
DATWG Recommendation Page 1 of 40 21 Oct 1992

Recommended Practices

for Enhancing Digital Audio Compatibility

in Multimedia Systems

by the IMA Digital Audio Focus and Technical Working Groups

Revision 3.00

21 October 1992

DATWG Recommendation Page 2 of 40 21 Oct 1992

Contents

Overview.. 3
Recommendation.. 4

Digital Audio Data Types .. 4
Digital Audio Sampling Rates ... 5
Recommended Digital Audio Interchange Formats... 5
Digital Audio Format Conversion.. 5

Appendix A: Data Type, Sample Rate, and Stream Definition 6
Data Type Definitions.. 6

8-bit A-law, µ-law, mono... 6
8-bit linear, unsigned, mono and stereo... 6
16-bit linear, signed, mono and stereo ... 6
4-bit ADPCM... 6
Stereo Formats ... 6

Sample Rate Definitions .. 7
Note.. 7

Appendix B: Audio Algorithm Requirements:.. 8
Uncompressed Audio Format Requirements: .. 8
Audio Compression and Decompression Algorithm Requirements: 8
Compressed Audio Metrics:... 9

Appendix C: Questions and Answers... 10
Appendix D: Reference Algorithms... 11

Reference Algorithm Descriptions... 11
1. Conversion Algorithms Overview ... 11
2. 16-bit/8-bit Conversion Overview ... 12

2.1. 8-bit to 16-bit Conversion Algorithms .. 12
2.2. 16-bit to 8-bit Conversion Algorithms .. 13

3. 16-bit/µ-law Conversion Overview ... 15
3.1. 16-bit Linear to µ-law Conversion .. 16
3.2. µ-law to 16-bit Linear Conversion .. 18

4. 16-bit/A-law Conversion Overview... 20
4.1. 16-bit Linear to A-law Conversion ... 20
4.2. A-law to 16-bit Linear Conversion ... 22

5. Sample Rate Conversion (SRC) Overview.. 24
5.1. Integral Higher-to-Lower Sample Rate Conversion (Decimation) 25
5.2. Integral Lower to Higher Sample Rate Conversion (Interpolation).......... 26
5.3. Non-integral Sample Rate Conversion (Interpolation and Decimation
Together) .. 27

6. ADPCM Reference Algorithms ... 28
6.1. 16-bit Linear to 4-bit ADPCM Compression .. 28
6.2. 4-bit ADPCM to 16-bit Linear Decompression .. 31

Algorithm References... 33
Reference Algorithm Code Listings.. 33
Appendix E: Glossary... 34
Appendix F: Development of the First Edition of the Digital Audio Recommended Practices ... 36

DATWG Recommendation Page 3 of 40 21 Oct 1992

Overview
These recommended practices for developing and processing interchangeable digital audio
data formats are presented by the Interactive Multimedia Association (IMA) to
promote cross-platform digital audio compatibility. The convenient interchange of
digital audio data is part of the IMA’s goal of encouraging multimedia application
development.

The problems of interchange between PC, Macintosh, and workstation computers
include different native audio data types and different sampling rates. In this document,
format refers to a combination of sample data type and sampling rate. This document
addresses those two interchange problems.

The IMA intends this document to be the first of a series of incremental recommendations on
digital audio. This edition of the Recommended Practices is intended to specify:

 a standard set of minimum capabilities that a platform vendor must support in order to
create a compliant platform;

 a standard set of digital audio sampling rates;

 a standard set of formats for digital audio sample values;

 a standard set of compression, decompression, format conversion, and sampling rate
conversion algorithms.

This edition of the Recommendations is not intended to address any of the following issues:

 signal stream formats: that is, issues having to do with blocking of data, embedding of
synchronization information, algorithm state variable values, time stamps, etc.;
blocking, multiplexing, or other organization of multiple streams of audio in
time; or tagging of audio data with header format;

 file format: specification of file or contain formats; merging of audio
information with other media data or control information; standards for file
labels or container structure, etc.

Upcoming editions of these Recommended Practices will add to the specifications in
this first edition, and will address these and other issues. The intent is that these future
editions will provide additional recommendations, rather than modify previous ones.

Appendix C addresses frequently asked questions regarding the Recommendation.
A glossary is included as Appendix E.

These recommendations were initially developed by the Digital Audio Technical
Working Group, and refined by the Digital Audio Focus Group of the IMA. Please see
Appendix F for more information on these groups.

DATWG Recommendation Page 4 of 40 21 Oct 1992

Recommendation

The IMA feels the best way to encourage cross platform exchange of digital
audio information is to define a limited set of audio formats that are guaranteed to be
supported on any IMA audio compliant platform. These formats are required to provide
baseline digital audio cross-platform support to satisfy a range of audio quality
and data bandwidth requirements.

Three uncompressed and one compressed digital audio data types at four sampling rates are
recommended as the minimum formats for IMA Cross-Platform Digital Audio Interchange.
All of these formats should be supported by compliant platforms. A combination of
already existing native audio hardware and a small amount of CPU utilization for
conversion, using the algorithms documented here, will make this a reality.

To be compliant, a platform must be able to record one of the specified formats in real-
time. It must be able to play back all of the specified formats in real-time. In
addition, the IMA recommends that compliant platforms provide means to convert from any
standard format to any other. Format conversion, in general, does not have to be
accomplished in real-time, but see below.

Note that these recommendations do not address the issue of the quality of the
rendered audio signal generated by a platform during recording or playback. It is within the
spirit of the recommended practices for a platform to convert a format that can not
be directly rendered (played back) into one that can be directly rendered, but the
platform must be capable of doing both the conversion and associated playback in real-time.

Digital Audio Data Types
The problem of different data types has been addressed in the proposal by selecting a
minimum set of three uncompressed and one compressed type. One uncompressed
type, 8-bit companded (both µ-law and A-law) addresses the native format of many
workstations and several industry products compatible with telephony standards.
A second, 8-bit unsigned linear is a type used in the PC and Macintosh environment.
A third uncompressed type is 16-bit signed linear that is the standard audio data type on
CD and is emerging in the computer industry. The DVI® ADPCM algorithm was
selected to provide a standard method to exchange high quality (16-bit signed
linear) data at data rates one-half that of the uncompressed 8-bit data rates at a
given sampling frequency. The IMA believes this 4-bit data type will give the author
of multimedia audio data the most scaleability in terms of audio dynamic range and
lowest data rate. This scaleability does come at the expense of some CPU
utilization for decompression, however it allows the scaling of fidelity for
different hardware capabilities with a single data stream. Machines with 16-bit
playback hardware can recover the most dynamic range, followed by 8-bit companded and 8-
bit linear. Appendix A includes definitions of these data types.

DATWG Recommendation Page 5 of 40 21 Oct 1992

Digital Audio Sampling Rates
The problem of different audio sampling rates has been addressed in the proposal
by selecting a minimum set of four sampling rates. One sampling rate is the 8.0 kHz rate
typically used with the 8-bit companded converters. A second sampling rate selected
is the 11.025 kHz rate found in PC’s and the Macintosh. A third sampling rate
selected is the 22.05 kHz rate also found in PC’s and the Macintosh. The fourth
sampling rate selected is the 44.1 kHz rate used in audio CDs and various
computers. Appendix A includes definitions of these sample rates, with tolerances.

Recommended Digital Audio Interchange Formats
A set of data types and sampling rates has been selected as standard interchange formats. A
set of requirements for this selection is outlined in Appendix B.

Sampling
Rate

Mono/
Stereo

Data Format Notes

mono 8-bit µ-Law PCM CCITT G.711 Standard, Workstation support

mono 8-bit A-Law PCM CCITT G.711 Standard, Workstation support8.0 kHz

mono 4-bit ADPCM DVI® algorithm

m/s 8-bit Linear PCM Macintosh & MPC support
11.025 kHz

m/s 4-bit ADPCM DVI® algorithm

m/s 8-bit Linear PCM Macintosh & MPC support
22.05 kHz

m/s 4-bit ADPCM DVI® algorithm

m/s 16-bit Linear PCM (Least Significant Byte first)

m/s 16-bit Linear PCM (Most Significant Byte first)44.10 kHz

m/s 4-bit ADPCM DVI® algorithm

A more precise definition of these formats is found in Appendix A of this document.

Digital Audio Format Conversion
Each of these formats was considered essential by the IMA and allows the exchanging of a
native hardware audio format with another IMA compliant platform without data
conversion at the source. Because the destination platform cannot be expected to be
able to directly play the source data format or sample rate, the IMA created and tested
standard algorithms that can be performed real-time on the main CPU to convert the
data format and sampling rate to a native format and sampling rate. These algorithms
are published in Appendix D, and were tested during the audio compression selection
process.

The IMA urges vendors to support conversion from any standard format to any other, but the
lack of such support does not automatically render a system non-compliant.

DATWG Recommendation Page 6 of 40 21 Oct 1992

Appendix A: Data Type, Sample Rate,
and Stream Definition

Data Type Definitions

8-bit A-law, µ-law, mono

Refer to the CCITT G.711 specification for the exact definition of both µ-law (pronounced
mu-law) and A-law audio. A stereo version of this data type is not supported.

8-bit linear, unsigned, mono and stereo

This data type is an unsigned representation using 256 (48dB) discrete and equally divided
steps. The value 00h represents the most negative audio signal level, while the value 0FFh
represents the most positive. This data type is the same as defined in the Apple Macintosh
and MPC environments. Treating this data type as a bit stream, more significant
bits precede less significant bits.

