky options. See Appendix B [Invoking CVS], page 113, for more information
on the status command.

-l Local; run only in current working directory.

-n Do not run any checkout program (as speci�ed with the `-o' option in the
modules �le; see Section C.1 [modules], page 125).

-P Prune empty directories. See Section 7.5 [Moving directories], page 51.

-p Pipe �les to the standard output.

-R Checkout directories recursively. This option is on by default.

-r tag Use revision tag. This option is sticky, and implies `-P'. See Section 4.5 [Sticky
tags], page 34, for more information on sticky tags/dates.

In addition to those, you can use these special command options with checkout:

-A Reset any sticky tags, dates, or `-k' options. See Section 4.5 [Sticky tags],
page 34, for more information on sticky tags/dates.

-c Copy the module �le, sorted, to the standard output, instead of creating or
modifying any �les or directories in your working directory.

-d dir Create a directory called dir for the working �les, instead of using the module
name. In general, using this
ag is equivalent to using `mkdir dir; cd dir'
followed by the checkout command without the `-d'
ag.

There is an important exception, however. It is very convenient when checking
out a single item to have the output appear in a directory that doesn't con-
tain empty intermediate directories. In this case only, CVS tries to \shorten"
pathnames to avoid those empty directories.

For example, given a module `foo' that contains the �le `bar.c', the command
`cvs co -d dir foo' will create directory `dir' and place `bar.c' inside. Simi-
larly, given a module `bar' which has subdirectory `baz' wherein there is a �le
`quux.c', the command `cvs -d dir co bar/baz' will create directory `dir' and
place `quux.c' inside.

Using the `-N'
ag will defeat this behavior. Given the same module def-
initions above, `cvs co -N -d dir foo' will create directories `dir/foo' and
place `bar.c' inside, while `cvs co -N -d dir bar/baz' will create directories
`dir/bar/baz' and place `quux.c' inside.

-j tag With two `-j' options, merge changes from the revision speci�ed with the �rst
`-j' option to the revision speci�ed with the second `j' option, into the working
directory.

With one `-j' option, merge changes from the ancestor revision to the revision
speci�ed with the `-j' option, into the working directory. The ancestor revision

Appendix A: Guide to CVS commands 93

is the common ancestor of the revision which the working directory is based on,
and the revision speci�ed in the `-j' option.

In addition, each -j option can contain an optional date speci�cation which,
when used with branches, can limit the chosen revision to one within a spe-
ci�c date. An optional date is speci�ed by adding a colon (:) to the tag:
`-jSymbolic Tag:Date Speci�er'.

See Chapter 5 [Branching and merging], page 37.

-N Only useful together with `-d dir'. With this option, cvs will not \shorten"
module paths in your working directory when you check out a single module.
See the `-d'
ag for examples and a discussion.

-s Like `-c', but include the status of all modules, and sort it by the status string.
See Section C.1 [modules], page 125, for info about the `-s' option that is used
inside the modules �le to set the module status.

A.7.2 checkout examples

Get a copy of the module `tc':

$ cvs checkout tc

Get a copy of the module `tc' as it looked one day ago:

$ cvs checkout -D yesterday tc

A.8 commit|Check �les into the repository

� Synopsis: commit [-lnRf] [-m 'log message' | -F �le] [-r revision] [�les: : :]

� Requires: working directory, repository.

� Changes: repository.

� Synonym: ci

Use commit when you want to incorporate changes from your working source �les into
the source repository.

If you don't specify particular �les to commit, all of the �les in your working current
directory are examined. commit is careful to change in the repository only those �les that
you have really changed. By default (or if you explicitly specify the `-R' option), �les in
subdirectories are also examined and committed if they have changed; you can use the `-l'
option to limit commit to the current directory only.

commit veri�es that the selected �les are up to date with the current revisions in the
source repository; it will notify you, and exit without committing, if any of the speci�ed
�les must be made current �rst with update (see Section A.18 [update], page 108). commit
does not call the update command for you, but rather leaves that for you to do when the
time is right.

When all is well, an editor is invoked to allow you to enter a log message that will be
written to one or more logging programs (see Section C.1 [modules], page 125, and see
Section C.7 [loginfo], page 133) and placed in the rcs �le inside the repository. This log
message can be retrieved with the log command; see Section A.13 [log], page 102. You can

94 CVS|Concurrent Versions System

specify the log message on the command line with the `-m message' option, and thus avoid
the editor invocation, or use the `-F �le' option to specify that the argument �le contains
the log message.

A.8.1 commit options

These standard options are supported by commit (see Section A.5 [Common options],
page 84, for a complete description of them):

-l Local; run only in current working directory.

-n Do not run any module program.

-R Commit directories recursively. This is on by default.

-r revision
Commit to revision. revision must be either a branch, or a revision on the
main trunk that is higher than any existing revision number (see Section 4.3
[Assigning revisions], page 31). You cannot commit to a speci�c revision on a
branch.

commit also supports these options:

-F �le Read the log message from �le, instead of invoking an editor.

-f Note that this is not the standard behavior of the `-f' option as de�ned in
Section A.5 [Common options], page 84.

Force cvs to commit a new revision even if you haven't made any changes to
the �le. If the current revision of �le is 1.7, then the following two commands
are equivalent:

$ cvs commit -f �le
$ cvs commit -r 1.8 �le

The `-f' option disables recursion (i.e., it implies `-l'). To force cvs to commit
a new revision for all �les in all subdirectories, you must use `-f -R'.

-m message
Use message as the log message, instead of invoking an editor.

A.8.2 commit examples

A.8.2.1 Committing to a branch

You can commit to a branch revision (one that has an even number of dots) with the `-r'
option. To create a branch revision, use the `-b' option of the rtag or tag commands (see
Section A.17 [tag], page 107 or see Section A.16 [rtag], page 106). Then, either checkout
or update can be used to base your sources on the newly created branch. From that point
on, all commit changes made within these working sources will be automatically added to
a branch revision, thereby not disturbing main-line development in any way. For example,
if you had to create a patch to the 1.2 version of the product, even though the 2.0 version
is already under development, you might do:

Appendix A: Guide to CVS commands 95

$ cvs rtag -b -r FCS1_2 FCS1_2_Patch product_module
$ cvs checkout -r FCS1_2_Patch product_module
$ cd product_module
[[hack away]]
$ cvs commit

This works automatically since the `-r' option is sticky.

A.8.2.2 Creating the branch after editing

Say you have been working on some extremely experimental software, based on whatever
revision you happened to checkout last week. If others in your group would like to work on
this software with you, but without disturbing main-line development, you could commit
your change to a new branch. Others can then checkout your experimental stu� and utilize
the full bene�t of cvs con
ict resolution. The scenario might look like:

[[hacked sources are present]]
$ cvs tag -b EXPR1
$ cvs update -r EXPR1
$ cvs commit

The update command will make the `-r EXPR1' option sticky on all �les. Note that
your changes to the �les will never be removed by the update command. The commit will
automatically commit to the correct branch, because the `-r' is sticky. You could also do
like this:

[[hacked sources are present]]
$ cvs tag -b EXPR1
$ cvs commit -r EXPR1

but then, only those �les that were changed by you will have the `-r EXPR1' sticky
ag. If you
hack away, and commit without specifying the `-r EXPR1'
ag, some �les may accidentally
end up on the main trunk.

To work with you on the experimental change, others would simply do

$ cvs checkout -r EXPR1 whatever_module

A.9 di�|Show di�erences between revisions

� Synopsis: di� [-lR] [format options] [[-r rev1 | -D date1] [-r rev2 | -D date2]] [�les: : :]

� Requires: working directory, repository.

� Changes: nothing.

The diff command is used to compare di�erent revisions of �les. The default action
is to compare your working �les with the revisions they were based on, and report any
di�erences that are found.

If any �le names are given, only those �les are compared. If any directories are given,
all �les under them will be compared.

The exit status for di� is di�erent than for other cvs commands; for details Section A.2
[Exit status], page 81.

96 CVS|Concurrent Versions System

A.9.1 di� options

These standard options are supported by diff (see Section A.5 [Common options],
page 84, for a complete description of them):

-D date Use the most recent revision no later than date. See `-r' for how this a�ects
the comparison.

-k k
ag Process keywords according to k
ag. See Chapter 12 [Keyword substitution],
page 69.

-l Local; run only in current working directory.

-R Examine directories recursively. This option is on by default.

-r tag Compare with revision tag. Zero, one or two `-r' options can be present. With
no `-r' option, the working �le will be compared with the revision it was based
on. With one `-r', that revision will be compared to your current working �le.
With two `-r' options those two revisions will be compared (and your working
�le will not a�ect the outcome in any way).

One or both `-r' options can be replaced by a `-D date' option, described above.

The following options specify the format of the output. They have the same meaning as
in GNU di�.

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9
--binary
--brief
--changed-group-format=arg
-c
-C nlines
--context[=lines]

-e --ed
-t --expand-tabs
-f --forward-ed
--horizon-lines=arg
--ifdef=arg
-w --ignore-all-space
-B --ignore-blank-lines
-i --ignore-case
-I regexp

--ignore-matching-lines=regexp
-h
-b --ignore-space-change
-T --initial-tab
-L label
--label=label

--left-column
-d --minimal
-N --new-file
--new-line-format=arg
--old-line-format=arg

Appendix A: Guide to CVS commands 97

--paginate
-n --rcs
-s --report-identical-files
-p
--show-c-function
-y --side-by-side
-F regexp
--show-function-line=regexp
-H --speed-large-files
--suppress-common-lines
-a --text
--unchanged-group-format=arg
-u
-U nlines
--unified[=lines]

-V arg
-W columns
--width=columns

A.9.2 di� examples

The following line produces a Unidi� (`-u'
ag) between revision 1.14 and 1.19 of
`backend.c'. Due to the `-kk'
ag no keywords are substituted, so di�erences that only
depend on keyword substitution are ignored.

$ cvs diff -kk -u -r 1.14 -r 1.19 backend.c

Suppose the experimental branch EXPR1 was based on a set of �les tagged RE-
LEASE 1 0. To see what has happened on that branch, the following can be used:

$ cvs diff -r RELEASE_1_0 -r EXPR1

A command like this can be used to produce a context di� between two releases:

$ cvs diff -c -r RELEASE_1_0 -r RELEASE_1_1 > diffs

If you are maintaining ChangeLogs, a command like the following just before you commit
your changes may help you write the ChangeLog entry. All local modi�cations that have
not yet been committed will be printed.

$ cvs diff -u | less

A.10 export|Export sources from CVS, similar to checkout

� Synopsis: export [-
NnR] [-r rev|-D date] [-k subst] [-d dir] module: : :

� Requires: repository.

� Changes: current directory.

This command is a variant of checkout; use it when you want a copy of the source for
module without the cvs administrative directories. For example, you might use export to
prepare source for shipment o�-site. This command requires that you specify a date or tag
(with `-D' or `-r'), so that you can count on reproducing the source you ship to others.

98 CVS|Concurrent Versions System

One often would like to use `-kv' with cvs export. This causes any keywords to be
expanded such that an import done at some other site will not lose the keyword revision
information. But be aware that doesn't handle an export containing binary �les correctly.
Also be aware that after having used `-kv', one can no longer use the ident command
(which is part of the rcs suite|see ident(1)) which looks for keyword strings. If you want
to be able to use ident you must not use `-kv'.

A.10.1 export options

These standard options are supported by export (see Section A.5 [Common options],
page 84, for a complete description of them):

-D date Use the most recent revision no later than date.

-f If no matching revision is found, retrieve the most recent revision (instead of
ignoring the �le).

-l Local; run only in current working directory.

-n Do not run any checkout program.

-R Export directories recursively. This is on by default.

-r tag Use revision tag.

In addition, these options (that are common to checkout and export) are also sup-
ported:

-d dir Create a directory called dir for the working �les, instead of using the module
name. See Section A.7.1 [checkout options], page 91, for complete details on
how cvs handles this
ag.

-k subst Set keyword expansion mode (see Section 12.4 [Substitution modes], page 71).

-N Only useful together with `-d dir'. See Section A.7.1 [checkout options],
page 91, for complete details on how cvs handles this
ag.

A.11 history|Show status of �les and users

� Synopsis: history [-report] [-
ags] [-options args] [�les: : :]

� Requires: the �le `$CVSROOT/CVSROOT/history'

� Changes: nothing.

cvs can keep a history �le that tracks each use of the checkout, commit, rtag, update,
and release commands. You can use history to display this information in various for-
mats.

Logging must be enabled by creating the �le `$CVSROOT/CVSROOT/history'.

Warning: history uses `-f', `-l', `-n', and `-p' in ways that con
ict with the normal
use inside cvs (see Section A.5 [Common options], page 84).

Appendix A: Guide to CVS commands 99

A.11.1 history options

Several options (shown above as `-report') control what kind of report is generated:

-c Report on each time commit was used (i.e., each time the repository was mod-
i�ed).

-e Everything (all record types). Equivalent to specifying `-x' with all record
types. Of course, `-e' will also include record types which are added in a future
version of cvs; if you are writing a script which can only handle certain record
types, you'll want to specify `-x'.

-m module
Report on a particular module. (You can meaningfully use `-m' more than once
on the command line.)

-o Report on checked-out modules.

-T Report on all tags.

-x type Extract a particular set of record types type from the cvs history. The types
are indicated by single letters, which you may specify in combination.

Certain commands have a single record type:

F release

O checkout

E export

T rtag

One of four record types may result from an update:

C A merge was necessary but collisions were detected (requiring man-
ual merging).

G A merge was necessary and it succeeded.

U A working �le was copied from the repository.

W The working copy of a �le was deleted during update (because it
was gone from the repository).

One of three record types results from commit:

A A �le was added for the �rst time.

M A �le was modi�ed.

R A �le was removed.

The options shown as `-flags' constrain or expand the report without requiring option
arguments:

-a Show data for all users (the default is to show data only for the user executing
history).

-l Show last modi�cation only.

100 CVS|Concurrent Versions System

-w Show only the records for modi�cations done from the same working directory
where history is executing.

The options shown as `-options args' constrain the report based on an argument:

-b str Show data back to a record containing the string str in either the module name,
the �le name, or the repository path.

-D date Show data since date. This is slightly di�erent from the normal use of `-D date',
which selects the newest revision older than date.

-p repository
Show data for a particular source repository (you can specify several `-p' options
on the same command line).

-r rev Show records referring to revisions since the revision or tag named rev appears
in individual rcs �les. Each rcs �le is searched for the revision or tag.

-t tag Show records since tag tag was last added to the history �le. This di�ers from
the `-r'
ag above in that it reads only the history �le, not the rcs �les, and
is much faster.

-u name Show records for user name.

A.12 import|Import sources into CVS, using vendor
branches

� Synopsis: import [-options] repository vendortag releasetag: : :

� Requires: Repository, source distribution directory.

� Changes: repository.

Use import to incorporate an entire source distribution from an outside source (e.g., a
source vendor) into your source repository directory. You can use this command both for
initial creation of a repository, and for wholesale updates to the module from the outside
source. See Chapter 13 [Tracking sources], page 73, for a discussion on this subject.

The repository argument gives a directory name (or a path to a directory) under the
cvs root directory for repositories; if the directory did not exist, import creates it.

When you use import for updates to source that has been modi�ed in your source
repository (since a prior import), it will notify you of any �les that con
ict in the two
branches of development; use `checkout -j' to reconcile the di�erences, as import instructs
you to do.

If cvs decides a �le should be ignored (see Section C.9 [cvsignore], page 135), it does
not import it and prints `I ' followed by the �lename (see Section A.12.2 [import output],
page 101, for a complete description of the output).

