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Abstract. We study approximating multivariate functions from a reproducing ker-
nel Hilbert space with the error between the function and its approximation measured
in a weighted L2-norm. We consider functions with an arbitrarily large number of
variables, d, and we focus on the randomized setting with algorithms using standard
information consisting of function values at randomly chosen points.

We prove that standard information in the randomized setting is as powerful as
linear information in the worst case setting. Linear information means that algorithms
may use arbitrary continuous linear functionals, and by the power of information we
mean the speed of convergence of the nth minimal errors, i.e., of the minimal errors
among all algorithms using n function evaluations. Previously, it was only known that
standard information in the randomized setting is no more powerful than the linear
information in the worst case setting.

We also study (strong) tractability of multivariate approximation in the randomized
setting. That is, we study when the minimal number of function evaluations needed
to reduce the initial error by a factor ε is polynomial in ε−1 (strong tractability), and
polynomial in d and ε−1 (tractability). We prove that these notions in the randomized
setting for standard information are equivalent to the same notions in the worst case
setting for linear information. This result is useful since for a number of important
applications only standard information can be used and verifying (strong) tractability
for standard information is in general difficult, whereas (strong) tractability in the
worst case setting for linear information is known for many spaces and is relatively
easy to check.

We illustrate the tractability results for weighted Korobov spaces. In particular,
we present necessary and sufficient conditions for strong tractability and tractability.
For product weights independent of d, we prove that strong tractability is equivalent
to tractability.

We stress that all proofs are constructive. That is, we provide randomized algo-
rithms that enjoy the maximal speed of convergence. We also exhibit randomized
algorithms which achieve strong tractability and tractability error bounds.

1. Introduction

Multivariate approximation is one of the most commonly studied problems in inform-
ation-based complexity. The main reason is that many other continuous problems are
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intrinsically related to multivariate approximation. Examples include multivariate in-
tegration, solution of partial differential or integral equations, quasi-linear problems,
and some non-linear problems, see for example [25, 30] as well as Section 4.

In this paper, by multivariate approximation we mean approximation of functions
defined on D ⊆ Rd that belong to a reproducing kernel Hilbert space. We stress that
the number of variables, d, can be arbitrarily large. The distance between the function f
and its approximation A(f) provided by an algorithm A is measured in the ρ-weighted
L2-norm,

‖f − A(f)‖ =

(∫
D

|f(x)− A(f)(x)|2 ρ(x) dx

)1/2

for a probability density function ρ.
The algorithm errors can be studied in the worst case, average case, asymptotic

and/or randomized settings, see e.g., [13, 19, 20, 21, 22, 23, 29] for more details. We
focus here on the randomized setting and show relations between the randomized and
worst case settings.

We consider algorithms that use a finite number of information evaluations about the
function f being approximated, where one information evaluation corresponds to the
evaluation of one linear functional. In a number of applications, information evaluation
is constrained to be a function value at some point; this corresponds to the class Λstd

of standard information. If evaluation of an arbitrary continuous linear functional is
allowed then this corresponds to the class Λall of linear information.

These two classes, Λstd and Λall, have often been studied for multivariate approxima-
tion. We measure their power by the speed of convergence of the nth minimal errors,
i.e., of the minimal errors among all algorithms using n information evaluations. More
precisely, we are looking for the largest exponents pall and pstd for which we can find
algorithms using n information evaluations from Λall and Λstd whose errors are of order
n−pall

and n−pstd
, respectively. Obviously, pall ≥ pstd which means that Λstd is at most

as powerful as Λall. Due to the practical significance of Λstd, it is important to verify
for which spaces and settings the class Λstd is as powerful as the class Λall, i.e., when

pall = pstd.

The analysis needed to determine the maximal speed of convergence is usually much
easier for the class Λall and is constructive. For example, for the multivariate approx-
imation problem studied in this paper, it is known that the algorithms with minimal
worst case errors are fully determined by the eigenpairs of a certain compact operator
W which depends only on the reproducing kernel and the weight ρ of the L2-norm,
see Section 2.1. Furthermore, the nth minimal errors are the square-roots of the eigen-
values λn+1 of the operator W . Hence, the power of the class Λall in the worst case
setting is fully determined by the speed of convergence of