16-bit linear, signed, mono and stereo

This data type is a 16-bit (96dB) signed representation with 65535 equally divided steps
between minimum and maximum amplitude. The signed nature of this data type dictates that
the value –32768 indicates the most negative audio signal level while 32767 is the
most positive. This data type is used in consumer CD audio players and is also
defined on several computing platforms. There are two variants of this data type. In one
variant the most significant byte of the sample value precedes the least significant
byte. In the other variant, the least significant byte precedes the most significant
byte. Integer values are represented using two’s complement representation.
Treating the least significant byte of these data types as a bit stream, more significant
bits precede less significant bits. Treating the most significant byte of these data types
as a bit stream, more significant bits precede less significant bits. The sign bit precedes
all other bits in the most significant byte.

4-bit ADPCM

This data type is a sign-magnitude representation of the difference between audio samples,
using an adaptive quantizer. The specific implementation of the quantizer adaptation
using table-based lookup was offered by Intel/DVI® as an open standard for use by the IMA.

Stereo Formats

Within each sample, there may be left channel and right channel information. When this
occurs, the left channel information always precedes the right channel information.

DATWG Recommendation Page 7 of 40 21 Oct 1992

Sample Rate Definitions
The sample, rates defined in the first section of this proposal (8.0 kHz,
11.025 kHz, 22.05 kHz, and 44.10 kHz) are nominal values. It will be up to the platform
implementation to achieve the most accurate approximation of these sampling rates
when handling the audio data types. Applications that synchronize audio with other
media elements need to be aware of the existence of non-exact sampling rates. The possible
accumulation of timing errors in playback systems fundamentally must be
accommodated by a synchronization mechanism in the architecture. The spirit of
the IMA is to embrace as much existing technology as possible. Therefore,
although a specific tolerance band is not recommended at this time, frequency tolerances
need to span as much current practice as possible.

Specifically, it is recommended that the tolerance band be large enough that equipment,
common in the industry, running at the nominal rates of 22.254 kHz, 11.127 kHz,
and 8.04 kHz are all properly embraced within the total tolerance build-up. For
simplicity, this is preferred over specifically calling out these nominal rates in the table of
“Recommended Digital Audio Interchange Formats”.

Note
This Recommendation does not encompass the methodology for tagging the audio stream
with data type and sample rate information, but expects these two attributes, and possibly
stream length (number of samples), to be the minimum additional information to be
specified elsewhere in the architecture.

DATWG Recommendation Page 8 of 40 21 Oct 1992

Appendix B: Audio Algorithm Requirements:

The IMA Digital Audio Technical Working Group of the Cross Platform Compatibility
Project set the following requirements during the search for an industry standard
uncompressed and audio compression and decompression algorithm that would be
suitable for real-time audio data exchange across various platforms such as the PC,
Macintosh and workstations.

This work group has selected a minimum number of uncompressed 8 bit and 16 bit digital
audio data stream definitions based on the following requirements.

Uncompressed Audio Format Requirements:
 Public domain algorithm and stream format.
 No license fees or royalty associated with using the algorithm as published.
 Provide at least one native PC, Macintosh, and workstation audio format that

allows sender of data to avoid need for data conversion.
 Format must be convertible to any of the other uncompressed formats using only

main processor and software in real-time (386/20 used for CPU utilization criteria).

The IMA recognizes the significant advantages that digital audio compression provides to the
problem of cross-platform audio interchange. Lower data rates (about 4 bits per
sample), greater dynamic range (16 bits of uncompressed data) and scaleable quality
and performance are all important advantages of audio compression algorithms.
Below are the requirements used for the selection of an audio compression/
decompression algorithm. It is not the intention of the IMA to restrict the
implementation of the algorithm to the main processor of a computer, rather the
DATWG IMA believes that an implementation designer should have the freedom to
offer scaleable audio capabilities to their customers. We desire to maximize the number
of platforms capable of playing/recording/exchanging digital audio.

Audio Compression and Decompression Algorithm Requirements:

 Public domain algorithm and stream format.
 Reference compression and decompression algorithms (pseudo-code or C) to

be published by the IMA if not already available in public domain.
 Compressed data stream definition may allow more sophisticated

compression algorithms to be used (scalability feature), however, published
decompression algorithm must be able to play resulting data stream
(compatibility requirement).

 No license fees or royalty associated with using the algorithm as published.
 Real-time decompression must be achievable on PC or workstation CPU

(386/20 used for CPU utilization criteria).
 Scalability of decompression bandwidth, etc., to accommodate range of

processor capability is acceptable.
 Non Real-time compression acceptable, or scaleable real-time compression on

PC or workstation CPU.
 Applicable across multiple frequencies, especially 8.0, 11.025, 22.05, and

44.1 kHz.
 Low data storage overhead for minimum bits per audio sample.
 A data stream definition conducive to computer environments.

DATWG Recommendation Page 9 of 40 21 Oct 1992

The DATWG developed a set of metrics for selecting an audio compression
algorithm. Several categories received both quantitative formulas and weighting and a
couple of categories and 30% of the points were reserved for individual member discretion
due to their market requirements. The points available for each algorithm under
consideration was a maximum of 100, as described below:

Compressed Audio Metrics:
 Subjective Listening (30 points):

Eleven audio tracks ten seconds in length from the SQAM Test CD were
compared (double blind) against the algorithms under evaluation. A five-point scale was
used to rate each algorithm for each track and each of the four sampling rates (both
DAT and cassette tapes were made available to ensure identical results for comparison):

5: indistinguishable from original
4: perceptible difference, but not annoying
3: slightly annoying
2: annoying
1: very annoying

Score sheets were used to send the data to a central point, for assignment of the results
to the proper algorithm (the ordering of the algorithms was scrambled for each
track and sampling rate). An arithmetic average was computed for each
algorithm under evaluation. The resulting score was used to calculate a point
value, linearly interpolating between the 30-point maximum for a subjective score
of 5, and 0 points for a subjective score of 1.

 Decode CPU Utilization (30 points):
The decode CPU utilization of the submitted algorithm in C language was measured
on a 386/33 machine. The TWG assigned the maximum point value if the algorithm
achieved 25% CPU utilization. The calculation was:
25 / (CPU Utilization) * 30 = points assigned.

 Multi-Generation Stability (5 points):
The algorithm was given the full 5 points if a stream of data that had been compressed
then uncompressed would remain unchanged (compressed and uncompressed results
matching) through subsequent passes. Zero points were assigned if the algorithm was
not stable.

 Compression Ratio (5 points):
The compression ratio was calculated from a linear interpolation of the algorithm bits
per sample (data and overhead average) with 5 points given for 4 bits per sample and
none for 16 bits per sample.

 Encode CPU Utilization (discretionary):
The encode CPU utilization of the submitted algorithm in C language was measured
on a 386/33 machine. The TWG assigned the maximum point value if the algorithm
achieved 25% CPU utilization. The calculation was:
25 / (CPU Utilization) * (discretionary value) = points assigned.

 Scalability of Encode CPU Utilization (discretionary):
The encode CPU utilization of the submitted algorithm in C language was measured
on a 386/33 machine using the best scaleable simplifications (such as minimum
predictors for ADPCM). The TWG assigned the maximum point value if the
algorithm achieved 25% CPU utilization. The calculation was:
25 / (CPU Utilization) * (discretionary value) = points assigned.

DATWG Recommendation Page 10 of 40 21 Oct 1992

Appendix C: Questions and Answers

 Why only four sampling rates? Why not 48 kHz and others?
The four sampling rates were chosen to cover the broadest base of platforms without
becoming redundant as a data exchange standard. Keep in mind that these
interchange formats are not intended to dictate the ONLY format in which audio can be
digitized. These formats are chosen primarily to simplify the problem of digital
audio content delivery. If hardware supports at least one of the proposed formats
(and it most likely does), then the conversion algorithms are available to translate
any IMA audio format to the hardware implementation.

 What is the DATWG doing about synchronization and random accessibility?

Good question. At present, the issues involving synchronization and random accessibility are
complex and different for every application. At this time, we have decided not to
include such information in the digital audio format definition. This is by no
means indicating that these issues are not important. Our plan is to define the base
level stream of audio and intend for other control aspects of the audio stream to be
defined at the next layer. For example, many applications do not require embedded
information in the audio stream. They simply want to play the audio linearly.
These definitions will suit these applications well. However, other applications
may need an embedded marker to keep synchronized with the audio. The IMA is
working on recommendations to solve these systems level problems. The IMA wanted
to define the basic data streams first.

 Are all computing platforms capable of real time conversion of the
proposed IMA audio formats?

Obviously, this depends on the hardware audio implementation and the performance of
the platform itself. Our goal has been to achieve “real-time” conversion between the different
formats on a machine comparable to an Intel 80386/20. Most of the conversions take less
than 25% of the 386/20’s bandwidth. However, there are cases where a
hardware mismatch with the IMA format may not achieve real-time conversion.
Participants in the IMA Architecture Technical Working Group believe that
multimedia platforms supported by their organizations can achieve real-time
conversion. The participants believe that these formats can be converted in real time, but
the Special Interests Groups (SIGs) of the IMA will need to verify this on each platform.
The goal is that all platforms will be able to play the formats real-time. However, the
quality of the playback is secondary to the requirement for real-time playback.