If the �le `$CVSROOT/CVSROOT/cvswrappers' exists, any �le whose names match the
speci�cations in that �le will be treated as packages and the appropriate �ltering will
be performed on the �le/directory before being imported. See Section C.2 [Wrappers],
page 128.

Appendix A: Guide to CVS commands 101

The outside source is saved in a �rst-level branch, by default 1.1.1. Updates are leaves
of this branch; for example, �les from the �rst imported collection of source will be revision
1.1.1.1, then �les from the �rst imported update will be revision 1.1.1.2, and so on.

At least three arguments are required. repository is needed to identify the collection of
source. vendortag is a tag for the entire branch (e.g., for 1.1.1). You must also specify at
least one releasetag to identify the �les at the leaves created each time you execute import.

Note that import does not change the directory in which you invoke it. In particular,
it does not set up that directory as a cvs working directory; if you want to work with the
sources import them �rst and then check them out into a di�erent directory (see Section 1.3.1
[Getting the source], page 4).

A.12.1 import options

This standard option is supported by import (see Section A.5 [Common options],
page 84, for a complete description):

-m message
Use message as log information, instead of invoking an editor.

There are the following additional special options.

-b branch See Section 13.6 [Multiple vendor branches], page 75.

-k subst Indicate the keyword expansion mode desired. This setting will apply to all
�les created during the import, but not to any �les that previously existed in
the repository. See Section 12.4 [Substitution modes], page 71, for a list of valid
`-k' settings.

-I name Specify �le names that should be ignored during import. You can use this
option repeatedly. To avoid ignoring any �les at all (even those ignored by
default), specify `-I !'.

name can be a �le name pattern of the same type that you can specify in the
`.cvsignore' �le. See Section C.9 [cvsignore], page 135.

-W spec Specify �le names that should be �ltered during import. You can use this option
repeatedly.

spec can be a �le name pattern of the same type that you can specify in the
`.cvswrappers' �le. See Section C.2 [Wrappers], page 128.

A.12.2 import output

import keeps you informed of its progress by printing a line for each �le, preceded by
one character indicating the status of the �le:

U �le The �le already exists in the repository and has not been locally modi�ed; a
new revision has been created (if necessary).

N �le The �le is a new �le which has been added to the repository.

C �le The �le already exists in the repository but has been locally modi�ed; you will
have to merge the changes.

102 CVS|Concurrent Versions System

I �le The �le is being ignored (see Section C.9 [cvsignore], page 135).

L �le The �le is a symbolic link; cvs import ignores symbolic links. People periodi-
cally suggest that this behavior should be changed, but if there is a consensus
on what it should be changed to, it doesn't seem to be apparent. (Various
options in the `modules' �le can be used to recreate symbolic links on checkout,
update, etc.; see Section C.1 [modules], page 125.)

A.12.3 import examples

See Chapter 13 [Tracking sources], page 73, and Section 3.1.1 [From �les], page 27.

A.13 log|Print out log information for �les

� Synopsis: log [options] [�les: : :]

� Requires: repository, working directory.

� Changes: nothing.

Display log information for �les. log used to call the rcs utility rlog. Although this is
no longer true in the current sources, this history determines the format of the output and
the options, which are not quite in the style of the other cvs commands.

The output includes the location of the rcs �le, the head revision (the latest revision on
the trunk), all symbolic names (tags) and some other things. For each revision, the revision
number, the author, the number of lines added/deleted and the log message are printed.
All times are displayed in Coordinated Universal Time (UTC). (Other parts of cvs print
times in the local timezone).

Warning: log uses `-R' in a way that con
icts with the normal use inside cvs (see
Section A.5 [Common options], page 84).

A.13.1 log options

By default, log prints all information that is available. All other options restrict the
output.

-b Print information about the revisions on the default branch, normally the high-
est branch on the trunk.

-d dates Print information about revisions with a checkin date/time in the range given
by the semicolon-separated list of dates. The date formats accepted are those
accepted by the `-D' option to many other cvs commands (see Section A.5
[Common options], page 84). Dates can be combined into ranges as follows:

d1<d2
d2>d1 Select the revisions that were deposited between d1 and d2.

<d
d> Select all revisions dated d or earlier.

d<
>d Select all revisions dated d or later.

Appendix A: Guide to CVS commands 103

d Select the single, latest revision dated d or earlier.

The `>' or `<' characters may be followed by `=' to indicate an inclusive range
rather than an exclusive one.

Note that the separator is a semicolon (;).

-h Print only the name of the rcs �le, name of the �le in the working directory,
head, default branch, access list, locks, symbolic names, and su�x.

-l Local; run only in current working directory. (Default is to run recursively).

-N Do not print the list of tags for this �le. This option can be very useful when
your site uses a lot of tags, so rather than "more"'ing over 3 pages of tag
information, the log information is presented without tags at all.

-R Print only the name of the rcs �le.

-rrevisions
Print information about revisions given in the comma-separated list revisions of
revisions and ranges. The following table explains the available range formats:

rev1:rev2 Revisions rev1 to rev2 (which must be on the same branch).

:rev Revisions from the beginning of the branch up to and including rev.

rev: Revisions starting with rev to the end of the branch containing rev.

branch An argument that is a branch means all revisions on that branch.

branch1:branch2
A range of branches means all revisions on the branches in that
range.

branch. The latest revision in branch.

A bare `-r' with no revisions means the latest revision on the default branch,
normally the trunk. There can be no space between the `-r' option and its
argument.

-s states Print information about revisions whose state attributes match one of the states
given in the comma-separated list states.

-t Print the same as `-h', plus the descriptive text.

-wlogins Print information about revisions checked in by users with login names appear-
ing in the comma-separated list logins. If logins is omitted, the user's login is
assumed. There can be no space between the `-w' option and its argument.

log prints the intersection of the revisions selected with the options `-d', `-s', and `-w',
intersected with the union of the revisions selected by `-b' and `-r'.

A.13.2 log examples

Contributed examples are gratefully accepted.

104 CVS|Concurrent Versions System

A.14 rdi�|'patch' format di�s between releases

� rdi� [-
ags] [-V vn] [-r t|-D d [-r t2|-D d2]] modules: : :

� Requires: repository.

� Changes: nothing.

� Synonym: patch

Builds a Larry Wall format patch(1) �le between two releases, that can be fed directly
into the patch program to bring an old release up-to-date with the new release. (This is one
of the few cvs commands that operates directly from the repository, and doesn't require a
prior checkout.) The di� output is sent to the standard output device.

You can specify (using the standard `-r' and `-D' options) any combination of one or two
revisions or dates. If only one revision or date is speci�ed, the patch �le re
ects di�erences
between that revision or date and the current head revisions in the rcs �le.

Note that if the software release a�ected is contained in more than one directory, then
it may be necessary to specify the `-p' option to the patch command when patching the
old sources, so that patch is able to �nd the �les that are located in other directories.

A.14.1 rdi� options

These standard options are supported by rdiff (see Section A.5 [Common options],
page 84, for a complete description of them):

-D date Use the most recent revision no later than date.

-f If no matching revision is found, retrieve the most recent revision (instead of
ignoring the �le).

-l Local; don't descend subdirectories.

-R Examine directories recursively. This option is on by default.

-r tag Use revision tag.

In addition to the above, these options are available:

-c Use the context di� format. This is the default format.

-s Create a summary change report instead of a patch. The summary includes
information about �les that were changed or added between the releases. It is
sent to the standard output device. This is useful for �nding out, for example,
which �les have changed between two dates or revisions.

-t A di� of the top two revisions is sent to the standard output device. This is
most useful for seeing what the last change to a �le was.

-u Use the unidi� format for the context di�s. This option is not available if your
diff does not support the unidi� format. Remember that old versions of the
patch program can't handle the unidi� format, so if you plan to post this patch
to the net you should probably not use `-u'.

-V vn Expand keywords according to the rules current in rcs version vn (the expan-
sion format changed with rcs version 5). Note that this option is no longer
accepted. CVS will always expand keywords the way that rcs version 5 does.

Appendix A: Guide to CVS commands 105

A.14.2 rdi� examples

Suppose you receive mail from foo@bar.com asking for an update from release 1.2 to
1.4 of the tc compiler. You have no such patches on hand, but with cvs that can easily be
�xed with a command such as this:

$ cvs rdiff -c -r FOO1_2 -r FOO1_4 tc | \
$$ Mail -s 'The patches you asked for' foo@bar.com

Suppose you have made release 1.3, and forked a branch called `R_1_3fix' for bug�xes.
`R_1_3_1' corresponds to release 1.3.1, which was made some time ago. Now, you want to
see how much development has been done on the branch. This command can be used:

$ cvs patch -s -r R_1_3_1 -r R_1_3fix module-name
cvs rdiff: Diffing module-name
File ChangeLog,v changed from revision 1.52.2.5 to 1.52.2.6
File foo.c,v changed from revision 1.52.2.3 to 1.52.2.4
File bar.h,v changed from revision 1.29.2.1 to 1.2

A.15 release|Indicate that a Module is no longer in use

� release [-d] directories: : :

� Requires: Working directory.

� Changes: Working directory, history log.

This command is meant to safely cancel the e�ect of `cvs checkout'. Since cvs doesn't
lock �les, it isn't strictly necessary to use this command. You can always simply delete your
working directory, if you like; but you risk losing changes you may have forgotten, and you
leave no trace in the cvs history �le (see Section C.10 [history �le], page 136) that you've
abandoned your checkout.

Use `cvs release' to avoid these problems. This command checks that no uncommitted
changes are present; that you are executing it from immediately above a cvs working
directory; and that the repository recorded for your �les is the same as the repository
de�ned in the module database.

If all these conditions are true, `cvs release' leaves a record of its execution (attesting
to your intentionally abandoning your checkout) in the cvs history log.

A.15.1 release options

The release command supports one command option:

-d Delete your working copy of the �le if the release succeeds. If this
ag is not
given your �les will remain in your working directory.

Warning: The release command deletes all directories and �les recursively.
This has the very serious side-e�ect that any directory that you have created
inside your checked-out sources, and not added to the repository (using the add
command; see Section 7.1 [Adding �les], page 47) will be silently deleted|even
if it is non-empty!

106 CVS|Concurrent Versions System

A.15.2 release output

Before release releases your sources it will print a one-line message for any �le that is
not up-to-date.

Warning: Any new directories that you have created, but not added to the cvs directory
hierarchy with the add command (see Section 7.1 [Adding �les], page 47) will be silently
ignored (and deleted, if `-d' is speci�ed), even if they contain �les.

U �le
P �le There exists a newer revision of this �le in the repository, and you have not

modi�ed your local copy of the �le (`U' and `P' mean the same thing).

A �le The �le has been added to your private copy of the sources, but has not yet
been committed to the repository. If you delete your copy of the sources this
�le will be lost.

R �le The �le has been removed from your private copy of the sources, but has not
yet been removed from the repository, since you have not yet committed the
removal. See Section A.8 [commit], page 93.

M �le The �le is modi�ed in your working directory. There might also be a newer
revision inside the repository.

? �le �le is in your working directory, but does not correspond to anything in the
source repository, and is not in the list of �les for cvs to ignore (see the de-
scription of the `-I' option, and see Section C.9 [cvsignore], page 135). If you
remove your working sources, this �le will be lost.

A.15.3 release examples

Release the module, and delete your local working copy of the �les.

$ cd .. # You must stand immediately above the
sources when you issue `cvs release'.

$ cvs release -d tc
You have [0] altered files in this repository.
Are you sure you want to release (and delete) module `tc': y
$

A.16 rtag|Add a symbolic tag to a module

� rtag [-falnR] [-b] [-d] [-r tag | -Ddate] symbolic tag modules: : :

� Requires: repository.

� Changes: repository.

� Synonym: rfreeze

You can use this command to assign symbolic tags to particular, explicitly speci�ed
source revisions in the repository. rtag works directly on the repository contents (and
requires no prior checkout). Use tag instead (see Section A.17 [tag], page 107), to base the
selection of revisions on the contents of your working directory.

Appendix A: Guide to CVS commands 107

If you attempt to use a tag name that already exists, cvs will complain and not overwrite
that tag. Use the `-F' option to force the new tag value.

A.16.1 rtag options

These standard options are supported by rtag (see Section A.5 [Common options],
page 84, for a complete description of them):

-D date Tag the most recent revision no later than date.

-f Only useful with the `-D date' or `-r tag '
ags. If no matching revision is found,
use the most recent revision (instead of ignoring the �le).

-F Overwrite an existing tag of the same name on a di�erent revision.

-l Local; run only in current working directory.

-n Do not run any tag program that was speci�ed with the `-t'
ag inside the
`modules' �le. (see Section C.1 [modules], page 125).

-R Tag directories recursively. This is on by default.

-r tag Only tag those �les that contain tag. This can be used to rename a tag: tag
only the �les identi�ed by the old tag, then delete the old tag, leaving the new
tag on exactly the same �les as the old tag.

In addition to the above common options, these options are available:

-a Use the `-a' option to have rtag look in the `Attic' (see Section 2.2.4 [Attic],
page 11) for removed �les that contain the speci�ed tag. The tag is removed
from these �les, which makes it convenient to re-use a symbolic tag as develop-
ment continues (and �les get removed from the up-coming distribution).

-b Make the tag a branch tag. See Chapter 5 [Branching and merging], page 37.

-d Delete the tag instead of creating it.

In general, tags (often the symbolic names of software distributions) should not
be removed, but the `-d' option is available as a means to remove completely
obsolete symbolic names if necessary (as might be the case for an Alpha release,
or if you mistagged a module).

A.17 tag|Add a symbolic tag to checked out versions of
�les

� tag [-lR] [-b] [-c] [-d] symbolic tag [�les: : :]

� Requires: working directory, repository.

� Changes: repository.

� Synonym: freeze

Use this command to assign symbolic tags to the nearest repository versions to your
working sources. The tags are applied immediately to the repository, as with rtag, but the

108 CVS|Concurrent Versions System

versions are supplied implicitly by the cvs records of your working �les' history rather than
applied explicitly.

One use for tags is to record a snapshot of the current sources when the software freeze
date of a project arrives. As bugs are �xed after the freeze date, only those changed sources
that are to be part of the release need be re-tagged.

The symbolic tags are meant to permanently record which revisions of which �les were
used in creating a software distribution. The checkout and update commands allow you
to extract an exact copy of a tagged release at any time in the future, regardless of whether
�les have been changed, added, or removed since the release was tagged.

This command can also be used to delete a symbolic tag, or to create a branch. See the
options section below.

If you attempt to use a tag name that already exists, cvs will complain and not overwrite
that tag. Use the `-F' option to force the new tag value.

A.17.1 tag options

These standard options are supported by tag (see Section A.5 [Common options],
page 84, for a complete description of them):

-F Overwrite an existing tag of the same name on a di�erent revision.

-l Local; run only in current working directory.

-R Tag directories recursively. This is on by default.

Two special options are available:

-b Make the tag a branch tag (see Chapter 5 [Branching and merging], page 37),
allowing concurrent, isolated development. This is most useful for creating a
patch to a previously released software distribution.

-c Check that all �les which are to be tagged are unmodi�ed. This can be used
to make sure that you can reconstruct the current �le contents.

-d Delete a tag.

If you use `cvs tag -d symbolic_tag', the symbolic tag you specify is deleted
instead of being added. Warning: Be very certain of your ground before you
delete a tag; doing this permanently discards some historical information, which
may later turn out to be valuable.

A.18 update|Bring work tree in sync with repository

� update [-Ad
PpR] [-d] [-r tag|-D date] �les: : :

� Requires: repository, working directory.

� Changes: working directory.

After you've run checkout to create your private copy of source from the common repos-
itory, other developers will continue changing the central source. From time to time, when
it is convenient in your development process, you can use the update command from within
your working directory to reconcile your work with any revisions applied to the source
repository since your last checkout or update.