√
λn to zero, and pall = p if

λn = Θ(n−2p). A similar characterization holds in the average case setting.
The analysis for the class Λstd is much harder. For general reproducing kernel Hilbert

spaces, there are a few non-constructive results relating the power of standard infor-
mation to the power of linear information, see e.g., [5, 28] for the worst case setting
and [8, 28] for the average case setting. In the worst case setting, it was shown that
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pstd ≥ pall(1 − β) for some positive β depending on the space, whereas in the average
case setting it was shown that pstd = pall. These results were obtained under some
assumptions on the Hilbert spaces. In particular, in the average case settings it was as-
sumed that eigenfunctions of the operator W normalized in the L2-norm are uniformly
bounded in the L∞-norm. The last assumption holds for weighted Korobov spaces, see
Section 5. For some specific spaces there are a number of constructive results for multi-
variate approximation in the worst case and average case settings, see e.g., [9, 10, 27];
however, with the exception of [27], it is still open if the algorithms proposed there
achieve the speed of convergence n−p with the optimal exponent p = pstd.

There are so far no constructive results showing that pstd = pall for all d either in the
worst case, randomized or average case setting. In this paper, we address this question
for multivariate approximation in the randomized setting.

Before we describe the main results of this paper, we briefly recall what has been
known so far for multivariate approximation in the randomized setting, see, e.g., [6,
11, 13, 15, 21, 26]. It was proven in [15, 26] that linear information in the randomized
setting is no more powerful than the linear information in the worst case setting. That
is, if we denote the maximal exponent of convergence in the worst case setting for the
class Λall by pall−wor, and the maximal exponents of convergence in the randomized
setting for the classes Λall and Λstd by pall−ran and pstd−ran, respectively, then

pstd−ran ≤ pall−ran = pall−wor.

The main result of this paper, Theorem 1, states that standard information in the
randomized setting is as powerful as linear information in the worst case setting and,
hence, both of them are equally powerful as linear information in the randomized
setting, i.e.,

(1) pstd−ran = pall−ran = pall−wor.

We stress that this holds when multivariate approximation is defined over reproduc-
ing kernel Hilbert spaces and the error is also measured in a Hilbert space. It is proved
in [6, 11] that (1) is not true if multivariate approximation and its error are defined
over some Banach spaces.

The proof of (1) is constructive. That is, we provide randomized algorithms and
distributions of their sample points with the errors achieving the speed of convergence
with the exponents arbitrarily close to pall−wor. More precisely, for any integer k, we
construct randomized algorithms using nk function values at randomly chosen sample
points with the randomized error of order n−pk , where

pk = pall−wor

[
1−

(
2pall−wor

2pall−wor + 1

)k
]

.

We also show that by taking k of order ln ln n we obtain an algorithm that uses m =
O(n ln(ln(n))) function values and whose error is of order m−pall−wor

(ln(ln(m)))pall−wor+0.5.
Hence, modulo a power of the double logarithm of m we achieve the best possible speed
of convergence.

For given k, the randomized algorithm uses k different distributions each for n sample
points, and all distributions depend on the eigenpairs of the operator W from the worst
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case setting. If such distributions are hard to implement, one can use only one simpler
distribution of the sample points under an additional assumption. Indeed, the same
speed of convergence can be achieved by using independent and identically distributed
sample points whose distribution uses the weight ρ as its probability density function,
providing that the normalized in the ρ-weighted L2-norm eigenfunctions of the operator
W are uniformly bounded in the L∞-norm, see Theorem 2. This assumption is the same
as in [8], where it was used for the analysis of the average case setting, and it holds for
weighted Korobov spaces, see Section 5. If, however, the last assumption is not satisfied,
and instead the values of the kernel of the Hilbert space are uniformly bounded, then
we provide randomized algorithms using nk function values with convergence of order
n−pk with pk arbitrarily close to 1/2. Hence, in this case, we may lose the speed of
convergence if the eigenvalues of W tend to zero faster than n−1/2. Note, however, that
the speed of convergence n−1/2 is independent of d which parallels the well-known and
celebrated speed of convergence of the classical Monte Carlo algorithm for multivariate
integration.

As already mentioned, results for multivariate approximation can be applied for
other problems. To illustrate this point, we apply them in Section 4 to derive efficient
randomized algorithms for approximating weighted integrals

∫
D

f(x) ρ(x) dx. More
precisely, we apply the classical Monte Carlo algorithm with the well-known variance
reduction technique utilizing the multivariate approximation algorithms of this paper.
When we do this with the three multivariate approximation algorithms mentioned
above, we obtain three integration algorithms whose randomized errors are

√
n times

smaller than the randomized errors of the corresponding multivariate approximation
algorithms. In particular, our algorithms guarantee the speed of convergence arbitrarily
close to n−1 (or higher) for all uniformly bounded reproducing kernels of the Hilbert
spaces. Needless to say this is much faster convergence than the convergence of the
classical Monte Carlo method.