 What about platforms whose hardware does not natively support one of
the IMA audio formats?

These Recommended Practices supply the C language source code for conversion routines
between the defined IMA audio formats . However, i t wi l l be up to the
plat form implementation to optimize and adapt the conversions to the platform’s
native hardware. Fortunately, the conversion formats are easily adaptable and
should not present much problem.

 What is the precise definition of the audio data stream?
These Recommended Practices define the sampling rate and data sample representation
for each format. However, tagging the stream definition and synchronization issues are left to
upcoming IMA recommendations.

DATWG Recommendation Page 11 of 40 21 Oct 1992

Appendix D: Reference Algorithms

The DATWG realized that one barrier to getting the proposed Digital Audio
Interchange Formats adopted by all major platforms is the time and resources required to
implement the conversion routines as well as the selected ADPCM algorithm. They
decided to help this effort by publishing C source code of the various algorithms. In this
way the ports to different platforms and operating systems can be easily accomplished by
programmers who are not audio experts. However, it will still be up to the platform
implementation to optimize the algorithms for maximum performance.

Reference Algorithm Descriptions

1. Conversion Algorithms Overview

This section lists algorithms for converting between several popular digital audio data types
and for performing sample rate conversion (SRC). The algorithms listed do not
necessarily represent the most efficient method for performing each of the
conversions, but rather the most straight forward and readable. Efficiency can be
improved as desired. Tested C source code is used to demonstrate all of the algorithms.

The following data type conversion algorithms are included: 8-bit linear to 16-bit
linear, 16-bit linear to 8-bit linear, 16-bit linear to µ-law, µ-law to 16-bit linear, 16-
bit linear to A-law, A-law to 16-bit linear, 16-bit linear to 4-bit ADPCM, and 4-bit
ADPCM to 16-bit linear. Note that, although not the most efficient method,
conversion between any two of the formats not listed explicitly can be performed by
combining any two or more of the conversions listed. In all of these algorithms, the
variable “originalSample” will be used to indicate the digitized value before
conversion, and the variable “newSample” will be used to indicate the digitized value
after conversion.

The following sample rate conversion algorithms are included: integral lower-to-
higher sample rate (interpolation) with FIR filter, integral higher-to-lower sample rate
(decimation) with FIR filter, and non-integral sample rate (interpolation and decimation
together).

Included with each of the conversion algorithms are examples that show explicitly how the
conversion is accomplished. These examples are used for two reasons. The first
is to provide a step-by-step case-in-point of how each of the algorithms is executed so
there will be no confusion as to how the operations are to be performed. The
second is to show verification of an algorithm’s correctness. For example, each of the
companding examples can be verified by performing table lookups according to the
CCITT Recommendation G.711 or checking against known companding methods or
verified test data. Also, many times it is easier to follow an algorithm given an example.

DATWG Recommendation Page 12 of 40 21 Oct 1992

2. 16-bit/8-bit Conversion Overview

The first, most basic type of data format conversion is that from 8-bit to 16-bit linear and vice
versa.

2.1. 8-bit to 16-bit Conversion Algorithms

8-bit to 16-bit would be required, if, for instance, audio data was recorded using an 8-bit
ADC, but was to be played back on a 16-bit DAC. One way to do this 8-bit to
16-bit conversion is to simply append eight zeroes to the end of the 8-bit value,
effectively shifting the 8-bit original sample left eight places. This will “pad” the end
of the sample in order to provide for a full scale swing in the output. The resulting
left shifted value must then have its most significant bit (MSBit) inverted to switch
between unsigned and signed.

The variable originalSample is an 8-bit variable that holds the original unsigned, linear value
to be converted. The variable newSample is a signed, 16-bit variable that holds the
result of the conversion.

newSample = (originalSample << 8) ^ 0x8000;

Example:

originalSample => 0x5B
newSample = (0x5B << 8) ^ 0x8000 = 0x5B00 ^ 0x8000 == 0xDB00

DATWG Recommendation Page 13 of 40 21 Oct 1992

2.2. 16-bit to 8-bit Conversion Algorithms

16-bit to 8-bit would be required, if, say, audio data was recorded using a 16-bit ADC, but
was to be played back on an 8-bit DAC. The original sample must have its most
significant bit (MSBit) inverted to switch between signed and unsigned before
conversion to eight bits. One way to do this 16-bit to 8-bit conversion is to simply drop
the eight least significant bits from the original sample, effectively shifting the 16-bit
original sample right eight places. This is referred to as truncation.

The variable originalSample is a signed, 16-bit variable that holds the original linear value to
be converted. The variable newSample is an unsigned, 8-bit variable that holds the result of
the conversion.

newSample = (originalSample ^ 0x8000) >> 8;

Example:

originalSample => 0xD4A7
newSample = (0xD4A7 ^ 0x8000) >> 8 = 0x54A7 >> 8 == 0x54

Further modifications to the basic truncation approach can be made. The first is to round the
16-bit sample on the 8th bit and then drop the eight LSBits. An easy way to do this is to add
one to the 7th bit and then truncate. If the addition causes a carry into the 8th bit, then the
upper eight bits have effectively been rounded up. If not, the upper eight bits have been
rounded down.

newSample = ((originalSample ^ 0x8000) + 0x0080) >> 8; // add and truncate

Example:

originalSample => 0xD4A7
newSample = ((0xD4A7 ^ 0x8000) + 0x0080) >> 8 = 0x5527 >> 8 == 0x0055

Example:

originalSample => 0xD437
newSample = ((0xD437 ^ 0x8000) + 0x0080) >> 8 = 0x54B7 >> 8 == 0x0054

A more sophisticated method is to perform dithering on the 16-bit linear value
before truncation. Dithering is used to remove artifacts of quantization error. Dithering
causes the signal to constantly move between quantization levels, averaging the
quantization errors. Digital dithering can be accomplished using a (pseudo-) random
number generator. One particularly easy method is to generate a 9-bit (pseudo-)
random number and then compare that number with the least significant 9 bits of
the sampled value. If the 9 bits of the sampled value are greater than the (pseudo-)
random number, then a one (1) is placed in the LSBit (the 8th bit) of the resulting value
before truncation. If the (pseudo-) random number is greater than the 9 bits of the
sampled value, then a zero (0) is placed in the LSBit of the resulting value before
truncation.

randomNumber = GenerateRandomNumber(9) // generate a 9-bit random number
if ((originalSample & 0x01FF) > randomNumber);

newSample = ((originalSample ^ 0x8000) | 0x0100) >> 8;
// put a 1 in the LSBit and truncate

else
newSample = ((originalSample ^ 0x8000) & 0xFE00) >> 8;
// put a 0 in the LSBit and truncate

DATWG Recommendation Page 14 of 40 21 Oct 1992

Example:

originalSample => 0xD4A7
randomNumber = GenerateRandomNumber(9) == 0x004C
if ((0xD4A7 & 0x01FF) > 0x004C) = if (0x00A7 > 0x004C) == TRUE

newSample = ((0xD4A7 ^ 8000) | 0x0100) >> 8 = 0x55A7 >> 8 == 0x55

Example:

originalSample => 0xD437
randomNumber = GenerateRandomNumber(9) == 0x004C
if ((0xD437 & 0x01FF) > 0x004C) = if (0x0037 > 0x004C) == FALSE
else

newSample = ((0xD437 ^ 0x8000) & 0xFE00) >> 8 = 0x5400 >> 8 == 0x54

DATWG Recommendation Page 15 of 40 21 Oct 1992

3. 16-bit/µ-law Conversion Overview

The µ-law data format is specified by the CCITT Recommendation G.711 and is derived
from the telephony industry. This specification is the telephony standard used in the
United States and Japan. It is a non-linear (logarithmic) compression/decompression format
that dedicates more digitization codes to lower amplitude analogue signals with the
sacrifice of precision on higher amplitude signals. µ-law PCM matches a logarithmic
curve with a piece-wise linear approximation consisting of eight straight line segments.

Note: The procedure Normalize() performs two functions: 1) normalizes the value
passed in; 2) counts the number of bits required to shift the value in order to normalize
it. The number of shift bits is used in the µ-law and A-law algorithms to determine
the segment number, while the normalized value is used to compute the position within the
segment. Sample C code for this function is shown below:

Normalize(_16_BIT_SAMPLE *value)
{

numShiftBits = 0;
msb = (*value & 0x8000) >> 15;
nextmsb = (*value & 0x4000) >> 14;
while (msb == nextmsb)
{

*value << = 1;
numShiftBits ++;
msb = (*value & 0x8000) >> 15;
nextmsb = (*value & 0x4000) >> 14}

} /* end while */
return (numShiftBits);

} /* Normalize() */

The format of an 8-bit µ-law encoded value is XYYYZZZZ, where X is the sign bit, YYY is
the (3-bit) segment number, and ZZZZ is the (4-bit) position within the segment.

DATWG Recommendation Page 16 of 40 21 Oct 1992

3.1. 16-bit Linear to µ-law Conversion

Several methods may be employed to convert from a 16-bit linear PCM value to the encoded
µ-law value. The first is simply to use lookup tables. The CCITT Recommendation
G.711 provides the mapping between µ-law PCM and linear PCM, from which lookup
tables can be created.

The second method is to use a simple algorithmic approach. Because the CCITT
mapping table has regular characteristics to it, developing an algorithm for the
conversion process is possible. An algorithmic approach might be preferred to
eliminate the storage requirements necessary for lookup tables.