Appendix A: Guide to CVS commands 109

A.18.1 update options

These standard options are available with update (see Section A.5 [Common options],
page 84, for a complete description of them):

-D date Use the most recent revision no later than date. This option is sticky, and
implies `-P'. See Section 4.5 [Sticky tags], page 34, for more information on
sticky tags/dates.

-f Only useful with the `-D date' or `-r tag '
ags. If no matching revision is found,
retrieve the most recent revision (instead of ignoring the �le).

-k k
ag Process keywords according to k
ag. See Chapter 12 [Keyword substitution],
page 69. This option is sticky; future updates of this �le in this working direc-
tory will use the same k
ag. The status command can be viewed to see the
sticky options. See Appendix B [Invoking CVS], page 113, for more information
on the status command.

-l Local; run only in current working directory. See Chapter 6 [Recursive behav-
ior], page 45.

-P Prune empty directories. See Section 7.5 [Moving directories], page 51.

-p Pipe �les to the standard output.

-R Update directories recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r rev Retrieve revision/tag rev. This option is sticky, and implies `-P'. See Section 4.5
[Sticky tags], page 34, for more information on sticky tags/dates.

These special options are also available with update.

-A Reset any sticky tags, dates, or `-k' options. See Section 4.5 [Sticky tags],
page 34, for more information on sticky tags/dates.

-d Create any directories that exist in the repository if they're missing from the
working directory. Normally, update acts only on directories and �les that were
already enrolled in your working directory.

This is useful for updating directories that were created in the repository since
the initial checkout; but it has an unfortunate side e�ect. If you deliberately
avoided certain directories in the repository when you created your working
directory (either through use of a module name or by listing explicitly the �les
and directories you wanted on the command line), then updating with `-d' will
create those directories, which may not be what you want.

-I name Ignore �les whose names match name (in your working directory) during the
update. You can specify `-I' more than once on the command line to spec-
ify several �les to ignore. Use `-I !' to avoid ignoring any �les at all. See
Section C.9 [cvsignore], page 135, for other ways to make cvs ignore some �les.

-Wspec Specify �le names that should be �ltered during update. You can use this
option repeatedly.

spec can be a �le name pattern of the same type that you can specify in the
`.cvswrappers' �le. See Section C.2 [Wrappers], page 128.

110 CVS|Concurrent Versions System

-jrevision With two `-j' options, merge changes from the revision speci�ed with the �rst
`-j' option to the revision speci�ed with the second `j' option, into the working
directory.

With one `-j' option, merge changes from the ancestor revision to the revision
speci�ed with the `-j' option, into the working directory. The ancestor revision
is the common ancestor of the revision which the working directory is based on,
and the revision speci�ed in the `-j' option.

In addition, each `-j' option can contain an optional date speci�cation which,
when used with branches, can limit the chosen revision to one within a spe-
ci�c date. An optional date is speci�ed by adding a colon (:) to the tag:
`-jSymbolic Tag:Date Speci�er'.

See Chapter 5 [Branching and merging], page 37.

A.18.2 update output

update and checkout keep you informed of their progress by printing a line for each �le,
preceded by one character indicating the status of the �le:

U �le The �le was brought up to date with respect to the repository. This is done
for any �le that exists in the repository but not in your source, and for �les
that you haven't changed but are not the most recent versions available in the
repository.

P �le Like `U', but the cvs server sends a patch instead of an entire �le. These two
things accomplish the same thing.

A �le The �le has been added to your private copy of the sources, and will be added
to the source repository when you run commit on the �le. This is a reminder
to you that the �le needs to be committed.

R �le The �le has been removed from your private copy of the sources, and will be
removed from the source repository when you run commit on the �le. This is a
reminder to you that the �le needs to be committed.

M �le The �le is modi�ed in your working directory.

`M' can indicate one of two states for a �le you're working on: either there were
no modi�cations to the same �le in the repository, so that your �le remains
as you last saw it; or there were modi�cations in the repository as well as in
your copy, but they were merged successfully, without con
ict, in your working
directory.

cvs will print some messages if it merges your work, and a backup copy of your
working �le (as it looked before you ran update) will be made. The exact name
of that �le is printed while update runs.

C �le A con
ict was detected while trying to merge your changes to �le with changes
from the source repository. �le (the copy in your working directory) is now
the result of attempting to merge the two revisions; an unmodi�ed copy of
your �le is also in your working directory, with the name `.#�le.revision' where
revision is the revision that your modi�ed �le started from. Resolve the con
ict

Appendix A: Guide to CVS commands 111

as described in Section 10.3 [Con
icts example], page 59. (Note that some
systems automatically purge �les that begin with `.#' if they have not been
accessed for a few days. If you intend to keep a copy of your original �le, it is a
very good idea to rename it.) Under vms, the �le name starts with `__' rather
than `.#'.

? �le �le is in your working directory, but does not correspond to anything in the
source repository, and is not in the list of �les for cvs to ignore (see the de-
scription of the `-I' option, and see Section C.9 [cvsignore], page 135).

112 CVS|Concurrent Versions System

Appendix B: Quick reference to CVS commands 113

Appendix B Quick reference to CVS commands

This appendix describes how to invoke cvs, with references to where each command or
feature is described in detail. For other references run the cvs --help command, or see
[Index], page 153.

A cvs command looks like:

cvs [global options] command [command options] [command args]

Global options:

--allow-root=rootdir
Specify legal cvsroot directory (server only) (not in cvs 1.9 and older). See
Section 2.9.3.1 [Password authentication server], page 20.

-a Authenticate all communication (client only) (not in cvs 1.9 and older). See
Section A.4 [Global options], page 82.

-b Specify RCS location (cvs 1.9 and older). See Section A.4 [Global options],
page 82.

-d root Specify the cvsroot. See Chapter 2 [Repository], page 7.

-e editor Edit messages with editor. See Section 1.3.2 [Committing your changes], page 4.

-f Do not read the `~/.cvsrc' �le. See Section A.4 [Global options], page 82.

-H

--help Print a help message. See Section A.4 [Global options], page 82.

-l Do not log in CVSROOT/history �le. See Section A.4 [Global options], page 82.

-n Do not change any �les. See Section A.4 [Global options], page 82.

-Q Be really quiet. See Section A.4 [Global options], page 82.

-q Be somewhat quiet. See Section A.4 [Global options], page 82.

-r Make new working �les read-only. See Section A.4 [Global options], page 82.

-s variable=value
Set a user variable. See Section C.11 [Variables], page 136.

-T tempdir
Put temporary �les in tempdir. See Section A.4 [Global options], page 82.

-t Trace cvs execution. See Section A.4 [Global options], page 82.

-v

--version

Display version and copyright information for cvs.

-w Make new working �les read-write. See Section A.4 [Global options], page 82.

-x Encrypt all communication (client only). See Section A.4 [Global options],
page 82.

114 CVS|Concurrent Versions System

-z gzip-level
Set the compression level (client only).

Keyword expansion modes (see Section 12.4 [Substitution modes], page 71):

-kkv $Id: file1,v 1.1 1993/12/09 03:21:13 joe Exp $
-kkvl $Id: file1,v 1.1 1993/12/09 03:21:13 joe Exp harry $
-kk Id
-kv file1,v 1.1 1993/12/09 03:21:13 joe Exp
-ko no expansion
-kb no expansion, �le is binary

Keywords (see Section 12.1 [Keyword list], page 69):

$Author: joe $
$Date: 1993/12/09 03:21:13 $
$Header: /home/files/file1,v 1.1 1993/12/09 03:21:13 joe Exp harry $
$Id: file1,v 1.1 1993/12/09 03:21:13 joe Exp harry $
$Locker: harry $
$Name: snapshot_1_14 $
$RCSfile: file1,v $
$Revision: 1.1 $
$Source: /home/files/file1,v $
$State: Exp $
$Log: file1,v $
Revision 1.1 1993/12/09 03:30:17 joe
Initial revision

Commands, command options, and command arguments:

add [options] [�les: : :]

Add a new �le/directory. See Section 7.1 [Adding �les], page 47.

-k k
ag Set keyword expansion.

-m msg Set �le description.

admin [options] [�les: : :]

Administration of history �les in the repository. See Section A.6 [admin],
page 87.

-b[rev] Set default branch. See Section 13.3 [Reverting local changes],
page 74.

-cstring Set comment leader.

-ksubst Set keyword substitution. See Chapter 12 [Keyword substitution],
page 69.

-l[rev] Lock revision rev, or latest revision.

-mrev:msg
Replace the log message of revision rev with msg.

-orange Delete revisions from the repository. See Section A.6.1 [admin op-
tions], page 87.

Appendix B: Quick reference to CVS commands 115

-q Run quietly; do not print diagnostics.

-sstate[:rev]
Set the state.

-t Set �le description from standard input.

-t�le Set �le description from �le.

-t-string Set �le description to string.

-u[rev] Unlock revision rev, or latest revision.

annotate [options] [�les: : :]

Show last revision where each line was modi�ed. See Section 8.4 [annotate],
page 54.

-D date Annotate the most recent revision no later than date. See Sec-
tion A.5 [Common options], page 84.

-f Use head revision if tag/date not found. See Section A.5 [Common
options], page 84.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r tag Annotate revision tag. See Section A.5 [Common options], page 84.

checkout [options] modules: : :

Get a copy of the sources. See Section A.7 [checkout], page 91.

-A Reset any sticky tags/date/options. See Section 4.5 [Sticky tags],
page 34 and Chapter 12 [Keyword substitution], page 69.

-c Output the module database. See Section A.7.1 [checkout options],
page 91.

-D date Check out revisions as of date (is sticky). See Section A.5 [Common
options], page 84.

-d dir Check out into dir. See Section A.7.1 [checkout options], page 91.

-f Use head revision if tag/date not found. See Section A.5 [Common
options], page 84.

-j rev Merge in changes. See Section A.7.1 [checkout options], page 91.

-k k
ag Use k
ag keyword expansion. See Section 12.4 [Substitution
modes], page 71.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-N Don't \shorten" module paths if -d speci�ed. See Section A.7.1
[checkout options], page 91.

116 CVS|Concurrent Versions System

-n Do not run module program (if any). See Section A.7.1 [checkout
options], page 91.

-P Prune empty directories. See Section 7.5 [Moving directories],
page 51.

-p Check out �les to standard output (avoids stickiness). See Sec-
tion A.7.1 [checkout options], page 91.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r tag Checkout revision tag (is sticky). See Section A.5 [Common op-
tions], page 84.

-s Like -c, but include module status. See Section A.7.1 [checkout
options], page 91.

commit [options] [�les: : :]

Check changes into the repository. See Section A.8 [commit], page 93.

-F �le Read log message from �le. See Section A.8.1 [commit options],
page 94.

-f Force the �le to be committed; disables recursion. See Section A.8.1
[commit options], page 94.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-m msg Use msg as log message. See Section A.8.1 [commit options],
page 94.

-n Do not run module program (if any). See Section A.8.1 [commit
options], page 94.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r rev Commit to rev. See Section A.8.1 [commit options], page 94.

diff [options] [�les: : :]

Show di�erences between revisions. See Section A.9 [di�], page 95. In addition
to the options shown below, accepts a wide variety of options to control output
style, for example `-c' for context di�s.

-D date1 Di� revision for date against working �le. See Section A.9.1 [di�
options], page 96.

-D date2 Di� rev1/date1 against date2. See Section A.9.1 [di� options],
page 96.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-N Include di�s for added and removed �les. See Section A.9.1 [di�
options], page 96.

Appendix B: Quick reference to CVS commands 117

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r rev1 Di� revision for rev1 against working �le. See Section A.9.1 [di�
options], page 96.

-r rev2 Di� rev1/date1 against rev2. See Section A.9.1 [di� options],
page 96.

edit [options] [�les: : :]

Get ready to edit a watched �le. See Section 10.6.3 [Editing �les], page 64.

-a actions Specify actions for temporary watch, where actions is edit, unedit,
commit, all, or none. See Section 10.6.3 [Editing �les], page 64.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

editors [options] [�les: : :]

See who is editing a watched �le. See Section 10.6.4 [Watch information],
page 65.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

export [options] modules: : :

Export �les from CVS. See Section A.10 [export], page 97.

-D date Check out revisions as of date. See Section A.5 [Common options],
page 84.

-d dir Check out into dir. See Section A.10.1 [export options], page 98.

-f Use head revision if tag/date not found. See Section A.5 [Common
options], page 84.

-k k
ag Use k
ag keyword expansion. See Section 12.4 [Substitution
modes], page 71.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-N Don't \shorten" module paths if -d speci�ed. See Section A.10.1
[export options], page 98.

-n Do not run module program (if any). See Section A.10.1 [export
options], page 98.

-P Prune empty directories. See Section 7.5 [Moving directories],
page 51.

118 CVS|Concurrent Versions System

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r tag Checkout revision tag (is sticky). See Section A.5 [Common op-
tions], page 84.

history [options] [�les: : :]

Show repository access history. See Section A.11 [history], page 98.

-a All users (default is self). See Section A.11.1 [history options],
page 99.

-b str Back to record with str in module/�le/repos �eld. See Sec-
tion A.11.1 [history options], page 99.

-c Report on committed (modi�ed) �les. See Section A.11.1 [history
options], page 99.

-D date Since date. See Section A.11.1 [history options], page 99.

-e Report on all record types. See Section A.11.1 [history options],
page 99.

-l Last modi�ed (committed or modi�ed report). See Section A.11.1
[history options], page 99.

-m module
Report on module (repeatable). See Section A.11.1 [history op-
tions], page 99.

-n module
In module. See Section A.11.1 [history options], page 99.

-o Report on checked out modules. See Section A.11.1 [history op-
tions], page 99.

-r rev Since revision rev. See Section A.11.1 [history options], page 99.

-T Produce report on all TAGs. See Section A.11.1 [history options],
page 99.

-t tag Since tag record placed in history �le (by anyone). See Sec-
tion A.11.1 [history options], page 99.

-u user For user user (repeatable). See Section A.11.1 [history options],
page 99.

-w Working directory must match. See Section A.11.1 [history op-
tions], page 99.

-x types Report on types, one or more of TOEFWUCGMAR. See Section A.11.1
[history options], page 99.

-z zone Output for time zone zone. See Section A.11.1 [history options],
page 99.

Appendix B: Quick reference to CVS commands 119

import [options] repository vendor-tag release-tags: : :

Import �les into CVS, using vendor branches. See Section A.12 [import],
page 100.

-b bra Import to vendor branch bra. See Section 13.6 [Multiple vendor
branches], page 75.

-d Use the �le's modi�cation time as the time of import. See Sec-
tion A.12.1 [import options], page 101.

-k k
ag Set default keyword substitution mode. See Section A.12.1 [import
options], page 101.

-m msg Use msg for log message. See Section A.12.1 [import options],
page 101.

-I ign More �les to ignore (! to reset). See Section A.12.1 [import options],
page 101.

-W spec More wrappers. See Section A.12.1 [import options], page 101.

init Create a CVS repository if it doesn't exist. See Section 2.6 [Creating a reposi-
tory], page 16.

log [options] [�les: : :]

Print out history information for �les. See Section A.13 [log], page 102.

-b Only list revisions on the default branch. See Section A.13.1 [log
options], page 102.

-d dates Specify dates (d1<d2 for range, d for latest before). See Sec-
tion A.13.1 [log options], page 102.

-h Only print header. See Section A.13.1 [log options], page 102.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-N Do not list tags. See Section A.13.1 [log options], page 102.

-R Only print name of RCS �le. See Section A.13.1 [log options],
page 102.