We also study (strong) tractability of multivariate approximation in the randomized
setting for the class Λstd. That is, we analyze when the minimal number of randomized
function values, nran(ε, d), needed to reduce the initial error by a factor ε depends
polynomially on d and ε−1. If this holds then multivariate approximation is tractable in
the randomized setting for the class Λstd . If nran(ε, d) can be bounded by a polynomial
only in ε−1 independent of d then multivariate approximation is strongly tractable in
the randomized setting for the class Λstd.

Based on Theorem 1, we prove in Theorem 4 that strong tractability and tractabil-
ity in the randomized setting for the class Λstd are respectively equivalent to strong
tractability and tractability in the worst case setting for the class Λall. Furthermore,
the estimates of nran(ε, d) are practically the same as its counterparts in the worst case
setting. This is important since the conditions on strong tractability and tractability
in the worst case setting for the class Λall are known for many spaces and, in general,
are easy to obtain. We illustrate this point for weighted Korobov spaces of periodic
functions with general weights which moderate how functions depend on the groups
of variables. We provide in Theorem 5 necessary and sufficient conditions on strong
tractability and tractability as well as bounds on the minimal number of information
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evaluations in the worst case setting for the class Λall and in the randomized setting
for the class Λstd in terms of general weights of this space. In particular, we show that
for product weights independent of d the notions of strong tractability and tractability
coincide.

We end this introduction by a note on future research. We believe that the proof
technique presented in Theorem 1 can also be applied for multivariate approximation
in the worst case and average case settings, and will permit improving the existing
results on the power of standard information. In particular, in the worst case setting
for reproducing kernel Hilbert spaces, we would like to verify whether we always have
pall−wor = pstd−wor. In the average case setting, we believe that the assumption used in
[8] on the uniformly bounded eigenfunctions in the L∞-norm can be eliminated and we
always have pall−avg = pstd−avg. This will be reported in a forthcoming paper.

2. Multivariate Approximation

We begin with basic definitions and facts concerning multivariate approximation.
Let H be a separable Hilbert space of real functions f defined on a domain D ⊆ Rd.
The inner product and the norm in H are denoted by 〈·, ·〉H and ‖ · ‖H , respectively.
Since we approximate f based on its function values, we need to assume that f(x)
is a continuous functional for any x ∈ D. This is equivalent to assuming that H is a
reproducing kernel Hilbert space whose kernel is denoted by K. For general properties
of reproducing kernels, we refer the reader to, e.g., [1, 24]. Here we only recall that

K(·, x) ∈ H and f(x) = 〈f, K(·, x)〉H ∀ f ∈ H, x ∈ D.

In particular, we have

|f(x)| ≤ ‖f‖H · ‖K(·, x)‖H and ‖K(·, x)‖H =
√

K(x, x).

We are interested in approximating functions f with errors measured in a weighted
L2-norm. That is, let ρ be a given probability density function,

ρ : D → R+ and

∫
D

ρ(x) dx = 1.

Without loss of generality, we can assume that ρ(x) > 0 for almost all x. Then

G = Gρ :=

{
g : D → R :

∫
D

|g(x)|2 ρ(x) dx < ∞
}

is a well defined Hilbert space whose inner-product and norm are given by

〈f, g〉G :=

∫
D

f(x) g(x) ρ(x) dx and ‖g‖2
G :=

∫
D

|g(x)|2 ρ(x) dx.

Multivariate approximation considered in this paper is defined as the problem of
approximating f with the error measured in ‖ · ‖G. Without loss of generality, we can
restrict our attention to linear algorithms of the form

(2) A(f) =
n∑

i=1

Li(f) gi
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where n is a non-negative integer, the functions gi = gi,n belong to G, and Li = Li,n are
continuous linear functionals. For n = 0 we set A = 0. For the settings of this paper we
can assume that the number n of functional evaluations is fixed, i.e., is deterministic
and does not depend on f , see also Remark 1. It is called the cardinality of A and is
denoted by

n = card(A).

We consider two classes of Li. The first class is Λ = Λall which consists of all continuous
linear functionals. That is, Li ∈ Λall iff there is an element of gi ∈ H such that
Li(f) = 〈f, gi〉H for all f ∈ H. The second class is the class of standard information
Λ = Λstd which consists of function evaluations. That is, Li ∈ Λstd iff there is a point
ti ∈ D such that Li(f) = f(ti) for all f ∈ H.