In this algorithm it is assumed that the original sample is a 16-bit , signed
(two’s complement) linear value. The algorithm outlined below is not necessarily the
most efficient algorithm, but will work. The variable originalSample is a 16-bit
variable that holds the original linear value to be converted. The variable newSample
is an 8-bit variable that holds the result of the conversion.

Briefly, the first step is to arithmetic shift right two places. If the resulting 14-bit
value is less than or equal to –8159, the resulting µ-law value will be 0x00 (this is the
lower bound). If the resulting value is greater than or equal to 8159, the resulting
µ-law value will be 0x80 (this is the upper bound). Otherwise, we first create the
sign bit, add 0x0084 to the absolute value of the 16-bit aligned original value
and the normalize the result. This normalization also returns a number,
numberOfShiftBits, used to determine the segment number. The position within
the segment is determined by looking at bits 11-8 of originalSample. The sign
bit, segment number, and position are then combined and all bits are inverted to create
the final 8-bit µ-law value.

originalSample >> = 2; // arithmetic shift right 2 places
if (originalSample < = -8159) // check lower boundary
{

newSample = 0x00;
}
else if (originalSample > = 8159) // check upper boundary
{

newSample = 0x80;
}
else // between the boundaries
{

X = (originalSample & 0x2000) >> 6; // create sign bit
if (originalSample & 0x2000) // abs(originalSample)

originalSample = -originalSample;
originalSample << = 2; // align on 16-bit boundary
originalSample + = 0x84; // add 0x0084
numberOfShiftBits = Normalize(&originalSample); // norm. originalSample
ZZZZ = (originalSample & 0x3C00) >> 10; // compute pos. in segment
YYY = (7 - numberOfShiftBits) << 4; // compute the segment #
newSample = X | YYY | ZZZZ; // combine sign bit, segment & position
newSample = ~newSample; // invert all bits

}

DATWG Recommendation Page 17 of 40 21 Oct 1992

Example:

originalSample => 0x0000
originalSample = 0x0000 >> 2 == 0x0000
if (0x0000 < = -8159) == FALSE
else if (0x0000 > = 8159) == FALSE
else

X = (0x0000 & 0x2000) >> 6 = 0x0000 >> 6 == 0x00
if (0x0000 & 0x2000) == FALSE
originalSample = 0x0000 << 2 == 0x0000
originalSample = 0x0000 + 0x84 == 0x0084
numberOfShiftBits = Normalize(&originalSample) == 7, originalSample == 0x4200
originalSample = 0x4200 ^ 0x4000 == 0x0200
ZZZZ = (0x0200 & 0x3C00) >> 10 = 0x0000 >> 10 == 0x00
YYY = (7 - 7) << 4 = 0 << 4 == 0x00
newSample = 0x00 | 0x00 | 0x00 == 0x00
newSample = ~0x00 == 0xFF

end else

Example:

originalSample => 0x3FFA
originalSample = 0x3FFA >> 2 == 0x0FFE
if (0x0FFE < = -8159) == FALSE
else if (0x0FFE > = 8159) == FALSE
else

X = (0x0FFE & 0x2000) >> 6 = 0x0000 == 0x00
if (0x0FFE & 0x2000) == FALSE
originalSample = 0x0FFE << 2 == 0x3FFA
originalSample = 0x3FFA + 0x84 == 0x407E
numberOfShiftBits = Normalize(&originalSample) == 0, originalSample == 0x407E
originalSample = 0x407E ^ 0x4000 == 0x007E
ZZZZ = (0x007E & 0x3C00) >> 10 = 0x0000 >> 10 == 0x00
YYY = (7 - 0) << 4 = 7 << 4 == 0x70
newSample = 0x00 | 0x70 | 0x00 == 0x70
newSample = ~0x70 == 0x8F

end else

DATWG Recommendation Page 18 of 40 21 Oct 1992

3.2. µ-law to 16-bit Linear Conversion

Here, again, several methods may be employed to convert from an encoded µ-law value to a
16-bit linear value. The first is to simply use lookup tables. The CCITT
Recommendation G.711 provides the mappings from µ-law PCM to linear PCM, from
which lookup tables can be created.

The second method is to use a simple algorithmic approach. Because the CCITT
mapping table has regular characteristics to it, developing an algorithm for the
conversion process is possible. An algorithmic approach might be preferred to
eliminate the storage requirements necessary for lookup tables. Here it is assumed
that the original sample is an 8-bit µ-law value. The algorithm outlined below is not
necessarily the most efficient algorithm, but will work. In the following algorithm,
the variable originalSample is an 8-bit variable that holds the original µ-law value to
be converted. The variable newSample is a 16-bit variable that holds the result of the
conversion.

Briefly, the algorithm is to first invert all bits of the input value. Then, the algorithm
splits, according to whether the input is positive or negative. If the input value is
positive, the segment position (ZZZZ) is shifted one bit left. After adding 33
(0x21) to this value, the number is then shifted left by the number of bits specified in
the segment number (YYY). Then 33 is subtracted to give the converted value. If
the input value is negative, the only difference from the positive case is that in the
final step, the value is subtracted from 33 instead of 33 being subtracted from the
value. The final step is to shift the resulting 14-bit linear value left two places in
order to align the sample on a 16-bit boundary. The value 33 is the amount the end-
points of the segments are offset from even powers of two. This is the main
difference between the µ-law and A-law (see Section 4 of this appendix)
specifications.

newSample = ~originalSample & 0x00FF; // invert all bits
X = (originalSample & 0x80) >> 7; // pick off the sign bit
YYY = (newSample & 0x0070) >> 4; // pick off the segment
newSample = (newSample & 0x000f) << 1; // pick off the position
newSample + = 0x0021; // add 0x21 to it
newSample << = YYY; // shift it by the segment amount
if (X) // branch according to

newSample -= 0x0021; // negative input
else

newSample = 0x0021 - newSample; // or positive input
newSample << = 2; // align on 16-bit boundary

Example:

originalSample => 0x000F
newSample = ~0x000F & 0x00FF = 0xFFF0 & 0x00FF == 0x00F0
X = (0x000F & 0x0080) >> 7 = 0x0000 >> 7 == 0x0000
YYY = (0x00F0 & 0x0070) >> 4 = 0x0070 >> 4 == 0x0007
newSample = (0x00F0 & 0x000F) << 1 = 0x0000 << 1 == 0x0000
newSample + = 0x0021 == 0x0021
newSample << = 0x0007 == 0x1080
if (0x0000) == FALSE
else

newSample = 0x0021 - 0x1080 == 0xEFA1
newSample << = 2 == 0xBE84

DATWG Recommendation Page 19 of 40 21 Oct 1992

Example:

originalSample => 0x0085
newSample = ~0x0085 & 0x00FF = 0xFF7A & 0x00FF == 0x007A
X = (0x0085 & 0x0080) >> 7 = 0x0080 >> 7 == 0x0001
YYY = (0x007A & 0x0070) >> 4 = 0x0070 >> 4 == 0x0007
newSample = (0x007A & 0x000F) << 1 = 0x000A << 1 == 0x0014
newSample + = 0x0021 == 0x0035
newSample << = 0x0007 == 0x1A80
if (0x0001) == TRUE

newSample = 0x1A80 - 0x0021 == 0x1A5F
newSample << = 2 == 0x697C

DATWG Recommendation Page 20 of 40 21 Oct 1992

4. 16-bit/A-law Conversion Overview

The A-law data format is specified by the CCITT Recommendation G.711 and is
derived from the telephony industry. This specification is the telephony standard used in
Europe. It is a non-linear (logarithmic) compression/decompression format that
dedicates more digitization codes to lower amplitude analog signals with the sacrifice
of precision on higher amplitude signals. A-law PCM matches a logarithmic
curve with a piece-wise linear approximation consisting of eight straight-line segments.
The only difference from the µ-law specification is that the endpoints lie on even
powers of two, instead of being offset by a value of 33 (0x21). Also, instead of
inverting all bits in the encoded datum, only the even bits and the sign bit are inverted.

The format of an 8-bit A-law encoded value is XYYYZZZZ, where X is the sign bit,
YYY is the (3-bit) segment number, and ZZZZ is the (4-bit) position within the
segment (the same as that for µ-law).

4.1. 16-bit Linear to A-law Conversion

Several methods may be employed to convert from a 16-bit PCM value to the encoded A-law
value. The first is simply to use lookup tables. The CCITT Recommendation
G.711 provides the mappings between A-law PCM and linear PCM, from which
lookup tables can be created.

The second method is to use a simple algorithmic approach. Because the CCITT
mapping table has regular characteristics to it, developing an algorithm for the
conversion process is possible. An algorithmic approach might be preferred to
eliminate the storage requirements necessary for lookup tables. Here it is assumed
that the original sample is a 16-bit linear, signed (two’s complement) value. The
algorithm outlined below is not necessarily the most efficient algorithm, but will work.
In the following algorithm, the variable originalSample is a 16-bit variable that holds
the original value to be converted. The variable newSample is an 8-bit variable that
holds the result of the conversion.