-rrevs Only list revisions revs. See Section A.13.1 [log options], page 102.

-s states Only list revisions with speci�ed states. See Section A.13.1 [log
options], page 102.

-t Only print header and descriptive text. See Section A.13.1 [log
options], page 102.

-wlogins Only list revisions checked in by speci�ed logins. See Section A.13.1
[log options], page 102.

login Prompt for password for authenticating server. See Section 2.9.3.2 [Password
authentication client], page 21.

120 CVS|Concurrent Versions System

logout Remove stored password for authenticating server. See Section 2.9.3.2 [Pass-
word authentication client], page 21.

rdiff [options] modules: : :

Show di�erences between releases. See Section A.14 [rdi�], page 104.

-c Context di� output format (default). See Section A.14.1 [rdi� op-
tions], page 104.

-D date Select revisions based on date. See Section A.5 [Common options],
page 84.

-f Use head revision if tag/date not found. See Section A.5 [Common
options], page 84.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r rev Select revisions based on rev. See Section A.5 [Common options],
page 84.

-s Short patch - one liner per �le. See Section A.14.1 [rdi� options],
page 104.

-t Top two di�s - last change made to the �le. See Section A.9.1 [di�
options], page 96.

-u Unidi� output format. See Section A.14.1 [rdi� options], page 104.

-V vers Use RCS Version vers for keyword expansion (obsolete). See Sec-
tion A.14.1 [rdi� options], page 104.

release [options] directory
Indicate that a directory is no longer in use. See Section A.15 [release], page 105.

-d Delete the given directory. See Section A.15.1 [release options],
page 105.

remove [options] [�les: : :]

Remove an entry from the repository. See Section 7.2 [Removing �les], page 48.

-f Delete the �le before removing it. See Section 7.2 [Removing �les],
page 48.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

rtag [options] tag modules: : :

Add a symbolic tag to a module. See Section A.16 [rtag], page 106.

-a Clear tag from removed �les that would not otherwise be tagged.
See Section A.16.1 [rtag options], page 107.

Appendix B: Quick reference to CVS commands 121

-b Create a branch named tag. See Section A.16.1 [rtag options],
page 107.

-D date Tag revisions as of date. See Section A.16.1 [rtag options], page 107.

-d Delete the given tag. See Section A.16.1 [rtag options], page 107.

-F Move tag if it already exists. See Section A.16.1 [rtag options],
page 107.

-f Force a head revision match if tag/date not found. See Sec-
tion A.16.1 [rtag options], page 107.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-n No execution of tag program. See Section A.16.1 [rtag options],
page 107.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r tag Tag existing tag tag. See Section A.16.1 [rtag options], page 107.

status [options] �les: : :

Display status information in a working directory. See Section 10.1 [File status],
page 57.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-v Include tag information for �le. See Section 4.4 [Tags], page 32.

tag [options] tag [�les: : :]

Add a symbolic tag to checked out version of �les. See Section A.17 [tag],
page 107.

-b Create a branch named tag. See Section A.17.1 [tag options],
page 108.

-D date Tag revisions as of date. See Section A.17.1 [tag options], page 108.

-d Delete the given tag. See Section A.17.1 [tag options], page 108.

-F Move tag if it already exists. See Section A.17.1 [tag options],
page 108.

-f Force a head revision match if tag/date not found. See Sec-
tion A.17.1 [tag options], page 108.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-n No execution of tag program. See Section A.17.1 [tag options],
page 108.

122 CVS|Concurrent Versions System

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r tag Tag existing tag tag. See Section A.17.1 [tag options], page 108.

unedit [options] [�les: : :]

Undo an edit command. See Section 10.6.3 [Editing �les], page 64.

-a actions Specify actions for temporary watch, where actions is edit, unedit,
commit, all, or none. See Section 10.6.3 [Editing �les], page 64.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

update [options] [�les: : :]

Bring work tree in sync with repository. See Section A.18 [update], page 108.

-A Reset any sticky tags/date/options. See Section 4.5 [Sticky tags],
page 34 and Chapter 12 [Keyword substitution], page 69.

-D date Check out revisions as of date (is sticky). See Section A.5 [Common
options], page 84.

-d Create directories. See Section A.18.1 [update options], page 109.

-f Use head revision if tag/date not found. See Section A.5 [Common
options], page 84.

-I ign More �les to ignore (! to reset). See Section A.12.1 [import options],
page 101.

-j rev Merge in changes. See Section A.18.1 [update options], page 109.

-k k
ag Use k
ag keyword expansion. See Section 12.4 [Substitution
modes], page 71.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-P Prune empty directories. See Section 7.5 [Moving directories],
page 51.

-p Check out �les to standard output (avoids stickiness). See Sec-
tion A.18.1 [update options], page 109.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

-r tag Checkout revision tag (is sticky). See Section A.5 [Common op-
tions], page 84.

-W spec More wrappers. See Section A.12.1 [import options], page 101.

Appendix B: Quick reference to CVS commands 123

watch [on|off|add|remove] [options] [�les: : :]

on/o�: turn on/o� read-only checkouts of �les. See Section 10.6.1 [Setting a
watch], page 62.

add/remove: add or remove noti�cation on actions. See Section 10.6.2 [Getting
Noti�ed], page 63.

-a actions Specify actions for temporary watch, where actions is edit, unedit,
commit, all, or none. See Section 10.6.3 [Editing �les], page 64.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

watchers [options] [�les: : :]

See who is watching a �le. See Section 10.6.4 [Watch information], page 65.

-l Local; run only in current working directory. See Chapter 6 [Re-
cursive behavior], page 45.

-R Operate recursively (default). See Chapter 6 [Recursive behavior],
page 45.

124 CVS|Concurrent Versions System

Appendix C: Reference manual for Administrative �les 125

Appendix C Reference manual for Administrative
�les

Inside the repository, in the directory `$CVSROOT/CVSROOT', there are a number of sup-
portive �les for cvs. You can use cvs in a limited fashion without any of them, but if they
are set up properly they can help make life easier. For a discussion of how to edit them, see
Section 2.4 [Intro administrative �les], page 15.

The most important of these �les is the `modules' �le, which de�nes the modules inside
the repository.

C.1 The modules �le

The `modules' �le records your de�nitions of names for collections of source code. cvs
will use these de�nitions if you use cvs to update the modules �le (use normal commands
like add, commit, etc).

The `modules' �le may contain blank lines and comments (lines beginning with `#') as
well as module de�nitions. Long lines can be continued on the next line by specifying a
backslash (`\') as the last character on the line.

There are three basic types of modules: alias modules, regular modules, and ampersand
modules. The di�erence between them is the way that they map �les in the repository
to �les in the working directory. In all of the following examples, the top-level repository
contains a directory called `first-dir', which contains two �les, `file1' and `file2', and
a directory `sdir'. `first-dir/sdir' contains a �le `sfile'.

C.1.1 Alias modules

Alias modules are the simplest kind of module:

mname -a aliases: : :

This represents the simplest way of de�ning a module mname. The `-a'
ags
the de�nition as a simple alias: cvs will treat any use of mname (as a command
argument) as if the list of names aliases had been speci�ed instead. aliases may
contain either other module names or paths. When you use paths in aliases,
checkout creates all intermediate directories in the working directory, just as
if the path had been speci�ed explicitly in the cvs arguments.

For example, if the modules �le contains:

amodule -a first-dir

then the following two commands are equivalent:

$ cvs co amodule
$ cvs co first-dir

and they each would provide output such as:

cvs checkout: Updating first-dir
U first-dir/file1
U first-dir/file2
cvs checkout: Updating first-dir/sdir
U first-dir/sdir/sfile

126 CVS|Concurrent Versions System

C.1.2 Regular modules

mname [options] dir [�les: : :]

In the simplest case, this form of module de�nition reduces to `mname dir'.
This de�nes all the �les in directory dir as module mname. dir is a relative
path (from $CVSROOT) to a directory of source in the source repository. In
this case, on checkout, a single directory called mname is created as a working
directory; no intermediate directory levels are used by default, even if dir was
a path involving several directory levels.

For example, if a module is de�ned by:

regmodule first-dir

then regmodule will contain the �les from �rst-dir:

$ cvs co regmodule
cvs checkout: Updating regmodule
U regmodule/file1
U regmodule/file2
cvs checkout: Updating regmodule/sdir
U regmodule/sdir/sfile
$

By explicitly specifying �les in the module de�nition after dir, you can select particular
�les from directory dir. Here is an example:

regfiles first-dir/sdir sfile

With this de�nition, getting the reg�les module will create a single working directory
`regfiles' containing the �le listed, which comes from a directory deeper in the cvs source
repository:

$ cvs co regfiles
U regfiles/sfile
$

C.1.3 Ampersand modules

A module de�nition can refer to other modules by including `&module' in its de�nition.

mname [options] &module: : :

Then getting the module creates a subdirectory for each such module, in the directory
containing the module. For example, if modules contains

ampermod &first-dir

then a checkout will create an ampermod directory which contains a directory called
first-dir, which in turns contains all the directories and �les which live there. For exam-
ple, the command

$ cvs co ampermod

will create the following �les:

ampermod/first-dir/file1
ampermod/first-dir/file2
ampermod/first-dir/sdir/sfile

Appendix C: Reference manual for Administrative �les 127

There is one quirk/bug: the messages that cvs prints omit the `ampermod', and thus do
not correctly display the location to which it is checking out the �les:

$ cvs co ampermod
cvs checkout: Updating first-dir
U first-dir/file1
U first-dir/file2
cvs checkout: Updating first-dir/sdir
U first-dir/sdir/sfile
$

Do not rely on this buggy behavior; it may get �xed in a future release of cvs.

C.1.4 Excluding directories

An alias module may exclude particular directories from other modules by using an
exclamation mark (`!') before the name of each directory to be excluded.

For example, if the modules �le contains:

exmodule -a !first-dir/sdir first-dir

then checking out the module `exmodule' will check out everything in `first-dir' except
any �les in the subdirectory `first-dir/sdir'.

C.1.5 Module options

Either regular modules or ampersand modules can contain options, which supply addi-
tional information concerning the module.

-d name Name the working directory something other than the module name.

-e prog Specify a program prog to run whenever �les in a module are exported. prog
runs with a single argument, the module name.

-i prog Specify a program prog to run whenever �les in a module are committed. prog
runs with a single argument, the full pathname of the a�ected directory in a
source repository. The `commitinfo', `loginfo', and `verifymsg' �les provide
other ways to call a program on commit.

-o prog Specify a program prog to run whenever �les in a module are checked out. prog
runs with a single argument, the module name.

-s status Assign a status to the module. When the module �le is printed with `cvs
checkout -s' the modules are sorted according to primarily module status, and
secondarily according to the module name. This option has no other meaning.
You can use this option for several things besides status: for instance, list the
person that is responsible for this module.

-t prog Specify a program prog to run whenever �les in a module are tagged with rtag.
prog runs with two arguments: the module name and the symbolic tag speci�ed
to rtag. It is not run when tag is executed. Generally you will �nd that taginfo
is a better solution (see Section 8.3 [user-de�ned logging], page 53).

128 CVS|Concurrent Versions System

-u prog Specify a program prog to run whenever `cvs update' is executed from the top-
level directory of the checked-out module. prog runs with a single argument,
the full path to the source repository for this module.

C.2 The cvswrappers �le

Wrappers allow you to set a hook which transforms �les on their way in and out of cvs.

The �le `cvswrappers' de�nes the script that will be run on a �le when its name matches
a regular expresion. There are two scripts that can be run on a �le or directory. One script
is executed on the �le/directory before being checked into the repository (this is denoted
with the -t
ag) and the other when the �le is checked out of the repository (this is denoted
with the -f
ag). The `-t'/`-f' feature does not work with client/server cvs.

The `cvswrappers' also has a `-m' option to specify the merge methodology that should
be used when a non-binary �le is updated. MERGE means the usual cvs behavior: try to
merge the �les. COPYmeans that cvs update will refuse to merge �les, as it also does for �les
speci�ed as binary with `-kb' (but if the �le is speci�ed as binary, there is no need to specify
`-m 'COPY''). CVS will provide the user with the two versions of the �les, and require the
user using mechanisms outside cvs, to insert any necessary changes. WARNING: do not
use COPY with cvs 1.9 or earlier{such versions of cvs will copy one version of your �le over
the other, wiping out the previous contents. The `-m' wrapper option only a�ects behavior
when merging is done on update; it does not a�ect how �les are stored. See Chapter 9
[Binary �les], page 55, for more on binary �les.

The basic format of the �le `cvswrappers' is:

wildcard [option value][option value]...

where option is one of
-f from cvs filter value: path to filter
-t to cvs filter value: path to filter
-m update methodology value: MERGE or COPY
-k keyword expansion value: expansion mode

and value is a single-quote delimited value.

*.nib -f 'unwrap %s' -t 'wrap %s %s' -m 'COPY'
*.c -t 'indent %s %s'

The above example of a `cvswrappers' �le states that all �les/directories that end with a
.nib should be �ltered with the `wrap' program before checking the �le into the repository.
The �le should be �ltered though the `unwrap' program when the �le is checked out of the
repository. The `cvswrappers' �le also states that a COPY methodology should be used
when updating the �les in the repository (that is, no merging should be performed).

The last example line says that all �les that end with .c should be �ltered with `indent'
before being checked into the repository. Unlike the previous example, no �ltering of the
.c �le is done when it is checked out of the repository. The -t �lter is called with two
arguments, the �rst is the name of the �le/directory to �lter and the second is the pathname
to where the resulting �ltered �le should be placed.

Appendix C: Reference manual for Administrative �les 129

The -f �lter is called with one argument, which is the name of the �le to �lter from. The
end result of this �lter will be a �le in the users directory that they can work on as they
normally would.

Note that the `-t'/`-f' features do not conveniently handle one portion of CVS's op-
eration: determining when �les are modi�ed. CVS will still want a �le (or directory) to
exist, and it will use its modi�cation time to determine whether a �le is modi�ed. If CVS
erroneously thinks a �le is unmodi�ed (for example, a directory is unchanged but one of
the �les within it is changed), you can force it to check in the �le anyway by specifying the
`-f' option to cvs commit (see Section A.8.1 [commit options], page 94).

For another example, the following command imports a directory, treating �les whose
name ends in `.exe' as binary:

cvs import -I ! -W "*.exe -k 'b'" first-dir vendortag reltag

C.3 The commit support �les

The `-i'
ag in the `modules' �le can be used to run a certain program whenever �les
are committed (see Section C.1 [modules], page 125). The �les described in this section
provide other, more
exible, ways to run programs whenever something is committed.

There are three kind of programs that can be run on commit. They are speci�ed in �les
in the repository, as described below. The following table summarizes the �le names and
the purpose of the corresponding programs.

`commitinfo'
The program is responsible for checking that the commit is allowed. If it exits
with a non-zero exit status the commit will be aborted.

`verifymsg'
The speci�ed program is used to evaluate the log message, and possibly verify
that it contains all required �elds. This is most useful in combination with the
`rcsinfo' �le, which can hold a log message template (see Section C.8 [rcsinfo],
page 134).

`editinfo'
The speci�ed program is used to edit the log message, and possibly verify that
it contains all required �elds. This is most useful in combination with the
`rcsinfo' �le, which can hold a log message template (see Section C.8 [rcsinfo],
page 134). (obsolete)

`loginfo' The speci�ed program is called when the commit is complete. It receives the
log message and some additional information and can store the log message in
a �le, or mail it to appropriate persons, or maybe post it to a local newsgroup,
or: : : Your imagination is the limit!

C.3.1 The common syntax

The administrative �les such as `commitinfo', `loginfo', `rcsinfo', `verifymsg', etc.,
all have a common format. The purpose of the �les are described later on. The common
syntax is described here.