Briefly, the algorithm is to first check the boundary condition for the most negative 16-bit
value (–32768). If this condition is detected, a value of 0x2A is returned immediately. For all
other originalSample values, first determine the sign bit of the input sample. Next, the
absolute value of the input values is taken. In the A-law compression case, because
the zero segment values are computed in a slightly different fashion than values
in other segments, a conditional test follows to branch to the correct code segment. If
the absolute value of the input value is less than 256, the segment position (ZZZZ) is simply
the input value shifted right by 4 bits, YYY =0, and X is the same sign as the input.
The result is then XOR’ed with 0xD5. For all other input values, X, YYY, and
ZZZZ are computed as they were in the µ-law case with the exception that the offset
of 132 (0x84), which is 33 (0x21) shif ted left twice, i s not added to the
absolute value of the input before normalization.

DATWG Recommendation Page 21 of 40 21 Oct 1992

if (originalSample == –32768) // check boundary condition
{

newSample = 0x2A;
}
else
{

X = (originalSample & 0x8000) >> 8; // create the sign bit
if (originalSample & 0x8000) // abs(originalSample)

originalSample = –originalSample;
if (originalSample < 0x0100) // check for zero segment
{

ZZZZ = (originalSample >> 4) & 0x000f; // if zero segment, shift
// down 4 to get position

YYY = 0x0000; // create segment
}
else // not zero segment
{

numberOfShiftBits = Normalize(&originalSample); // normalize originalSample
ZZZZ = (originalSample & 0x3c00) >> 10; // create position
YYY = (7 – numberOfShiftBits) << 4; // create segment

}
newSample = X | YYY | ZZZZ; // combine sign bit, seg

// and position
newSample ^= 0xD5; // invert necessary bits

}

Example:

originalSample => 0x0000
X = (0x0000 & 0x8000) >> 8 = 0x0000 > 8 == 0x0000
originalSample = abs(0x0000) == 0x0000
if (0x0000 < 0x0100) == TRUE

ZZZZ = (0x0000 >> 4) & 0x000F = 0x0000 & 0x000F == 0x0000
YYY == 0x0000
newSample = 0x0000 | 0x0000 | 0x0000 == 0x0000
newSample = (0x0000 ^ 0x00D5) & 0x00FF = 0x00D5 & 0x00FF == 0x00D5

Example:

originalSample => 0x3108
X = (0x3108 & 0x8000) >> 8 = 0x0000 >> 8 == 0x0000
originalSample = abs(0x3108) == 0x3108
if (0x3108 < 0x0100) == FALSE
numberOfShiftBits = Normalize(0x3108) == 1, originalSample == 0x6210
ZZZZ = (0x6210 & 0x3C00) >> 10 = 0x2000 >> 10 == 0x0008
YYY = (7 – 1) << 4 = 0x0006 << 4 == 0x0060
newSample = 0x0000 | 0x0060 | 0x0008 == 0x0068
newSample = (0x0068 ^ 0x00D5) & 0x00FF = 0x00BD & 0x00FF == 0x00BD

Example:

originalSample => 0xC028
X = (0xC028 & 0x8000) >> 8 = 0x8000 >> 8 == 0x0080
originalSample = abs(0xC028) == 0x3FD8
if (0x3FD8 < 0x0100) == FALSE
numberOfShiftBits = Normalize(0x3FD8) == 1, originalSample == 0x7FA0
ZZZZ = (0x7FA0 & 0x3C00) >> 10 = 0x3C00 >> 10 == 0x000F
YYY = (7 – 1) << 4 = 0x0006 << 4 == 0x0060
newSample = 0x0080 | 0x0060 | 0x000F == 0x00EF
newSample = (0x00EF ^ 0x00D5) & 0x00FF = 0x003A & 0x00FF == 0x003A

DATWG Recommendation Page 22 of 40 21 Oct 1992

4.2. A-law to 16-bit Linear Conversion

Here, again, several methods may be employed to convert from an encoded A-law value to a
16-bit linear value. The first is to simply use lookup tables. The CCITT
Recommendation G.711 provides the mappings from A-law PCM to linear PCM, from
which lookup tables can be created.

The second method is to use a simple algorithmic approach. Because the CCITT
mapping table has regular characteristics to it, developing an algorithm for the conversion
process is possible. An algorithmic approach might be preferred to eliminate the storage
requirements necessary for lookup tables. Here it is assumed that the original sample
is an 8-bit A-law value. The algorithm outlined below is not necessarily the most
efficient algorithm, but will work. In the following algorithm, the variable
originalSample is an 8-bit variable that holds the original A-law value to be
converted. The variable newSample is a 16-bit variable that holds the result of the
conversion.

Briefly, the algorithm is to first invert all of the even bits and the sign bit (XOR
with OxD5). Next, the LSBit of the position is set after shifting one bit left. Then the
amount by which to shift the position bits is determined by subtracting one from the
segment bits. If this result is negative, then no extra bit (which may have been removed
during compression) need be added. If the result is equal to zero, then the interval
MSBit that was removed during compression will need to be added (OR’ed with 0x20). If
the result is positive, then the interval MSBit will be OR’ed in and the result will
be shifted left by an amount determined by the segment bits. Finally, the 13-bit
linear result is aligned on a 16-bit boundary and if the input was negative, the result is
negated.

tempValue = originalSample ^ 0x0005; // invert even bits
X = (temp Value & 0x0080) >> 7; // pick off the sign bit
newSample = ((tempValue & 0x000f) << 1) | 0x0001; // pick off position bits,

// shift, and set LSBit
YYY = (tempValue & 0x0070) >> 4; // pick off segment
if ((YYY – 1) == 0) // if (segment–1) == 0

newSample |= 0x0020; // add the interval MSBit
else if ((YYY –1) > 0) // otherwise, if it’s positive
{

newSample | = 0x0020; // add the interval MSBit
newSample << = (YYY–1); // and shift according to the segment

} // otherwise, don’t add 32
newSample << = 3; // align on 16–bit boundary
if (X) // if input value was negative

newSample = –newSample; // negate to get the output

DATWG Recommendation Page 23 of 40 21 Oct 1992

Example:

originalSample => 0x003C
newSample = 0x003C ^ 0x00D5 == 0x00E9
X = (0x00E9 & 0x0080) >> 7 = 0x0080 >> 7 == 0x0001
newSample = ((0x00E9 & 0x000F) << 1) | 0x0001 =

(0x0009 << 1) | 0x0001 = 0x0012 | 0x0001 == 0x0013
YYY = (0x00E9 & 0x0070) >> 4 = 0x0060 >> 4 == 0x0006
if ((0x0002 – 1) == 0) == FALSE
else if ((0x0002 – 1) > 0) == TRUE

newSample | = 0x0020 == 0x0033
newSample << = (0x0006 – 1) == 0x0660
newSample << = 3 = (0x0660 << 3) == 0x3300
if (0x0001) == TRUE

newSample = –0x3300 == 0xCD00

Example:

originalSample => 0x00BD
newSample = 0x00BD ^ 0x00D5 == 0x0068
X = (0x0068 & 0x0080) >> 7 = 0x0000 >> 7 == 0x0000
newSample = ((0x0068 & 0x000F) << 1) | 0x0001 =

(0x0008 << 1) | 0x0001 = 0x0010 | 0x0001 == 0x0011
YYY = (0x0068 & 0x0070) >> 4 = 0x0060 >> 4 == 0x0006
if ((0x0006 – 1) == 0) == FALSE
if ((0x0006 – 1) > 0) == TRUE

newSample | = 0x0020 == 0x0031
newSample << = (0x0006 – 1) == 0x0620
newSample << = (0x0620 << 3) == 0x3200
if (0x0000) == FALSE

Example:

originalSample => 0x00DF
newSample = 0x00DF ^ 0x00D5 == 0x000A
X = (0x000A & 0x0080) >> 7 = 0x0000 >> 7 == 0x0000
newSample = ((0x000A & 0x000F) << 1) | 0x0001 =

(0x000A << 1) | 0x0001 = 0x0014 | 0x0001 == 0x0015
YYY = (0x000A & 0x0070) >> 4 = 0x0000 >> 4 == 0x0000
if ((0x000 –1) == 0) == FALSE
else if ((0x000 – 1) > 0) == FALSE
newSample <<= 3 = (0x0x0015 << 3) == 0x00A8
if (0x0000) == FALSE

DATWG Recommendation Page 24 of 40 21 Oct 1992

5. Sample Rate Conversion (SRC) Overview

This section contains a brief description of sample rate conversion.

In order to provide complete cross-platform compatibility, the data interchange format must
be extended to include sample rate conversion methods. This is necessary because digital
audio hardware vendors support sample rates including 8 kHz, 11.025 kHz, 22.05 kHz, and
44.1 kHz. Suppose a software developer records deliverable media at 44.1 kHz, but the user
has hardware that only allows playback at 8 kHz. Even if the data format (say 16-bit linear)
was agreed upon, the user would not be able to effectively play the media.

With sample rate conversion, media recorded at any sample rate could conceivably be played
back at any other rate. However, special care must be taken when performing the sample rate
conversion. The techniques utilized in this sample rate conversion can have a dramatic
impact on the quality of the converted audio.

The sample rate conversion algorithms described below make use of finite duration impulse
response filters. See reference [6] (Digital Processing of Speech Signals, section 2.3.1) for an
introduction to FIR filter design as well as additional references.

In the algorithms that follow, several C macros are used which require brief explanation for a
thorough understanding of the sample code. These macros are intended to reduce the number
of lines of code presented, as well as allow for different implementations of the stated macros.

PUT_SAMPLE(channel, sampleNumber, numberOfChannels, bufferPtr, sample)

Places the value sample into the buffer pointed to by bufferPtr, given the channel (i.e.
left or right), the sampleNumber, and the numberOfChannels in the audio stream.

GET_SAMPLE(channel, sampleNumber, numberOfChannels, bufferPtr, sample)

Retrieves the value sample from the buffer pointed to by bufferPtr, given the channel
(left or right), the sampleNumber, and the numberOfChannels in the audio stream.

MAC(result, op1, op2)

Performs a multiply/accumulate by first multiplying op1 and op2 and then adding this
to result.

M0DULO(index, increment, arrayLength)

Performs a pseudo-modulous operation on index by first adding increment to index
and then setting index equal to index mod arrayLength.

RM0DULO(index, decrement, arrayLength)

Performs a “reverse” pseudo-modulous operation on index by first subtracting
decrement from index. If the resulting index is negative, arrayLength is added to
index.

DATWG Recommendation Page 25 of 40 21 Oct 1992

5.1. Integral Higher-to-Lower Sample Rate Conversion (Decimation)

Decimation is the process of converting from a higher sample rate to a lower sample rate.
Simply throwing out samples is sometimes sufficient, but this is usually not the
case. Because the higher-sample rate also incorporates a higher cutoff frequency, the
decimated version could very well have out-of-band frequencies when played back at a lower
sample rate (aliasing). Therefore, a low-pass filter is needed during decimation.
One suggested method is to incorporate the low-pass filter, using an FIR, into the
decimation process. FIR filters have the advantage of linear phase, unconditional
stability, and simple and easy coefficient design. Also, if implemented on a DSP,
many of the advantages inherent in DSPs, such as single-instruction cycle
multiply/accumulate, simultaneous coefficient and data fetches, and circular buffers,
can be used to reduce the time needed to do sample rate conversion.

The basis for this type of filter is to set up a delay line of length N samples. If M
represents the decimation factor (for example, if the conversion was from 48 kHz
down to 24 kHz, M = 2), then the FIR would calculate a new output for every M
inputs into the delay line. The output is the sum of products of N samples and N
coefficients (i.e. N taps).

The following algorithm is for a mono digital audio stream only. Expanding this
algorithm to include stereo audio streams is straightforward. All variables are 16-bit,
except for tmpVal, which is a 32-bit variable, and all samples are assumed to be 16-bit PCM
values.

for (j=0; j<numSamples;)
{

for (k = 0; k < decimationFactor; k ++)
{

// put sample into delay line
GET_SAMPLE(CHANNEL_1, j, MONO, originalSamplePtr, temp);
PUT_SAMPLE(CHANNEL_1, sampleCounter, MONO, delayLinePtr, temp);

// modify the sample counter
MODULO(sampleCounter, 1, numberOfTaps);
j++;

}

tmpVal = 0;
m = sampleCounter;
n = sampleCounter–1;
if (n < 0)

n = number0fTaps–1;
for (k = 0; k < (numberOfTaps/2); k ++)
{

GET_SAMPLE(CHANNEL_1, m, MONO, delayLinePtr, temp);
GET_SAMPLE(CHANNEL_1, n, MONO, delayLinePtr, temp1);
MAC(tmpVal, coeff[k], (temp + temp1));
MODULO(m, 1 ,numberOfTaps);
RMODULO(n, 1, numberOfTaps);

}
PUT SAMPLE(CHANNEL 1, ((j/decimationFactor)–1), MONO, newSamplePtr,

 (tmpVal >> 15));
}

DATWG Recommendation Page 26 of 40 21 Oct 1992

5.2. Integral Lower to Higher Sample Rate Conversion (Interpolation)

The opposite of decimation is interpolation – effectively adding new samples into the
digital data stream at regularly spaced intervals. Once the new values have been inserted, the
signal must be low-pass filtered in order to prevent images in the spectrum of the lower
sample rate from appearing in the extended baseband of the higher sample rate
spectrum. Again, an FIR is the filter of choice for the same reasons as mentioned in Section
5.1 above.

The basis for this type of filter is to insert (L–1) zero-valued samples after each input
sample and then low-pass filter the resulting data stream, where L is the interpolation
factor (for example, if the conversion was from 22.05 kHz up to 44.1 kHz, L =2). In
actuality, the rate expander (the process of inserting zero-valued samples) can be
eliminated and the delay line can be shortened from N to (N/L). In this way, the delay
line is updated only after L outputs are calculated. The (N/L) data samples are
accessed for each set of L output calculations, and each output calculation accesses
every Lth coefficient. Doing this effectively skips the coefficients corresponding to
zero-valued samples, the multiplication of which would have been zero. Note that (N/L)
must be an integer.

sampleCounter = 0;
newSampleCount = 0;
coeffCounter = 0;
for (n = 0; n < numSamples; n++)
{

for (j = 0; j < (interpolationFactor–1); j++)
{

tmpVal = 0;
k = sampleCounter;
h = coeffCounter;
for (m = 0; m < delayLineLength; m++)
{

GET_SAMPLE(CHANNEL_1, k, MONO, delayLinePtr,temp);
MAC(tmpVal, coeff[h], temp);
MODULO(k, 1, delayLineLength);
MODULO(h, interpolationFactor, numberOfTaps);

}
PUT_SAMPLE(CHANNEL_1, newSampleCount, MONO, newSamplePtr, (tmpVal >> 15));
coeffCounter++;
newSampleCount++;

}
GET_SAMPLE(CHANNEL_1, n, MONO, originalSamplePtr, temp);
PUT_SAMPLE(CHANNEL_1, sampleCounter, MONO, delayLinePtr, temp);
MODULO(sampleCounter, 1, delayLineLength);
tmpVal = 0;
k = sampleCounter;
h = coeffCounter;

for (m = 0; m < delayLineLength; m ++)
{

GETSAMPLE(CHANNEL_1, k, MONO, delayLinePtr, temp);
MAC(tmpVal, coeff[h], temp);
MODULO(k, 1, delayLineLength);
MODULO(h, interpolationFactor, numberOfTaps);

}
PUT_SAMPLE(CHANNEL_1, newSampleCount, MONO, newSamplePtr, (tmpVal >> 15));
coeffCounter –= (interpolationFactor – 1);
newSampleCount++;

}

DATWG Recommendation Page 27 of 40 21 Oct 1992

5.3. Non-integral Sample Rate Conversion (Interpolation and Decimation
Together)

Note that if the conversion rate is an integral number, either decimation or interpolation alone
will work (for example, converting from 22.05 kHz to 44.1 kHz would only require an
interpolator, while converting from 44.1 kHz to 22.05 kHz would only require a
decimator). However, if the conversion is a non-integral number, then both an
interpolator and a decimator would need to be used. For example, if the
conversion was from 8 kHz to 11.025 kHz, then an interpolation with L = 441
followed by a decimation of M = 320 could be used. Therefore, a non-integral sample
rate conversion requires additional computation because of the combination. Some of
the redundancy involved in combining these two techniques can be eliminated in
order to speed the conversion process. For example, the low-pass filtering could be
performed only once, instead of once for the interpolation and once for the decimation.

DATWG Recommendation Page 28 of 40 21 Oct 1992

6. ADPCM Reference Algorithms

The DATWG Reference Algorithms for ADPCM compression and decompression
are an implementation of adaptive quantization with fixed prediction, discussed in reference
[6] (Digital Processing of Speech Signals, section 5.7.1). The specific implementation
of the quantizer adaptation using table-based lookup was offered by Intel/DVI® as an
open standard for use by the IMA.

This algorithm encodes only the difference between consecutive samples, allowing a
wide dynamic range to be maintained with a minimum data bandwidth. It is applicable
to all four of the DATWG approved sample rates.

6.1. 16-bit Linear to 4-bit ADPCM Compression

The following algorithm assumes originalSample is a 16-bit two’s complement variable.
The variable newSample is the resulting 4-bit ADPCM sample.

The algorithm finds the difference between the originalSample and predictedSample, the
output of its predictor. This difference is then quantized down to a 4-bit newSample, using
stepsize. The 4-bit newSample has a sign-magnitude format. After newSample has been
calculated, it is uncompressed using the same quantization stepsize to obtain a linear
difference identical to that calculated by the decompressor. In order to correct
for truncation errors in the quantization, ½ is effectively added to newSample during
the expansion. This difference is added to predictedSample to form a prediction for the
next sequential originalSample. newSample is used to adjust an index into the
stepsizeTable. This index points to a new stepsize in the stepsizeTable.
predictedSample, stepsize, and index must be static variables between samples.