130 CVS|Concurrent Versions System

Each line contains the following:

� A regular expression. This is a basic regular expression in the syntax used by GNU
emacs.

� A whitespace separator|one or more spaces and/or tabs.

� A �le name or command-line template.

Blank lines are ignored. Lines that start with the character `#' are treated as comments.
Long lines unfortunately can not be broken in two parts in any way.

The �rst regular expression that matches the current directory name in the repository
is used. The rest of the line is used as a �le name or command-line as appropriate.

C.4 Commitinfo

The `commitinfo' �le de�nes programs to execute whenever `cvs commit' is about to
execute. These programs are used for pre-commit checking to verify that the modi�ed,
added and removed �les are really ready to be committed. This could be used, for instance,
to verify that the changed �les conform to to your site's standards for coding practice.

As mentioned earlier, each line in the `commitinfo' �le consists of a regular expression
and a command-line template. The template can include a program name and any number
of arguments you wish to supply to it. The full path to the current source repository is
appended to the template, followed by the �le names of any �les involved in the commit
(added, removed, and modi�ed �les).

The �rst line with a regular expression matching the relative path to the module will be
used. If the command returns a non-zero exit status the commit will be aborted.

If the repository name does not match any of the regular expressions in this �le, the
`DEFAULT' line is used, if it is speci�ed.

All occurances of the name `ALL' appearing as a regular expression are used in addition
to the �rst matching regular expression or the name `DEFAULT'.

Note: whenCVS is accessing a remote repository, `commitinfo' will be run on the remote
(i.e., server) side, not the client side (see Section 2.9 [Remote repositories], page 18).

C.5 Verifying log messages

Once you have entered a log message, you can evaluate that message to check for speci�c
content, such as a bug ID. Use the `verifymsg' �le to specify a program that is used to
verify the log message. This program could be a simple script that checks that the entered
message contains the required �elds.

The `verifymsg' �le is often most useful together with the `rcsinfo' �le, which can be
used to specify a log message template.

Each line in the `verifymsg' �le consists of a regular expression and a command-line
template. The template must include a program name, and can include any number of
arguments. The full path to the current log message template �le is appended to the
template.

Appendix C: Reference manual for Administrative �les 131

One thing that should be noted is that the `ALL' keyword is not supported. If more than
one matching line is found, the �rst one is used. This can be useful for specifying a default
veri�cation script in a module, and then overriding it in a subdirectory.

If the repository name does not match any of the regular expressions in this �le, the
`DEFAULT' line is used, if it is speci�ed.

If the veri�cation script exits with a non-zero exit status, the commit is aborted.

Note that the veri�cation script cannot change the log message; it can merely accept it
or reject it.

The following is a little silly example of a `verifymsg' �le, together with the correspond-
ing `rcsinfo' �le, the log message template and an veri�cation script. We begin with the
log message template. We want to always record a bug-id number on the �rst line of the
log message. The rest of log message is free text. The following template is found in the
�le `/usr/cvssupport/tc.template'.

BugId:

The script `/usr/cvssupport/bugid.verify' is used to evaluate the log message.

#!/bin/sh
#
bugid.verify filename
#
Verify that the log message contains a valid bugid
on the first line.
#
if head -1 < $1 | grep '^BugId:[]*[0-9][0-9]*$' > /dev/null; then

exit 0
else

echo "No BugId found."
exit 1

fi

The `verifymsg' �le contains this line:

^tc /usr/cvssupport/bugid.edit

The `rcsinfo' �le contains this line:

^tc /usr/cvssupport/tc.template

C.6 Editinfo

NOTE: The `editinfo' feature has been rendered obsolete. To set a default editor for
log messages use the EDITOR environment variable (see Appendix D [Environment vari-
ables], page 139) or the `-e' global option (see Section A.4 [Global options], page 82). See
Section C.5 [verifymsg], page 130, for information on the use of the `verifymsg' feature for
evaluating log messages.

If you want to make sure that all log messages look the same way, you can use the
`editinfo' �le to specify a program that is used to edit the log message. This program
could be a custom-made editor that always enforces a certain style of the log message,
or maybe a simple shell script that calls an editor, and checks that the entered message
contains the required �elds.

132 CVS|Concurrent Versions System

If no matching line is found in the `editinfo' �le, the editor speci�ed in the environment
variable $CVSEDITOR is used instead. If that variable is not set, then the environment
variable $EDITOR is used instead. If that variable is not set a default will be used. See
Section 1.3.2 [Committing your changes], page 4.

The `editinfo' �le is often most useful together with the `rcsinfo' �le, which can be
used to specify a log message template.

Each line in the `editinfo' �le consists of a regular expression and a command-line
template. The template must include a program name, and can include any number of
arguments. The full path to the current log message template �le is appended to the
template.

One thing that should be noted is that the `ALL' keyword is not supported. If more than
one matching line is found, the �rst one is used. This can be useful for specifying a default
edit script in a module, and then overriding it in a subdirectory.

If the repository name does not match any of the regular expressions in this �le, the
`DEFAULT' line is used, if it is speci�ed.

If the edit script exits with a non-zero exit status, the commit is aborted.

Note: when CVS is accessing a remote repository, or when the `-m' or `-F' options to
cvs commit are used, `editinfo' will not be consulted. There is no good workaround for
this; use `verifymsg' instead.

C.6.1 Editinfo example

The following is a little silly example of a `editinfo' �le, together with the corresponding
`rcsinfo' �le, the log message template and an editor script. We begin with the log
message template. We want to always record a bug-id number on the �rst line of the
log message. The rest of log message is free text. The following template is found in the
�le `/usr/cvssupport/tc.template'.

BugId:

The script `/usr/cvssupport/bugid.edit' is used to edit the log message.

#!/bin/sh
#
bugid.edit filename
#
Call $EDITOR on FILENAME, and verify that the
resulting file contains a valid bugid on the first
line.
if ["x$EDITOR" = "x"]; then EDITOR=vi; fi
if ["x$CVSEDITOR" = "x"]; then CVSEDITOR=$EDITOR; fi
$CVSEDITOR $1
until head -1|grep '^BugId:[]*[0-9][0-9]*$' < $1
do echo -n "No BugId found. Edit again? ([y]/n)"

read ans
case ${ans} in

n*) exit 1;;
esac

Appendix C: Reference manual for Administrative �les 133

$CVSEDITOR $1
done

The `editinfo' �le contains this line:

^tc /usr/cvssupport/bugid.edit

The `rcsinfo' �le contains this line:

^tc /usr/cvssupport/tc.template

C.7 Loginfo

The `loginfo' �le is used to control where `cvs commit' log information is sent. The
�rst entry on a line is a regular expression which is tested against the directory that the
change is being made to, relative to the $CVSROOT. If a match is found, then the remainder
of the line is a �lter program that should expect log information on its standard input.

If the repository name does not match any of the regular expressions in this �le, the
`DEFAULT' line is used, if it is speci�ed.

All occurances of the name `ALL' appearing as a regular expression are used in addition
to the �rst matching regular expression or `DEFAULT'.

The �rst matching regular expression is used.

See Section C.3 [commit �les], page 129, for a description of the syntax of the `loginfo'
�le.

The user may specify a format string as part of the �lter. The string is composed of
a `%' followed by a space, or followed by a single format character, or followed by a set of
format characters surrounded by `{' and `}' as separators. The format characters are:

s �le name

V old version number (pre-checkin)

v new version number (post-checkin)

All other characters that appear in a format string expand to an empty �eld (commas
separating �elds are still provided).

For example, some valid format strings are `%', `%s', `%{s}', and `%{sVv}'.

The output will be a string of tokens separated by spaces. For backwards compatibility,
the �rst token will be the repository name. The rest of the tokens will be comma-delimited
lists of the information requested in the format string. For example, if `/u/src/master' is
the repository, `%{sVv}' is the format string, and three �les (ChangeLog, Makefile, foo.c)
were modi�ed, the output might be:

/u/src/master ChangeLog,1.1,1.2 Makefile,1.3,1.4 foo.c,1.12,1.13

As another example, `%{}' means that only the name of the repository will be generated.

Note: when CVS is accessing a remote repository, `loginfo' will be run on the remote
(i.e., server) side, not the client side (see Section 2.9 [Remote repositories], page 18).

134 CVS|Concurrent Versions System

C.7.1 Loginfo example

The following `loginfo' �le, together with the tiny shell-script below, appends all log
messages to the �le `$CVSROOT/CVSROOT/commitlog', and any commits to the administrative
�les (inside the `CVSROOT' directory) are also logged in `/usr/adm/cvsroot-log'. Commits
to the `prog1' directory are mailed to ceder.

ALL /usr/local/bin/cvs-log $CVSROOT/CVSROOT/commitlog $USER
^CVSROOT /usr/local/bin/cvs-log /usr/adm/cvsroot-log
^prog1 Mail -s %s ceder

The shell-script `/usr/local/bin/cvs-log' looks like this:

#!/bin/sh
(echo "--";
echo -n $2" ";
date;
echo;
cat) >> $1

C.7.2 Keeping a checked out copy

It is often useful to maintain a directory tree which contains �les which correspond to
the latest version in the repository. For example, other developers might want to refer to
the latest sources without having to check them out, or you might be maintaining a web site
with cvs and want every checkin to cause the �les used by the web server to be updated.

The way to do this is by having loginfo invoke cvs update. Doing so in the naive way
will cause a problem with locks, so the cvs update must be run in the background. Here
is an example for unix (this should all be on one line):

^cyclic-pages (date; cat; (sleep 2; cd /u/www/local-docs;
cvs -q update -d) &) >> $CVSROOT/CVSROOT/updatelog 2>&1

This will cause checkins to repository directories starting with cyclic-pages to update
the checked out tree in `/u/www/local-docs'.

C.8 Rcsinfo

The `rcsinfo' �le can be used to specify a form to edit when �lling out the commit log.
The `rcsinfo' �le has a syntax similar to the `verifymsg', `commitinfo' and `loginfo'
�les. See Section C.3.1 [syntax], page 129. Unlike the other �les the second part is not
a command-line template. Instead, the part after the regular expression should be a full
pathname to a �le containing the log message template.

If the repository name does not match any of the regular expressions in this �le, the
`DEFAULT' line is used, if it is speci�ed.

All occurances of the name `ALL' appearing as a regular expression are used in addition
to the �rst matching regular expression or `DEFAULT'.

The log message template will be used as a default log message. If you specify a log
message with `cvs commit -m message' or `cvs commit -f �le' that log message will override
the template.

Appendix C: Reference manual for Administrative �les 135

See Section C.5 [verifymsg], page 130, for an example `rcsinfo' �le.

When CVS is accessing a remote repository, the contents of `rcsinfo' at the time a
directory is �rst checked out will specify a template which does not then change. If you
edit `rcsinfo' or its templates, you may need to check out a new working directory.

C.9 Ignoring �les via cvsignore

There are certain �le names that frequently occur inside your working copy, but that you
don't want to put under cvs control. Examples are all the object �les that you get while
you compile your sources. Normally, when you run `cvs update', it prints a line for each
�le it encounters that it doesn't know about (see Section A.18.2 [update output], page 110).

cvs has a list of �les (or sh(1) �le name patterns) that it should ignore while running
update, import and release. This list is constructed in the following way.

� The list is initialized to include certain �le name patterns: names associated with cvs
administration, or with other common source control systems; common names for patch
�les, object �les, archive �les, and editor backup �les; and other names that are usually
artifacts of assorted utilities. Currently, the default list of ignored �le name patterns
is:

RCS SCCS CVS CVS.adm
RCSLOG cvslog.*
tags TAGS
.make.state .nse_depinfo
~ # .#* ,* _$* *$
*.old *.bak *.BAK *.orig *.rej .del-*
*.a *.olb *.o *.obj *.so *.exe
*.Z *.elc *.ln
core

� The per-repository list in `$CVSROOT/CVSROOT/cvsignore' is appended to the list, if
that �le exists.

� The per-user list in `.cvsignore' in your home directory is appended to the list, if it
exists.

� Any entries in the environment variable $CVSIGNORE is appended to the list.

� Any `-I' options given to cvs is appended.

� As cvs traverses through your directories, the contents of any `.cvsignore' will be ap-
pended to the list. The patterns found in `.cvsignore' are only valid for the directory
that contains them, not for any sub-directories.

In any of the 5 places listed above, a single exclamation mark (`!') clears the ignore list.
This can be used if you want to store any �le which normally is ignored by cvs.

Specifying `-I !' to cvs import will import everything, which is generally what you want
to do if you are importing �les from a pristine distribution or any other source which is
known to not contain any extraneous �les. However, looking at the rules above you will see
there is a
y in the ointment; if the distribution contains any `.cvsignore' �les, then the
patterns from those �les will be processed even if `-I !' is speci�ed. The only workaround

136 CVS|Concurrent Versions System

is to remove the `.cvsignore' �les in order to do the import. Because this is awkward, in
the future `-I !' might be modi�ed to override `.cvsignore' �les in each directory.

Note that the syntax of the ignore �les consists of a series of lines, each of which contains a
space separated list of �lenames. This o�ers no clean way to specify �lenames which contain
spaces, but you can use a workaround like `foo?bar' to match a �le named `foo bar' (it
also matches `fooxbar' and the like). Also note that there is currently no way to specify
comments.

C.10 The history �le

The �le `$CVSROOT/CVSROOT/history' is used to log information for the history com-
mand (see Section A.11 [history], page 98). This �le must be created to turn on logging.
This is done automatically if the cvs init command is used to set up the repository (see
Section 2.6 [Creating a repository], page 16).

The �le format of the `history' �le is documented only in comments in the cvs source
code, but generally programs should use the cvs history command to access it anyway, in
case the format changes with future releases of cvs.

C.11 Expansions in administrative �les

Sometimes in writing an administrative �le, you might want the �le to be able to know
various things based on environment cvs is running in. There are several mechanisms to
do that.

To �nd the home directory of the user running cvs (from the HOME environment variable),
use `~' followed by `/' or the end of the line. Likewise for the home directory of user, use
`~user'. These variables are expanded on the server machine, and don't get any reasonable
expansion if pserver (see Section 2.9.3 [Password authenticated], page 20) is in use; therefore
user variables (see below) may be a better choice to customize behavior based on the user
running cvs.

One may want to know about various pieces of information internal to cvs. A cvs inter-
nal variable has the syntax ${variable}, where variable starts with a letter and consists of
alphanumberic characters and `_'. If the character following variable is a non-alphanumeric
character other than `_', the `{' and `}' can be omitted. The cvs internal variables are:

CVSROOT This is the value of the cvs root in use. See Chapter 2 [Repository], page 7,
for a description of the various ways to specify this.

RCSBIN In cvs 1.9.18 and older, this speci�ed the directory where cvs was looking
for rcs programs. Because cvs no longer runs rcs programs, specifying this
internal variable is now an error.

CVSEDITOR

VISUAL

EDITOR These all expand to the same value, which is the editor that cvs is using. See
Section A.4 [Global options], page 82, for how to specify this.

USER Username of the user running cvs (on the cvs server machine).

Appendix C: Reference manual for Administrative �les 137

If you want to pass a value to the administrative �les which the user who is running
cvs can specify, use a user variable. To expand a user variable, the administrative �le
contains ${=variable}. To set a user variable, specify the global option `-s' to cvs, with
argument variable=value. It may be particularly useful to specify this option via `.cvsrc'
(see Section A.3 [~/.cvsrc], page 82).

For example, if you want the administrative �le to refer to a test directory you might
create a user variable TESTDIR. Then if cvs is invoked as

cvs -s TESTDIR=/work/local/tests

and the administrative �le contains sh ${=TESTDIR}/runtests, then that string is ex-
panded to sh /work/local/tests/runtests.