Preinitialized variables:

predictedSample = 0; /* output of ADPCM predictor */
index = 0; /* index into stepsizeTable */
stepsize = 7; /* quantizer stepsize
indexTable[16] = {–1, –1, –1, –1, 2, 4, 6, 8, /* Table of index changes */

–1, –1, –1, –1, 2, 4, 6, 8);
stepsizeTable[89] = (7, 8, 9, 10, 11, 12, 13, 14, /* quantizer lookup table */

16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60,
66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209,
230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878,
2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871,
5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635,
13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767);

DATWG Recommendation Page 29 of 40 21 Oct 1992

Calculation for each sample:

/* find difference from predicted sample: */
difference = originalSample – predictedSample;
if (difference > = 0) /* set sign bit and find absolute value of difference */
{

newSample = 0; /* set sign bit(newSample[3]) to 0 */
}
else
{

newSample = 8; /*set sign bit(newSample[3]) to one */
difference = –difference; /* absolute value of negative difference */

}
mask = 4; /* used to set bits in newSample*/
tempStepsize = stepsize; /* store quantizer stepsize for later use */
for (i = 0; i < 3; i++) /* quantize difference down to four bits */
{

if (difference >= tempStepsize)
{ /* newSample[2:0] = 4 * (difference/stepsize) */
newSample | = mask; /* perform division ... */
difference –= tempStepsize; /* ... through repeated subtraction */
}
tempStepsize >>=1; /* adjust comparator for next iteration */
mask >>=1; /* adjust bit-set mask for next iteration */

}
/* 4-bit newSample can be stored at this point */
/* compute new sample estimate predictedSample */
difference = 0; // calculate difference = (newSample + ½) * stepsize/4
if (newSample & 4) // perform multiplication through repetitive addition

difference + = stepsize;
if (newSample & 2)

difference + = stepsize >> 1;
if (newSample & 1)

difference + = stepsize >> 2;
difference + = stepsize >> 3;
/* (newSample + ½) * stepsize/4 = newSample * stepsize/4 + stepsize/8 */
if (newSample & 8) /* account for sign bit */

difference = –difference;
/* adjust predicted sample based on calculated difference: */
predictedSample + = difference;
if (predictedSample > 32767) /* check for overflow */

predictedSample = 32767;
else if (predictedSample < –32768)

predictedSample = –32768;

/* compute new stepsize */
/* adjust index into stepsize lookup table using newSample */
index + = indexTable[newSample];
if (index < 0) /* check for index underflow */

index = 0;
else if (index > 88) /* check for index overflow */

index = 88;
stepsize = stepsizeTable[index]; /* find new quantizer stepsize */

DATWG Recommendation Page 30 of 40 21 Oct 1992

Example:
originalSample => 0x873F, predictedSample => 0x8700, stepsize => 73, index => 24
difference = 0x873F – 0x8700 == 0x3F == 63
if (63 > = 0) == TRUE

newSample = 0;
mask = 4;
tempStepsize = 73
for (i = 0)
{

if (63 > = 73) == FALSE
tempStepsize >> = 1 = (73 >> 1) == 36
mask >> = 1 = (4 >> 1) == 2

}
for (i = 1)
{

if (63 > = 36)
{

newSample |= 2 = (0 | 2) == 2
difference –= 36 = (63 – 36) == 27

}
tempStepsize >> = 1 = (36 >> 1) == 18
mask >> =1 = (2 >> 1) == 1

}
for (i = 2)
{

if (27 > = 18)
{

newSample | = 1 = (2 | 1) == 3
difference – = 18 = (27 – 18) == 9

}
tempStepsize >> =1 = (18 >> 1) == 9
mask >>= 1 = (1 >> 1) == 0

/* 4-bit newSample can be stored at this point */

difference = 0;
if (3 & 4) == FALSE
if (3 & 2) == TRUE

difference + = 73 >> 1 = (0 + 36) == 36
if (3 & 1) == TRUE

difference + = 73 >> 2 = (36 + 18) == 54
difference + = 73 >> 3 = (54 + 9) == 63
if (3 & 8) == FALSE
predictedSample + = 63 = (0x8700 + 0x3F) == 0x873F == –30913
if (–30913 > 32767) == FALSE
else if (–30913 < –32768) == FALSE

index + = indexTable[3] = (24 + –1) == 23
if (23 < 0) == FALSE
else if (23 > 88) == FALSE

DATWG Recommendation Page 31 of 40 21 Oct 1992

6.2. 4-bit ADPCM to 16-bit Linear Decompression

The following algorithm assumes originalSample is a 4-bit ADPCM sample. The variable
newSample is the resulting 16-bit two’s complement variable.

originalSample is uncompressed using a quantization stepsize to obtain a linear
difference. In order to correct for truncation errors in the quantization, ½ is effectively
added to originalSample during the expansion. This difference is added to
predictedSample to form a linear newSample. originalSample is used to adjust an
index into the stepsizeTable. This index points to a new stepsize in the stepsizeTable.
newSample, stepsize, and index must be static variables between samples.

Preinitialized variables:

predictedSample = 0; /* output of ADPCM predictor */
index = 0; /* index into stepsizeTable */
stepsize = 7; /* quantizer stepsize */
indexTable[16] = {–1,–1,–1,–1, 2, 4, 6, 8, /* Table of index changes */

 –1,–1,–1,–1, 2, 4, 6, 8);
stepsizeTable[89] = {7, 8, 9, 10, 11, 12, 13, /* quantizer lookup table */

14, 16, 17, 19, 21, 23, 25, 28,
31, 34, 37, 41, 45, 50, 55, 60,
66, 73, 80, 88, 97, 107, 118,
130, 143, 157, 173, 190, 209, 230,
253, 279, 307, 337, 371, 408, 449,
494, 544, 598, 658, 724, 796, 876,
963, 1060, 1166, 1282, 1411, 1552,
1707, 1878, 2066, 2272, 2499, 2749,
3024, 3327, 3660, 4026, 4428, 4871,
5358, 5894, 6484, 7132, 7845, 8630,
9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385,
24623, 27086, 29794, 32767);

DATWG Recommendation Page 32 of 40 21 Oct 1992

Calculation for each sample:

/* compute predicted sample estimate newSample */
/* calculate difference = (originalSample + ½) * stepsize/4: */
difference = 0;
if (originalSample & 4) /* perform multiplication through repetitive addition */

difference + = stepsize;
if (originalSample & 2)

difference + = stepsize >> 1;
if (originalSample & 1)

difference + = stepsize >> 2;
/* (originalSample + ½) * stepsize/4 =originalSample * stepsize/4 + stepsize/8: */
difference + = stepsize >> 3;
if (originalSample & 8) /* account for sign bit */

difference = –difference;
/* adjust predicted sample based on calculated difference: */
newSample + = difference;
if (newSample > 32767) /* check for overflow */

newSample = 32767;
else if (newSample < –32768)

newSample = –32768;

/* 16-bit newSample can be stored at this point */

/* compute new stepsize */
/*adjust index into stepsize lookup table using originalSample: */
index + = indexTable[originalSample];
if (index < 0) /* check for index underflow */

index = 0;
else if (index > 88) /* check for index overflow */

index = 88;
stepsize = stepsizeTable[index]; /* find new quantizer stepsize */

Example:
OriginalSample => 0x3, newSample[previous] => 0x8700, stepsize => 73, index => 24

difference = 0;
if (0x3 & 4) == FALSE
if (0x3 & 2) == TRUE

difference + = 73 >> 1 = (0 + 36) == 36
if (0x3 & 1) == TRUE

difference + = 73 >> 2 = (36 + 18) == 54
difference + = 0x73 >> 3 = (54 + 9) == 63
if (0x3 & 8) == FALSE
newSample + = 0x63 = (0x8700 + 63) == 0x873F
if (0x8763 > 32767) == FALSE
else if (0x8763 < –32768) == FALSE

index + = indexTable[0x3] = (24 + –1) == 23
if (23 < 0) == FALSE
else if (23 > 88) == FALSE
stepsize = stepsizeTable[23] == 66

DATWG Recommendation Page 33 of 40 21 Oct 1992

Algorithm References

[1] Digital Signal Processing Applications Using the ADSP-2100 Family,
by The Applications Staff of Analog Devices, DSP Division, ed. Amy Mar,
Prentice Hall, Englewood Cliffs, NJ, 1990.

[2] The Art of Digital Audio, Watkinson, J.,
Focal Press, Boston, MA, revised reprint, 1989.

[3] Principles of Digital Audio, Pohlmann, K.,
Howard W. Sams & Company, Indianapolis, IN, second edition, 1989.

[4] “Object Oriented Approaches to Digital Audio Programming”, Snowman, G.,
A Submission to the IMA Digital Audio TWG, Randall House Associates, Inc., July 31, 1991.

[5] “Pulse Code Modulation (PCM) of Voice Frequencies”,
CCITT Recommendation G.711, 1972.

[6] Digital Processing of Speech Signals, L. R. Rainer and R. W. Schafer,
Prentice Hall, Englewood Cliffs, NJ, 1978.

Reference Algorithm Code Listings

Reference Algorithm Code listings are available on request.

DATWG Recommendation Page 34 of 40 21 Oct 1992

Appendix E: Glossary

 ADPCM: Adaptive Differential Pulse Code Modulation. A data type based on
encoding only the differences between audio samples, which varies the encoding
depending on the audio signal. The DVI® ADPCM algorithm varies the quantization
stepsize used, to adapt to different audio spectral content.

 A-law: A type of audio data companding popular in Europe.

 CCITT: International Telegraph and Telephone Consultative Committee. An agency of
the United Nations, devoted to compatibility in telephone and data
communication systems.

 companded: An exponential encoding of audio data, such that the dynamic range is
compressed during encoding, and later expanded during decoding. For a given
number of bits, companded data uses a greater number of binary codes to represent
small signal levels than linear data, resulting in a greater dynamic range at the
expense of a poorer S/(N+D) ratio.

 CPU: Central Processing Unit of computer platform. For example, 80386, 68000, etc.

 data type: The binary encoding of a particular sample. 8-bit linear, 16-bit
linear, 8-bit companded, and 4-bit ADPCM are the audio data types discussed in this
document. Determines the dynamic range and S/(N+D) ratio of an audio format, as
well as storage/throughput requirements.

 DATWG: Digital Audio Technical Working Group. Component group of the
IMA that created the initial drafts of these Recommended Practices.

 DAFOG: Digital Audio Focus Group. Component group of the IMA
Architecture Technical Working Group that is continuing the development
of digital audio recommenedations.

 decimation: Reduction of sample rate by removal of samples.

 DSP: Digital Signal Processor. A processor that is optimized for very fast
mathematical processing.

 DVI®: Digital Video Interactive. Audio/Video compression technology
developed by Intel’s DVI® group. The DATWG is recommending DVI®’s
ADPCM as a standard data type.

 dynamic range: A ratio of the largest encodable audio signal to the smallest
encodable signal. Expressed in decibels. For linear audio data types, the
dynamic range 6 * (number of bits) dB.

 endianess: The ordering of bits and bytes within a data variable.

 FIR: Finite duration Impulse Response filter. A signal-processing filter that does
not use any feedback components.

 format: Used in this document in reference to the two key attributes of audio data,
data type and sampling rate.

DATWG Recommendation Page 35 of 40 21 Oct 1992

 frequency response: A system’s ability to encode the spectral content of audio data
between 0 Hz and 20 kHz. A format’s sample rate determines the maximum possible
audio frequency encoded (known as the Nyquist frequency) by the following formula:
sample rate > 2 * Nyquist frequency.

 IMA: Interactive Multimedia Association. Computer/Audio/Video industry trade
association that has been working to promote multimedia application development.

 interpolation: Increase in sample rate by introduction of processed samples.

 linear: A variety of data type with an even distribution of binary codes over the
full range of signal level.

 low-pass filter: A signal processing function that removes spectral content
above a cutoff frequency.

 MPC: Multimedia PC. A multimedia hardware and API standard developed by
Microsoft and several PC vendors.

 PCM: Pulse Code Modulation. A data type based on encoding a signal’s level
at a discrete time.

 platform: Type of computer system as defined by its hardware architecture
and operating system/environment.

 real-time: Processing that occurs at the same time as the playback or capture of
digital audio/video.

 sampling rate: The frequency at which analog audio signals are measured. Each sample
is a measurement of an analog signal’s level at a discrete time. This attribute affects an
audio format’s frequency response as well as storage/throughput requirements.

 S/(N + D) Ratio: Signal to (Noise + Distortion Ratio). Ratio of the original signal
level to the level of added noise and distortion. Measured in decibels.

 SQAM: Sound Quality Assessment Material. A digital audio compact disc
published by the European Broadcasting Union for subjective test purposes.

 stream: A time-ordered sequence of samples.

 µ-law: A type of audio data companding popular in the U.S. and Japan.

DATWG Recommendation Page 36 of 40 21 Oct 1992

Appendix F: Development of the First Edition of the
Digital Audio Recommended Practices

This first edition of the Recommended Practices for digital audio interchange is the work of
two groups. Development of the recommendations was begun by the Digital
Audio Technical Working Group in July, 1991. The efforts of the DATWG
culminated in draft recommendations which were published in a special edition of
the IMA Compatibility Project Proceedings in May, 1992. The DATWG then
disbanded. A Digital Audio Focus Group (DAFOG) of the IMA Architecture
Technical Working Group was created in June, 1992, to continue the work of the
DATWG.

The DAFOG welcomes written comments on these recommendations. Comments
sent to IMA headquarters will be forwarded to the working group, or may be mailed
directly to the chair of the group:

Richard Goldhor
AudioFile, Inc.
20 Militia Drive, Suite 20
Lexington, MA 02173
Internet Address: rgoldhor@afi.com

Participants in the Digital Audio Focus and Working Groups

Robert Adams (DATWG) Analog Devices

Thomas Agler (DATWG) TRW LSI Products

Robert Bauman (DATWG) Antex Electronics

Gerard Benbassat (DATWG) Texas Instruments, Inc.

Rita Brennan (DAFOG) Apple Computer, Inc.

Gary Brinck (DAFOG) IBM

Bill Bucklen (DATWG) TRW LSI Products

Kanwar Chadha (DAFOG) Consultant

Willard Chang (DATWG) National Semiconductor

Glen Chapman (DATWG) Online Computer Systems

Michael Chen (DATWG) Fluent Machines, Inc.

Britt Conner (DATWG) Digidex

Geoff Dahl (DATWG) Microsoft Corporation

Mark Davis (DATWG) Dolby Labs

Richard Davis (DATWG) Regency Systems

Richard Goldhor (Chair, DAFOG) AudioFile, Inc.

Carl Goodwin (DATWG) Tektronix, Inc.

Jay Hickam (DATWG) Artisoft

DATWG Recommendation Page 37 of 40 21 Oct 1992

Richard Hodges (DAFOG) Motorola Semiconductor Products, Inc.

Mark Konower (DAFOG) AT&T

Scott Lewis (DAFOG) DSL Enterprises

Jim Mann (DATWG) Compaq Computer Corporation

Brian Marquardt (DAFOG) IMA Compatibility Project

Pat Maupin (DATWG) Video Associates Labs.

Steve McDaniel (DATWG) WordPerfect Corp.

Patrick McElhatton (DAFOG, DATWG) Hewlett-Packard Company

David McFarling (DATWG) Midwest Multimedia

Monty McGraw (Chair, DATWG) Compaq Computer Corporation

David A. Miller (DATWG) Compaq Computer Corporation

Marc Miller (DATWG) Director of Multimedia

Ken Mills (DATWG) System Software Engineer

Jack Murphy (DATWG) Siemens Nixdorf

Davis Pan (DAFOG, DATWG) Digital Equipment Corp.

Jay Reimer (DAFOG) Texas Instruments, Inc.

Tom Rettig (DATWG) Broderbund Software

Reed Rinn (DATWG) Video Associates Labs.

David A. Rivkin (DATWG) Winfon Engineering

Isaac Salzman (DAFOG) Sun Microsystems, Inc.

Uwe Schneider (DAFOG) Fraunhofer

Jeff Scott (DATWG) Crystal Semiconductor

Zeev Shpiro (DATWG) Digispeech, Inc.

Geoff Snowman (DATWG) Multimedia Analyst

John Stautner (DATWG) Aware, Inc.

Mark Stout (DATWG) Compaq Computer Corporation

Tac Sugiyama (DATWG) Sony Corporation of America

Dustin C. Sykes (DATWG) O.A. Com

Steve Turner (DATWG) Antex Electronics

Tom White (DAFOG) Roland Corporation

Dave Wilson (DAFOG, DATWG) Apple Computer, Inc.

Yuhang Wu (DATWG) Digispeech, Inc.

DATWG Recommendation Page 38 of 40 21 Oct 1992

Other Names of Interest

Phil Dodds
IMA Compatibility Project Director
RANDALL HOUSE ASSOCIATES, INC.
9 Randall Court
Annapolis, MD 21401
TEL: 410-626-1380
FAX: 410-263-0590
EMAIL: 70734.1123@CompuServe .com

Original scanned document OCR’d by Daniel F F Ford, Gerroa, Australia
(Original formatting not preserved, and corrections applied)

If any errors found please e-mail dfnojunk@shoalhaven.net.au so document can be updated.
DF-OCR Issue 1, 7 February 2010

mailto:dfnojunk@shoalhaven.net.au

DATWG Recommendation Page 39 of 40 21 Oct 1992

Notes

DATWG Recommendation Page 40 of 40 21 Oct 1992

	Overview
	Recommendation
	Digital Audio Data Types
	Digital Audio Sampling Rates
	Recommended Digital Audio Interchange Formats
	Digital Audio Format Conversion

	Appendix A: Data Type, Sample Rate,
	and Stream Definition
	Data Type Definitions
	8-bit A-law, µ-law, mono
	8-bit linear, unsigned, mono and stereo
	16-bit linear, signed, mono and stereo
	4-bit ADPCM
	Stereo Formats

	Sample Rate Definitions
	Note

	Appendix B: Audio Algorithm Requirements:
	Uncompressed Audio Format Requirements:
	Audio Compression and Decompression Algorithm Requirements:
	Compressed Audio Metrics:

	Appendix C: Questions and Answers
	Appendix D: Reference Algorithms
	Reference Algorithm Descriptions
	1. Conversion Algorithms Overview
	2. 16-bit/8-bit Conversion Overview
	2.1. 8-bit to 16-bit Conversion Algorithms
	2.2. 16-bit to 8-bit Conversion Algorithms

	3. 16-bit/µ-law Conversion Overview
	3.1. 16-bit Linear to µ-law Conversion
	3.2. µ-law to 16-bit Linear Conversion

	4. 16-bit/A-law Conversion Overview
	4.1. 16-bit Linear to A-law Conversion
	4.2. A-law to 16-bit Linear Conversion

	5. Sample Rate Conversion (SRC) Overview
	5.1. Integral Higher-to-Lower Sample Rate Conversion (Decimation)
	5.2. Integral Lower to Higher Sample Rate Conversion (Interpolation)
	5.3. Non-integral Sample Rate Conversion (Interpolation and Decimation Together)

	6. ADPCM Reference Algorithms
	6.1. 16-bit Linear to 4-bit ADPCM Compression
	6.2. 4-bit ADPCM to 16-bit Linear Decompression

	Algorithm References
	Reference Algorithm Code Listings
	Appendix E: Glossary
	Appendix F: Development of the First Edition of the
	Digital Audio Recommended Practices