All other strings containing `$' are reserved; there is no way to quote a `$' character so
that `$' represents itself.

C.12 The CVSROOT/con�g con�guration �le

The administrative �le `config' contains various miscellaneous settings which a�ect
the behavior of cvs. The syntax is slightly di�erent from the other administrative �les.
Variables are not expanded. Lines which start with `#' are considered comments. Other
lines consist of a keyword, `=', and a value. Note that this syntax is very strict. Extraneous
spaces or tabs are not permitted.

Currently de�ned keywords are:

RCSBIN=bindir
For cvs 1.9.12 through 1.9.18, this setting told cvs to look for rcs programs
in the bindir directory. Current versions of cvs do not run rcs programs; for
compatibility this setting is accepted, but it does nothing.

SystemAuth=value
If value is `yes', then pserver should check for users in the system's user
database if not found in `CVSROOT/passwd'. If it is `no', then all pserver users
must exist in `CVSROOT/passwd'. The default is `yes'. For more on pserver, see
Section 2.9.3 [Password authenticated], page 20.

PreservePermissions=value
Enable support for saving special device �les, symbolic links, �le permissions
and ownerships in the repository. The default value is `no'. See Chapter 15
[Special Files], page 79 for the full implications of using this keyword.

TopLevelAdmin=value
Modify the `checkout' command to create a `CVS' directory at the top level
of the new working directory, in addition to `CVS' directories created within
checked-out directories. The default value is `no'.

This option is useful if you �nd yourself performing many commands at the top
level of your working directory, rather than in one of the checked out subdirec-
tories. The `CVS' directory created there will mean you don't have to specify
`CVSROOT' for each command. It also provides a place for the `CVS/Template'
�le (see Section 2.3 [Working directory storage], page 13).

138 CVS|Concurrent Versions System

Appendix D: All environment variables which a�ect CVS 139

Appendix D All environment variables which
a�ect CVS

This is a complete list of all environment variables that a�ect cvs.

$CVSIGNORE

A whitespace-separated list of �le name patterns that cvs should ignore. See
Section C.9 [cvsignore], page 135.

$CVSWRAPPERS

A whitespace-separated list of �le name patterns that cvs should treat as wrap-
pers. See Section C.2 [Wrappers], page 128.

$CVSREAD If this is set, checkout and update will try hard to make the �les in your
working directory read-only. When this is not set, the default behavior is to
permit modi�cation of your working �les.

$CVSUMASK

Controls permissions of �les in the repository. See Section 2.2.2 [File permis-
sions], page 9.

$CVSROOT Should contain the full pathname to the root of the cvs source repository
(where the rcs �les are kept). This information must be available to cvs for
most commands to execute; if $CVSROOT is not set, or if you wish to override
it for one invocation, you can supply it on the command line: `cvs -d cvsroot

cvs_command: : :' Once you have checked out a working directory, cvs stores the
appropriate root (in the �le `CVS/Root'), so normally you only need to worry
about this when initially checking out a working directory.

$EDITOR

$CVSEDITOR

Speci�es the program to use for recording log messages during commit.
$CVSEDITOR overrides $EDITOR. See Section 1.3.2 [Committing your changes],
page 4.

$PATH If $RCSBIN is not set, and no path is compiled into cvs, it will use $PATH to try
to �nd all programs it uses.

$HOME

$HOMEPATH

$HOMEDRIVE

Used to locate the directory where the `.cvsrc' �le, and other such �les, are
searched. On Unix, CVS just checks for HOME. On Windows NT, the sys-
tem will set HOMEDRIVE, for example to `d:' and HOMEPATH, for example
to `\joe'. On Windows 95, you'll probably need to set HOMEDRIVE and
HOMEPATH yourself.

$CVS_RSH Speci�es the external program which CVS connects with, when :ext: access
method is speci�ed. see Section 2.9.2 [Connecting via rsh], page 19.

$CVS_SERVER

Used in client-server mode when accessing a remote repository using rsh. It
speci�es the name of the program to start on the server side when accessing

140 CVS|Concurrent Versions System

a remote repository using rsh. The default value is cvs. see Section 2.9.2
[Connecting via rsh], page 19

$CVS_PASSFILE

Used in client-server mode when accessing the cvs login server. Default
value is `$HOME/.cvspass'. see Section 2.9.3.2 [Password authentication client],
page 21

$CVS_CLIENT_PORT

Used in client-server mode when accessing the server via Kerberos. see Sec-
tion 2.9.5 [Kerberos authenticated], page 23

$CVS_RCMD_PORT

Used in client-server mode. If set, speci�es the port number to be used when
accessing the rcmd demon on the server side. (Currently not used for Unix
clients).

$CVS_CLIENT_LOG

Used for debugging only in client-server mode. If set, everything send to the
server is logged into `$CVS_CLIENT_LOG.in' and everything send from the server
is logged into `$CVS_CLIENT_LOG.out'.

$CVS_SERVER_SLEEP

Used only for debugging the server side in client-server mode. If set, delays the
start of the server child process the speci�ed amount of seconds so that you can
attach to it with a debugger.

$CVS_IGNORE_REMOTE_ROOT

(What is the purpose of this variable?)

$COMSPEC Used under OS/2 only. It speci�es the name of the command interpreter and
defaults to cmd.exe.

$TMPDIR

$TMP

$TEMP Directory in which temporary �les are located. The cvs server uses TMPDIR.
See Section A.4 [Global options], page 82, for a description of how to specify
this. Some parts of cvs will always use `/tmp' (via the tmpnam function provided
by the system).

On Windows NT, TMP is used (via the _tempnam function provided by the
system).

The patch program which is used by the cvs client uses TMPDIR, and if it is
not set, uses `/tmp' (at least with GNU patch 2.1). Note that if your server
and client are both running cvs 1.9.10 or later, cvs will not invoke an external
patch program.

Appendix E: Compatibility between CVS Versions 141

Appendix E Compatibility between CVS Versions

The repository format is compatible going back to cvs 1.3. But see Section 10.6.5
[Watches Compatibility], page 65, if you have copies of cvs 1.6 or older and you want to
use the optional developer communication features.

The working directory format is compatible going back to cvs 1.5. It did change between
cvs 1.3 and cvs 1.5. If you run cvs 1.5 or newer on a working directory checked out with
cvs 1.3, cvs will convert it, but to go back to cvs 1.3 you need to check out a new working
directory with cvs 1.3.

The remote protocol is interoperable going back to cvs 1.5, but no further (1.5 was
the �rst o�cial release with the remote protocol, but some older versions might still be

oating around). In many cases you need to upgrade both the client and the server to take
advantage of new features and bug�xes, however.

142 CVS|Concurrent Versions System

Appendix F: Troubleshooting 143

Appendix F Troubleshooting

If you are having trouble with cvs, this appendix may help. If there is a particular error
message which you are seeing, then you can look up the message alphabetically. If not, you
can look through the section on other problems to see if your problem is mentioned there.

F.1 Partial list of error messages

Here is a partial list of error messages that you may see from cvs. It is not a complete
list|cvs is capable of printing many, many error messages, often with parts of them sup-
plied by the operating system, but the intention is to list the common and/or potentially
confusing error messages.

The messages are alphabetical, but introductory text such as `cvs update: ' is not con-
sidered in ordering them.

In some cases the list includes messages printed by old versions of cvs (partly because
users may not be sure which version of cvs they are using at any particular moment).

cvs command: authorization failed: server host rejected access

This is a generic response when trying to connect to a pserver server which
chooses not to provide a speci�c reason for denying authorization. Check that
the username and password speci�ed are correct and that the CVSROOT spec-
i�ed is allowed by {allow-root in inetd.conf. See Section 2.9.3 [Password au-
thenticated], page 20.

�le:line: Assertion 'text' failed

The exact format of this message may vary depending on your system. It
indicates a bug in cvs, which can be handled as described in Appendix H
[BUGS], page 151.

cvs command: conflict: removed �le was modified by second party

This message indicates that you removed a �le, and someone else modi�ed it.
To resolve the con
ict, �rst run `cvs add �le'. If desired, look at the other
party's modi�cation to decide whether you still want to remove it. If you don't
want to remove it, stop here. If you do want to remove it, proceed with `cvs
remove �le' and commit your removal.

cannot change permissions on temporary directory
Operation not permitted

This message has been happening in a non-reproducible, occasional way when
we run the client/server testsuite, both on Red Hat Linux 3.0.3 and 4.1. We
haven't been able to �gure out what causes it, nor is it known whether it is
speci�c to linux (or even to this particular machine!). If the problem does
occur on other unices, `Operation not permitted' would be likely to read `Not
owner' or whatever the system in question uses for the unix EPERM error. If you
have any information to add, please let us know as described in Appendix H
[BUGS], page 151. If you experience this error while using cvs, retrying the
operation which produced it should work �ne.

144 CVS|Concurrent Versions System

cannot open CVS/Entries for reading: No such file or directory

This generally indicates a cvs internal error, and can be handled as with other
cvs bugs (see Appendix H [BUGS], page 151). Usually there is a workaround|
the exact nature of which would depend on the situation but which hopefully
could be �gured out.

cvs [init aborted]: cannot open CVS/Root: No such file or directory

This message is harmless. Provided it is not accompanied by other errors,
the operation has completed successfully. This message should not occur with
current versions of cvs, but it is documented here for the bene�t of cvs 1.9
and older.

cvs [checkout aborted]: cannot rename file �le to CVS/,,�le: Invalid argument

This message has been reported as intermittently happening with CVS 1.9 on
Solaris 2.5. The cause is unknown; if you know more about what causes it, let
us know as described in Appendix H [BUGS], page 151.

cvs [command aborted]: cannot start server via rcmd

This, unfortunately, is a rather nonspeci�c error message which cvs 1.9 will
print if you are running the cvs client and it is having trouble connecting to
the server. Current versions of cvs should print a much more speci�c error
message. If you get this message when you didn't mean to run the client at all,
you probably forgot to specify :local:, as described in Chapter 2 [Repository],
page 7.

ci: �le,v: bad diff output line: Binary files - and /tmp/T2a22651 differ

CVS 1.9 and older will print this message when trying to check in a binary
�le if rcs is not correctly installed. Re-read the instructions that came with
your rcs distribution and the install �le in the cvs distribution. Alternately,
upgrade to a current version of cvs, which checks in �les itself rather than via
rcs.

cvs checkout: could not check out �le
With CVS 1.9, this can mean that the co program (part of rcs) returned a
failure. It should be preceded by another error message, however it has been
observed without another error message and the cause is not well-understood.
With the current version of CVS, which does not run co, if this message occurs
without another error message, it is de�nitely a CVS bug (see Appendix H
[BUGS], page 151).

cvs [login aborted]: could not find out home directory

This means that you need to set the environment variables that CVS uses to
locate your home directory. See the discussion of HOME, HOMEDRIVE, and
HOMEPATH in Appendix D [Environment variables], page 139.

cvs update: could not merge revision rev of �le: No such file or directory

CVS 1.9 and older will print this message if there was a problem �nding the
rcsmerge program. Make sure that it is in your PATH, or upgrade to a current
version of CVS, which does not require an external rcsmerge program.

Appendix F: Troubleshooting 145

cvs [update aborted]: could not patch �le: No such file or directory

This means that there was a problem �nding the patch program. Make sure
that it is in your PATH. Note that despite appearances the message is not
referring to whether it can �nd �le. If both the client and the server are running
a current version of cvs, then there is no need for an external patch program
and you should not see this message. But if either client or server is running
cvs 1.9, then you need patch.

cvs update: could not patch �le; will refetch

This means that for whatever reason the client was unable to apply a patch
that the server sent. The message is nothing to be concerned about, because
inability to apply the patch only slows things down and has no e�ect on what
cvs does.

dying gasps from server unexpected

There is a known bug in the server for cvs 1.9.18 and older which can cause
this. For me, this was reproducible if I used the `-t' global option. It was �xed
by Andy Piper's 14 Nov 1997 change to src/�lesubr.c, if anyone is curious. If
you see the message, you probably can just retry the operation which failed, or
if you have discovered information concerning its cause, please let us know as
described in Appendix H [BUGS], page 151.

end of file from server (consult above messages if any)

The most common cause for this message is if you are using an external rsh
program and it exited with an error. In this case the rsh program should
have printed a message, which will appear before the above message. For more
information on setting up a cvs client and server, see Section 2.9 [Remote
repositories], page 18.

cvs commit: Executing 'mkmodules'

This means that your repository is set up for a version of cvs prior to cvs 1.8.
When using cvs 1.8 or later, the above message will be preceded by

cvs commit: Rebuilding administrative file database

If you see both messages, the database is being rebuilt twice, which is un-
necessary but harmless. If you wish to avoid the duplication, and you have
no versions of cvs 1.7 or earlier in use, remove -i mkmodules every place it
appears in your modules �le. For more information on the modules �le, see
Section C.1 [modules], page 125.

missing author

Typically this can happen if you created an RCS �le with your username set
to empty. CVS will, bogusly, create an illegal RCS �le with no value for the
author �eld. The solution is to make sure your username is set to a non-empty
value and re-create the RCS �le.

PANIC administration files missing

This typically means that there is a directory named CVS but it does not
contain the administrative �les which CVS puts in a CVS directory. If the
problem is that you created a CVS directory via some mechanism other than

146 CVS|Concurrent Versions System

CVS, then the answer is simple, use a name other than CVS. If not, it indicates
a CVS bug (see Appendix H [BUGS], page 151).

rcs error: Unknown option: -x,v/

This message will be followed by a usage message for rcs. It means that you
have an old version of rcs (probably supplied with your operating system).
CVS only works with rcs version 5 and later.

cvs [server aborted]: received broken pipe signal

This message seems to be caused by a hard-to-track-down bug in cvs or the
systems it runs on (we don't know|we haven't tracked it down yet!). It seems
to happen only after a cvs command has completed, and you should be able to
just ignore the message. However, if you have discovered information concerning
its cause, please let us know as described in Appendix H [BUGS], page 151.

Too many arguments!

This message is typically printed by the `log.pl' script which is in the `contrib'
directory in the cvs source distribution. In some versions of cvs, `log.pl' has
been part of the default cvs installation. The `log.pl' script gets called from
the `loginfo' administrative �le. Check that the arguments passed in `loginfo'
match what your version of `log.pl' expects. In particular, the `log.pl' from
cvs 1.3 and older expects the log�le as an argument whereas the `log.pl' from
cvs 1.5 and newer expects the log�le to be speci�ed with a `-f' option. Of
course, if you don't need `log.pl' you can just comment it out of `loginfo'.

cvs commit: Up-to-date check failed for `�le'
This means that someone else has committed a change to that �le since the last
time that you did a cvs update. So before proceeding with your cvs commit

you need to cvs update. CVS will merge the changes that you made and
the changes that the other person made. If it does not detect any con
icts it
will report `M cacErrCodes.h' and you are ready to cvs commit. If it detects
con
icts it will print a message saying so, will report `C cacErrCodes.h', and
you need to manually resolve the con
ict. For more details on this process see
Section 10.3 [Con
icts example], page 59.

Usage: diff3 [-exEX3 [-i | -m] [-L label1 -L label3]] file1 file2 file3
Only one of [exEX3] allowed

This indicates a problem with the installation of diff3 and rcsmerge. Speci�-
cally rcsmerge was compiled to look for GNU di�3, but it is �nding unix di�3
instead. The exact text of the message will vary depending on the system. The
simplest solution is to upgrade to a current version of cvs, which does not rely
on external rcsmerge or diff3 programs.

warning: unrecognized response `text' from cvs server

If text contains a valid response (such as `ok') followed by an extra carriage
return character (on many systems this will cause the second part of the message
to overwrite the �rst part), then it probably means that you are using the
`:ext:' access method with a version of rsh, such as most non-unix rsh versions,
which does not by default provide a transparent data stream. In such cases

Appendix F: Troubleshooting 147

you probably want to try `:server:' instead of `:ext:'. If text is something
else, this may signify a problem with your CVS server. Double-check your
installation against the instructions for setting up the CVS server.

cvs commit: warning: editor session failed

This means that the editor which cvs is using exits with a nonzero exit status.
Some versions of vi will do this even when there was not a problem editing the
�le. If so, point the CVSEDITOR environment variable to a small script such
as:

#!/bin/sh
vi $*
exit 0

F.2 Trouble making a connection to a CVS server

This section concerns what to do if you are having trouble making a connection to a cvs
server. If you are running the cvs command line client running on Windows, �rst upgrade
the client to cvs 1.9.12 or later. The error reporting in earlier versions provided much less
information about what the problem was. If the client is non-Windows, cvs 1.9 should be
�ne.

If the error messages are not su�cient to track down the problem, the next steps depend
largely on which access method you are using.

:ext: Try running the rsh program from the command line. For example: "rsh server-
name cvs -v" should print cvs version information. If this doesn't work, you
need to �x it before you can worry about cvs problems.

:server: You don't need a command line rsh program to use this access method, but if
you have an rsh program around, it may be useful as a debugging tool. Follow
the directions given for :ext:.

:pserver:

One good debugging tool is to "telnet servername 2401". After connecting, send
any text (for example "foo" followed by return). If cvs is working correctly, it
will respond with

cvs [pserver aborted]: bad auth protocol start: foo

If this fails to work, then make sure inetd is working right. Change the invoca-
tion in inetd.conf to run the echo program instead of cvs. For example:

2401 stream tcp nowait root /bin/echo echo hello

After making that change and instructing inetd to re-read its con�guration �le,
"telnet servername 2401" should show you the text hello and then the server
should close the connection. If this doesn't work, you need to �x it before you
can worry about cvs problems.

On AIX systems, the system will often have its own program trying to use port
2401. This is AIX's problem in the sense that port 2401 is registered for use
with cvs. I hear that there is an AIX patch available to address this problem.

148 CVS|Concurrent Versions System

F.3 Other common problems

Here is a list of problems which do not �t into the above categories. They are in no
particular order.

� If you are running cvs 1.9.18 or older, and cvs update �nds a con
ict and tries to
merge, as described in Section 10.3 [Con
icts example], page 59, but doesn't tell you
there were con
icts, then you may have an old version of rcs. The easiest solution
probably is to upgrade to a current version of cvs, which does not rely on external rcs
programs.

Appendix G: Credits 149

Appendix G Credits

Roland Pesch, then of Cygnus Support <roland@wrs.com>wrote the manual pages which
were distributed with cvs 1.3. Much of their text was copied into this manual. He also
read an early draft of this manual and contributed many ideas and corrections.

The mailing-list info-cvs is sometimes informative. I have included information from
postings made by the following persons: David G. Grubbs <dgg@think.com>.

Some text has been extracted from the man pages for rcs.

The cvs faq by David G. Grubbs has provided useful material. The faq is no longer
maintained, however, and this manual is about the closest thing there is to a successor (with
respect to documenting how to use cvs, at least).

In addition, the following persons have helped by telling me about mistakes I've made:

Roxanne Brunskill <rbrunski@datap.ca>,
Kathy Dyer <dyer@phoenix.ocf.llnl.gov>,
Karl Pingle <pingle@acuson.com>,
Thomas A Peterson <tap@src.honeywell.com>,
Inge Wallin <ingwa@signum.se>,
Dirk Koschuetzki <koschuet@fmi.uni-passau.de>
and Michael Brown <brown@wi.extrel.com>.

The list of contributors here is not comprehensive; for a more complete list of who has
contributed to this manual see the �le `doc/ChangeLog' in the cvs source distribution.

150 CVS|Concurrent Versions System

Appendix H: Dealing with bugs in CVS or this manual 151

Appendix H Dealing with bugs in CVS or this
manual

Neither cvs nor this manual is perfect, and they probably never will be. If you are
having trouble using cvs, or think you have found a bug, there are a number of things you
can do about it. Note that if the manual is unclear, that can be considered a bug in the
manual, so these problems are often worth doing something about as well as problems with
cvs itself.

� If you want someone to help you and �x bugs that you report, there are companies
which will do that for a fee. Two such companies are:

Signum Support AB
Box 2044
S-580 02 Linkoping
Sweden
Email: info@signum.se
Phone: +46 (0)13 - 21 46 00
Fax: +46 (0)13 - 21 47 00
http://www.signum.se/

Cyclic Software
United States of America
http://www.cyclic.com/
info@cyclic.com

� If you got cvs through a distributor, such as an operating system vendor or a vendor
of freeware cd-roms, you may wish to see whether the distributor provides support.
Often, they will provide no support or minimal support, but this may vary from dis-
tributor to distributor.

� If you have the skills and time to do so, you may wish to �x the bug yourself. If you
wish to submit your �x for inclusion in future releases of cvs, see the �le hacking
in the cvs source distribution. It contains much more information on the process of
submitting �xes.

� There may be resources on the net which can help. Two good places to start are:

http://www.cyclic.com
http://www.loria.fr/~molli/cvs-index.html

If you are so inspired, increasing the information available on the net is likely to be
appreciated. For example, before the standard cvs distribution worked on Windows
95, there was a web page with some explanation and patches for running cvs on
Windows 95, and various people helped out by mentioning this page on mailing lists
or newsgroups when the subject came up.

� It is also possible to report bugs to bug-cvs. Note that someone may or may not want
to do anything with your bug report|if you need a solution consider one of the options
mentioned above. People probably do want to hear about bugs which are particularly
severe in consequences and/or easy to �x, however. You can also increase your odds
by being as clear as possible about the exact nature of the bug and any other relevant
information. The way to report bugs is to send email to bug-cvs@gnu.org. Note that
submissions to bug-cvs may be distributed under the terms of the gnu Public License,

152 CVS|Concurrent Versions System

so if you don't like this, don't submit them. There is usually no justi�cation for sending
mail directly to one of the cvs maintainers rather than to bug-cvs; those maintainers
who want to hear about such bug reports read bug-cvs. Also note that sending a
bug report to other mailing lists or newsgroups is not a substitute for sending it to
bug-cvs. It is �ne to discuss cvs bugs on whatever forum you prefer, but there are
not necessarily any maintainers reading bug reports sent anywhere except bug-cvs.

People often ask if there is a list of known bugs or whether a particular bug is a known
one. The �le bugs in the cvs source distribution is one list of known bugs, but it doesn't
necessarily try to be comprehensive. Perhaps there will never be a comprehensive, detailed
list of known bugs.

Index 153

Index

!
!, in modules �le . 127

#
#cvs.lock, removing . 61

#cvs.lock, technical details . 11

#cvs.r
, and backups . 17

#cvs.r
, removing . 61

#cvs.r
, technical details . 11

#cvs.t
 . 11

#cvs.w
, removing . 61

#cvs.w
, technical details . 11

&
&, in modules �le . 126

-
-a, in modules �le . 125

-d, in modules �le . 127

-e, in modules �le . 127

-i, in modules �le . 127

-j (merging branches) . 41

-k (keyword substitution) . 71

-o, in modules �le . 127

-s, in modules �le . 127

-t, in modules �le . 127

-u, in modules �le . 127

.

.# �les . 110

.bashrc, setting CVSROOT in 7

.cshrc, setting CVSROOT in . 7

.cvsrc �le . 82

.pro�le, setting CVSROOT in 7

.tcshrc, setting CVSROOT in 7

/
/usr/local/cvsroot, as example repository 7

:
:ext:, setting up . 19

:ext:, troubleshooting . 147

:gserver:, setting up . 23

:kserver:, setting up . 23

:local:, setting up . 7

:pserver:, setting up. 21

:pserver:, troubleshooting . 147

:server:, setting up . 19

:server:, troubleshooting . 147

=
======= . 60

�les (VMS) . 110

>

>>>>>>> . 60

<

<<<<<<< . 60

A
abandoning work . 64

Access a branch . 38

add (subcommand) . 47

Adding a tag . 32

Adding �les . 47

Admin (subcommand) . 87

Administrative �les (intro) . 15

Administrative �les (reference). 125

Administrative �les, editing them 16

Alias modules . 125

ALL in commitinfo . 130

Ampersand modules . 126

annotate (subcommand) . 54

Atomic transactions, lack of 62

attic . 11

authenticated client, using . 21

authenticating server, setting up 20

authentication, stream . 82

Author keyword . 69

Automatically ignored �les 135

Avoiding editor invocation . 86

B
Backing up, repository . 17

Base directory, in CVS directory 15

BASE, as reserved tag name 32

BASE, special tag . 86

Baserev �le, in CVS directory 15

Baserev.tmp �le, in CVS directory 15

154 CVS|Concurrent Versions System

bill of materials . 77

Binary �les . 55

Branch merge example . 41

Branch number . 31, 39

Branch, accessing . 38

Branch, check out . 38

Branch, creating a . 37

Branch, identifying . 38

Branch, retrieving . 38

Branch, vendor- . 73

Branches motivation . 37

Branches, copying changes between 37

Branches, sticky . 38

Branching . 37

Bringing a �le up to date . 58

Bugs in this manual or CVS 151

Bugs, reporting . 151

builds . 77

C
Changes, copying between branches 37

Changing a log message. 88

Check out a branch . 38

checked out copy, keeping . 134

Checkin program . 127

Checkin.prog �le, in CVS directory 15

Checking commits . 130

Checking out source . 4

Checkout (subcommand) . 91

Checkout program . 127

checkout, as term for getting ready to edit 64

Checkout, example . 4

checkoutlist . 12

choosing, reserved or unreserved checkouts 65

Cleaning up . 5

Client/Server Operation . 18

Co (subcommand) . 91

Command reference . 113

Command structure . 81

comment leader . 87

Commit (subcommand) . 93

Commit �les . 129

Commit, when to . 67

Commitinfo . 130

Committing changes . 4

Common options . 84

Common syntax of info �les 129

compatibility, between CVS versions 141

COMSPEC, environment variable 140

con�g, in CVSROOT . 137

Con
ict markers . 60

Con
ict resolution . 60

Con
icts (merge example) . 60

Contributors (CVS program). 1

Contributors (manual) . 149

copying a repository . 18

Copying changes . 37

Correcting a log message. 88

Creating a branch . 37

Creating a project . 27

Creating a repository . 16

Credits (CVS program) . 1

Credits (manual) . 149

CVS 1.6, and watches . 65

CVS command structure . 81

CVS directory, in repository 11

CVS directory, in working directory 13

CVS passwd �le . 20

CVS, history of . 1

CVS, introduction to . 1

CVS, versions of . 141

CVS/Base directory . 15

CVS/Baserev �le . 15

CVS/Baserev.tmp �le . 15

CVS/Checkin.prog �le . 15

CVS/Entries �le . 13

CVS/Entries.Backup �le . 14

CVS/Entries.Log �le . 14

CVS/Entries.Static �le . 14

CVS/Notify �le . 15

CVS/Notify.tmp �le . 15

CVS/Repository �le . 13

CVS/Root �le . 7

CVS/Tag �le . 15

CVS/Template �le . 15

CVS/Update.prog �le . 15

CVS CLIENT LOG, environment variable 140

CVS CLIENT PORT . 23

CVS IGNORE REMOTE ROOT, environment

variable . 140

CVS PASSFILE, environment variable 22

CVS RCMD PORT, environment variable 140

CVS RSH, environment variable 139

CVS SERVER, environment variable 19

CVS SERVER SLEEP, environment variable . . 140

CVSEDITOR, environment variable. 4

cvsignore (admin �le), global 135

CVSIGNORE, environment variable 139

CVSREAD, environment variable 139

CVSREAD, overriding . 84

Index 155

cvsroot . 7

CVSROOT (�le) . 125

CVSROOT, environment variable 7

CVSROOT, module name . 15

CVSROOT, multiple repositories 16

CVSROOT, overriding . 83

CVSROOT, storage of �les . 12

CVSROOT/con�g . 137

CVSUMASK, environment variable 10

cvswrappers (admin �le) . 128

CVSWRAPPERS, environment variable . . 128, 139

Cyclic Software . 151

D
Date keyword . 69

Dates . 84

dead state . 11

Decimal revision number . 31

DEFAULT in commitinfo . 130

DEFAULT in editinfo . 132

DEFAULT in verifymsg . 131

De�ning a module . 29

De�ning modules (intro) . 15

De�ning modules (reference manual) 125

Deleting �les . 48

Deleting revisions . 88

Deleting sticky tags . 34

Descending directories . 45

device nodes . 79

Di�. 5

Di� (subcommand) . 95

Di�erences, merging . 42

Directories, moving . 51

directories, removing. 49

Directory, descending . 45

Disjoint repositories . 16

Distributing log messages . 133

driver.c (merge example) . 59

E
edit (subcommand) . 64

editinfo (admin �le) . 131

Editing administrative �les . 16

Editing the modules �le . 29

Editor, avoiding invocation of 86

EDITOR, environment variable 4

EDITOR, overriding . 83

Editor, specifying per module 131

editors (subcommand) . 65

emerge . 61

encryption . 84

Entries �le, in CVS directory 13

Entries.Backup �le, in CVS directory 14

Entries.Log �le, in CVS directory 14

Entries.Static �le, in CVS directory 14

Environment variables . 139

Errors, reporting . 151

Example of a work-session . 3

Example of merge . 59

Example, branch merge . 41

excluding directories, in modules �le 127

exit status, of commitinfo . 130

exit status, of CVS . 81

exit status, of editor . 147

exit status, of taginfo . 53

exit status, of verifymsg . 131

Export (subcommand) . 97

Export program . 127

F
Fetching source . 4

File had con
icts on merge . 58

File locking . 57

File permissions, general . 9

File permissions, Windows-speci�c 10

File status . 57

Files, moving . 50

Files, reference manual . 125

Fixing a log message . 88

Forcing a tag match . 85

Form for log message . 134

Format of CVS commands . 81

G
Getting started . 3

Getting the source . 4

Global cvsignore . 135

Global options . 82

Group . 9

GSSAPI . 23

H
hard links . 79

HEAD, as reserved tag name 32

HEAD, special tag . 86

Header keyword . 69

History (subcommand) . 98

History browsing . 53

History �le . 136

History �les . 9

156 CVS|Concurrent Versions System

History of CVS . 1

HOME, environment variable 139

HOMEDRIVE, environment variable 139

HOMEPATH, environment variable 139

I
Id keyword . 69

Ident (shell command) . 70

Identifying a branch . 38

Identifying �les . 69

Ignored �les . 135

Ignoring �les . 135

Import (subcommand) . 100

Importing �les . 27

Importing �les, from other version control systems

. 28

Importing modules . 73

Index . 153

Info �les (syntax) . 129

Informing others . 61

init (subcommand) . 17

installed images (VMS) . 10

Introduction to CVS . 1

Invoking CVS . 113

Isolation . 53

J
Join . 41

K
keeping a checked out copy 134

kerberos . 23

Keyword expansion . 69

Keyword List . 69

Keyword substitution . 69

K
ag . 71

kinit . 23

Known bugs in this manual or CVS 152

L
Layout of repository . 7

Left-hand options . 82

Linear development . 31

link, symbolic, importing . 102

List, mailing list . 1

Locally Added . 57

Locally Modi�ed. 57

Locally Removed . 57

Locker keyword . 69

Locking �les . 57

locks, cvs, and backups . 17

locks, cvs, introduction . 61

locks, cvs, technical details . 11

Log (subcommand) . 102

Log information, saving . 136

Log keyword. 69

Log message entry . 4

Log message template . 134

Log message, correcting . 88

log message, verifying. 130

Log messages . 133

Log messages, editing . 131

Login (subcommand) . 21

loginfo (admin �le) . 133

Logout (subcommand) . 22

M
Mail, automatic mail on commit 61

Mailing list . 1

Mailing log messages . 133

Main trunk and branches . 37

make . 77

Many repositories. 16

Markers, con
ict . 60

Merge, an example . 59

Merge, branch example . 41

Merging . 37

Merging a branch . 41

Merging a �le . 58

Merging two revisions. 42

mkmodules . 145

Modi�cations, copying between branches 37

Module status . 127

Module, de�ning . 29

Modules (admin �le) . 125

Modules �le . 15

Modules �le, changing . 29

modules.db . 12

modules.dir . 12

modules.pag . 12

Motivation for branches. 37

moving a repository . 18

Moving directories . 51

Moving �les . 50

moving tags . 108

Multiple developers . 57

Multiple repositories . 16

N
Name keyword . 69

Index 157

Name, symbolic (tag) . 32

Needs Checkout . 57

Needs Merge . 58

Needs Patch . 57

Newsgroups . 1

notify (admin �le) . 63

Notify �le, in CVS directory 15

Notify.tmp �le, in CVS directory 15

Number, branch . 31, 39

Number, revision- . 31

O
option defaults . 82

Options, global . 82

options, in modules �le . 127

Outdating revisions . 88

Overlap . 58

Overriding CVSREAD . 84

Overriding CVSROOT. 83

Overriding EDITOR . 83

Overriding RCSBIN . 82

Overriding TMPDIR . 83

Overview . 1

ownership, saving in CVS . 79

P
Parallel repositories . 16

passwd (admin �le) . 20

password client, using. 21

password server, setting up . 20

PATH, environment variable 139

Per-directory sticky tags/dates 15

Per-module editor . 131

permissions, general . 9

permissions, saving in CVS . 79

permissions, Windows-speci�c 10

Policy . 67

Precommit checking . 130

PreservePermissions, in CVSROOT/con�g 137

Pserver (subcommand) . 20

PVCS, importing �les from . 28

R
RCS history �les . 9

RCS revision numbers . 32

RCS, importing �les from . 28

RCS-style locking . 57

RCSBIN, in CVSROOT/con�g 137

RCSBIN, overriding . 82

RCS�le keyword . 69

rcsinfo (admin �le) . 134

Rdi� (subcommand) . 104

read-only �les, and -r . 83

read-only �les, and CVSREAD 139

read-only �les, and watches . 62

read-only �les, in repository . 9

Read-only mode . 83

read-only repository access . 24

readers (admin �le) . 24

Recursive (directory descending) 45

Reference manual (�les) . 125

Reference manual for variables 139

Reference, commands . 113

regular expression syntax . 129

Regular modules . 126

Release (subcommand) . 105

Releases, revisions and versions 31

Releasing your working copy . 5

Remote repositories . 18

Remove (subcommand) . 48

Removing a change . 42

removing directories . 49

Removing �les . 48

Removing your working copy. 5

Renaming directories . 51

Renaming �les . 50

renaming tags . 108

Replacing a log message . 88

Reporting bugs . 151

Repositories, multiple . 16

Repositories, remote . 18

Repository (intro) . 7

Repository �le, in CVS directory 13

Repository, backing up . 17

Repository, example . 7

Repository, how data is stored 8

repository, moving . 18

Repository, setting up . 16

reserved checkouts . 57

Resetting sticky tags . 34

Resolving a con
ict . 60

Restoring old version of removed �le 35

Resurrecting old version of dead �le 35

Retrieve a branch . 38

Retrieving an old revision using tags 33

reverting to repository version 64

Revision keyword . 69

Revision management. 67

Revision numbers . 31

Revision numbers (branches). 39

158 CVS|Concurrent Versions System

Revision tree . 31

Revision tree, making branches 37

Revisions, merging di�erences between 42

Revisions, versions and releases 31

Right-hand options . 84

Root �le, in CVS directory . 7

rsh . 19

Rtag (subcommand) . 106

rtag, creating a branch using 37

S
Saving space . 88

SCCS, importing �les from . 28

Security, �le permissions in repository 9

security, GSSAPI . 23

security, kerberos . 23

security, of pserver . 22

security, setuid . 10

server, CVS . 18

server, temporary directories 25

setgid . 10

Setting up a repository . 16

setuid . 10

Signum Support . 151

Source keyword . 70

Source, getting CVS source . 1

Source, getting from CVS . 4

special �les . 79

Specifying dates . 84

Spreading information . 61

Starting a project with CVS 27

State keyword . 70

Status of a �le . 57

Status of a module . 127

sticky date . 34

Sticky tags . 34

Sticky tags, resetting . 34

Sticky tags/dates, per-directory 15

Storing log messages . 133

stream authentication . 82

Structure . 81

Subdirectories . 45

Support, getting CVS support 151

symbolic link, importing . 102

symbolic links . 79

Symbolic name (tag) . 32

Syntax of info �les . 129

SystemAuth, in CVSROOT/con�g 137

T
Tag (subcommand) . 107

Tag �le, in CVS directory . 15

Tag program . 127

tag, command, introduction . 32

tag, creating a branch using 37

tag, example . 32

Tag, retrieving old revisions . 33

Tag, symbolic name . 32

taginfo . 53

Tags . 32

tags, renaming . 108

Tags, sticky . 34

tc, Trivial Compiler (example) 3

Team of developers . 57

TEMP, environment variable 140

Template �le, in CVS directory 15

Template for log message . 134

temporary directories, and server 25

temporary �les, location of 140

Third-party sources . 73

Time . 84

timezone, in input . 84

timezone, in output . 102

TMP, environment variable 140

TMPDIR, environment variable. 140

TMPDIR, overriding . 83

TopLevelAdmin, in CVSROOT/con�g 137

Trace . 83

Traceability . 53

Tracking sources . 73

Transactions, atomic, lack of 62

Trivial Compiler (example) . 3

Typical repository . 7

U
umask, for repository �les . 10

Undoing a change . 42

unedit (subcommand) . 64

Unknown . 58

unreserved checkouts . 57

Up-to-date . 57

Update (subcommand) . 108

Update program . 127

update, introduction . 58

update, to display �le status 58

Update.prog �le, in CVS directory 15

Updating a �le . 58

user aliases . 21

users (admin �le) . 64

Index 159

V
Vendor . 73

Vendor branch . 73

verifymsg (admin �le) . 130

versions, of CVS . 141

Versions, revisions and releases. 31

Viewing di�erences . 5

W
watch add (subcommand) . 63

watch o� (subcommand) . 63

watch on (subcommand) . 62

watch remove (subcommand) 63

watchers (subcommand) . 65

Watches . 62

Wdi� (import example) . 73

web pages, maintaining with CVS 134

What (shell command) . 70

What branches are good for 37

What is CVS not? . 2

What is CVS? . 1

When to commit . 67

Windows, and permissions . 10

Work-session, example of . 3

Working copy . 57

Working copy, removing . 5

Wrappers . 128

writers (admin �le) . 24

Z
zone, time, in input . 84

zone, time, in output . 102

160 CVS|Concurrent Versions System

i

Short Contents

1 Overview . 1

2 The Repository . 7

3 Starting a project with CVS . 27

4 Revisions . 31

5 Branching and merging . 37

6 Recursive behavior . 45

7 Adding, removing, and renaming �les and directories 47

8 History browsing . 53

9 Handling binary �les . 55

10 Multiple developers . 57

11 Revision management . 67

12 Keyword substitution . 69

13 Tracking third-party sources . 73

14 How your build system interacts with CVS 77

15 Special Files . 79

Appendix A Guide to CVS commands 81

Appendix B Quick reference to CVS commands 113

Appendix C Reference manual for Administrative �les 125

Appendix D All environment variables which a�ect CVS 139

Appendix E Compatibility between CVS Versions 141

Appendix F Troubleshooting . 143

Appendix G Credits . 149

Appendix H Dealing with bugs in CVS or this manual 151

Index . 153

ii CVS|Concurrent Versions System

iii

Table of Contents

1 Overview . 1
1.1 What is CVS? . 1
1.2 What is CVS not? . 2
1.3 A sample session . 3

1.3.1 Getting the source . 4
1.3.2 Committing your changes . 4
1.3.3 Cleaning up . 5
1.3.4 Viewing di�erences . 5

2 The Repository . 7
2.1 Telling CVS where your repository is . 7
2.2 How data is stored in the repository . 8

2.2.1 Where �les are stored within the repository 8
2.2.2 File permissions . 9
2.2.3 File Permission issues speci�c to Windows 10
2.2.4 The attic . 11
2.2.5 The CVS directory in the repository 11
2.2.6 CVS locks in the repository . 11
2.2.7 How �les are stored in the CVSROOT directory . . 12

2.3 How data is stored in the working directory 13
2.4 The administrative �les . 15

2.4.1 Editing administrative �les . 16
2.5 Multiple repositories . 16
2.6 Creating a repository . 16
2.7 Backing up a repository . 17
2.8 Moving a repository . 18
2.9 Remote repositories . 18

2.9.1 Server requirements . 18
2.9.2 Connecting with rsh . 19
2.9.3 Direct connection with password authentication . . 20

2.9.3.1 Setting up the server for password
authentication . 20

2.9.3.2 Using the client with password
authentication . 21

2.9.3.3 Security considerations with password
authentication . 22

2.9.4 Direct connection with GSSAPI 23
2.9.5 Direct connection with kerberos 23

2.10 Read-only repository access . 24
2.11 Temporary directories for the server . 25

iv CVS|Concurrent Versions System

3 Starting a project with CVS. 27
3.1 Setting up the �les . 27

3.1.1 Creating a directory tree from a number of �les . . 27
3.1.2 Creating Files From Other Version Control Systems

. 28
3.1.3 Creating a directory tree from scratch 28

3.2 De�ning the module . 29

4 Revisions. 31
4.1 Revision numbers . 31
4.2 Versions, revisions and releases . 31
4.3 Assigning revisions . 31
4.4 Tags{Symbolic revisions . 32
4.5 Sticky tags . 34

5 Branching and merging 37
5.1 What branches are good for . 37
5.2 Creating a branch . 37
5.3 Accessing branches . 38
5.4 Branches and revisions . 39
5.5 Magic branch numbers . 40
5.6 Merging an entire branch . 41
5.7 Merging from a branch several times . 41
5.8 Merging di�erences between any two revisions 42
5.9 Merging can add or remove �les . 43

6 Recursive behavior . 45

7 Adding, removing, and renaming �les and
directories. 47
7.1 Adding �les to a directory . 47
7.2 Removing �les . 48
7.3 Removing directories . 49
7.4 Moving and renaming �les . 50

7.4.1 The Normal way to Rename . 50
7.4.2 Moving the history �le . 50
7.4.3 Copying the history �le . 50

7.5 Moving and renaming directories . 51

8 History browsing . 53
8.1 Log messages . 53
8.2 The history database . 53
8.3 User-de�ned logging . 53
8.4 Annotate command . 54

v

9 Handling binary �les . 55
9.1 The issues with binary �les . 55
9.2 How to store binary �les . 55

10 Multiple developers . 57
10.1 File status . 57
10.2 Bringing a �le up to date . 58
10.3 Con
icts example . 59
10.4 Informing others about commits . 61
10.5 Several developers simultaneously attempting to run CVS

. 61
10.6 Mechanisms to track who is editing �les 62

10.6.1 Telling CVS to watch certain �les 62
10.6.2 Telling CVS to notify you . 63
10.6.3 How to edit a �le which is being watched 64
10.6.4 Information about who is watching and editing . . 65
10.6.5 Using watches with old versions of CVS 65

10.7 Choosing between reserved or unreserved checkouts 65

11 Revision management . 67
11.1 When to commit? . 67

12 Keyword substitution . 69
12.1 Keyword List . 69
12.2 Using keywords . 70
12.3 Avoiding substitution . 70
12.4 Substitution modes . 71
12.5 Problems with the Log keyword. 71

13 Tracking third-party sources. 73
13.1 Importing a module for the �rst time 73
13.2 Updating a module with the import command 73
13.3 Reverting to the latest vendor release 74
13.4 How to handle binary �les with cvs import 74
13.5 How to handle keyword substitution with cvs import 74
13.6 Multiple vendor branches . 75

14 How your build system interacts with CVS
. 77

15 Special Files . 79

vi CVS|Concurrent Versions System

Appendix A Guide to CVS commands 81
A.1 Overall structure of CVS commands. 81
A.2 CVS's exit status . 81
A.3 Default options and the ~/.cvsrc �le . 82
A.4 Global options . 82
A.5 Common command options . 84
A.6 admin|Administration . 87

A.6.1 admin options . 87
A.7 checkout|Check out sources for editing 91

A.7.1 checkout options . 91
A.7.2 checkout examples . 93

A.8 commit|Check �les into the repository 93
A.8.1 commit options . 94
A.8.2 commit examples . 94

A.8.2.1 Committing to a branch 94
A.8.2.2 Creating the branch after editing 95

A.9 di�|Show di�erences between revisions 95
A.9.1 di� options . 96
A.9.2 di� examples . 97

A.10 export|Export sources from CVS, similar to checkout . . 97
A.10.1 export options . 98

A.11 history|Show status of �les and users 98
A.11.1 history options . 99

A.12 import|Import sources into CVS, using vendor branches
. 100
A.12.1 import options . 101
A.12.2 import output . 101
A.12.3 import examples . 102

A.13 log|Print out log information for �les 102
A.13.1 log options . 102
A.13.2 log examples . 103

A.14 rdi�|'patch' format di�s between releases 104
A.14.1 rdi� options . 104
A.14.2 rdi� examples . 105

A.15 release|Indicate that a Module is no longer in use 105
A.15.1 release options . 105
A.15.2 release output . 106
A.15.3 release examples . 106

A.16 rtag|Add a symbolic tag to a module 106
A.16.1 rtag options . 107

A.17 tag|Add a symbolic tag to checked out versions of �les
. 107
A.17.1 tag options . 108

A.18 update|Bring work tree in sync with repository 108
A.18.1 update options . 109
A.18.2 update output . 110

vii

Appendix B Quick reference to CVS commands
. 113

Appendix C Reference manual for
Administrative �les . 125
C.1 The modules �le . 125

C.1.1 Alias modules . 125
C.1.2 Regular modules . 126
C.1.3 Ampersand modules . 126
C.1.4 Excluding directories . 127
C.1.5 Module options . 127

C.2 The cvswrappers �le . 128
C.3 The commit support �les . 129

C.3.1 The common syntax . 129
C.4 Commitinfo . 130
C.5 Verifying log messages . 130
C.6 Editinfo . 131

C.6.1 Editinfo example . 132
C.7 Loginfo . 133

C.7.1 Loginfo example . 134
C.7.2 Keeping a checked out copy 134

C.8 Rcsinfo . 134
C.9 Ignoring �les via cvsignore . 135
C.10 The history �le . 136
C.11 Expansions in administrative �les . 136
C.12 The CVSROOT/con�g con�guration �le 137

Appendix D All environment variables which
a�ect CVS . 139

Appendix E Compatibility between CVS
Versions . 141

Appendix F Troubleshooting 143
F.1 Partial list of error messages . 143
F.2 Trouble making a connection to a CVS server 147
F.3 Other common problems . 148

Appendix G Credits . 149

Appendix H Dealing with bugs in CVS or this
manual . 151

Index . 153

viii CVS|Concurrent Versions System