2.1. Deterministic Worst Case Setting. We now briefly recall what is known for
multivariate approximation in the deterministic worst case setting with Λ = Λall. In
this setting, the functions gi’s from G and Li’s from Λall in (2) are fixed, and the
(deterministic) worst case error of an algorithm A is defined by

ewor(A; H, ρ) := sup
‖f‖H≤1

‖f − A(f)‖G.

For a fixed value of n, let ewor(n; H, ρ, Λall) denote the n-th minimal error, i.e.,

ewor(n; H, ρ, Λall)

:= inf
{
ewor(A; H, ρ) : A given by (2) with Li ∈ Λall and card(A) ≤ n

}
.

In another words, ewor(n; H, ρ, Λall) is the smallest worst case error among all algo-
rithms that use at most n continuous linear functionals. An algorithm that achieves
this smallest error is said to be an n-th optimal algorithm.

We now recall well-known results, see e.g., [23, Thm.5.3], that characterize n-th
optimal algorithms via eigenpairs of the following operator W ,

(3) W : H → H and Wg :=

∫
D

g(t) K(·, t) ρ(t) dt.

One of the results states that

lim
n→∞

ewor(n, H, ρ, Λall) = 0 iff W is compact.

This is why we assume throughout this paper the compactness of W . The operator W
is also self-adjoint and non-negative definite. Moreover,

(4) 〈f, g〉H = 〈f, Wg〉G ∀ f, g ∈ H.

This implies, in particular, that H is continuously embedded in G, and

‖f‖H ≤ ‖W 1/2‖ ‖f‖G with ewor(0; H, ρ, Λ) = ‖W 1/2‖.
The operator W has eigenpairs (λk, ηk),

(5) Wηk = λk ηk k = 1, 2, . . . ,

with orthonormalized ηk’s and ordered λk, i.e.,

〈ηj, ηk〉H = δj,k and λk ≥ λk+1 ∀ k with lim
k→∞

λk = 0,



MULTIVARIATE APPROXIMATION 7

where δj,k denotes the Kronecker delta. We can also assume that all the eigenvalues
are positive since otherwise the problem would be trivial. Another result states that

(6) A∗
n(f) :=

n∑
k=1

〈f, ηk〉H ηk

is an nth optimal algorithm and

(7) ewor(A∗
n; H, ρ) = ewor(n; H, ρ, Λall) =

√
λn+1.

In particular, for n = 0 this means that ‖W 1/2‖ =
√

λ1.
Observe that for any f ∈ H and k ≥ 1, we have

(8) λk 〈f, ηk〉H = 〈f, Wηk〉H =

∫
D

f(x)ηk(x)ρ(x) dx = 〈f, ηk〉G .

This implies that

(9) 〈ηj, ηk〉G = λk δj,k

Therefore, if we set

(10) ηk = λ
−1/2
k ηk,

then the functions ηk are orthonormal in G,

(11) 〈ηj, ηk〉G = δj,k.

This is why A∗
n can be rewritten as

A∗
n(f) =

n∑
k=1

〈f, ηk〉G ηk.

2.2. Randomized Setting. In the randomized setting, we consider algorithms A of
the form (2) for which both the gi’s and Li’s could be randomly selected according to
some probability measures. We explain in Remark 1 that randomization does not help
for the class Λall. That is why we restrict our attention to the class Λstd and consider
the following class of simplified random algorithms that use function evaluations at
randomly chosen points. They are of the following form:

(12) A~t(f) =
n∑

i=1

f(ti) gi,~t,

where ~t = [t1, . . . , tn] for random points t1, . . . , tn from D which are independent, and
each ti is distributed according to some probability whose density function is denoted
by ωi. The functions gi,~t may depend on the selected points tj’s. For any f , we can
view A·(f) as a random process, and A~t(f) is its specific realization.

The randomized error of A is defined as

eran(A; H, ρ) := sup
‖f‖H≤1

(∫
D

· · ·
∫

D

‖f − A~t(f)‖2
G ω1(t1) · · ·ωn(tn) dt1 . . . dtn

)1/2

.

To simplify the notation, we will write E~t‖f − A~t(f)‖2
G to denote

E~t‖f − A~t(f)‖2
G =

∫
D

· · ·
∫

D

‖f − A~t(f)‖2
G ω1(t1) · · ·ωn(tn) dt1 . . . dtn.
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It is easy to see that for algorithms (12) we have(
E~t‖f − A~t(f)‖2

G

)1/2 ≤ ‖f‖H eran(A; H, ρ) ∀ f ∈ H.

Similarly to the worst case setting, by eran(n; H, ρ, Λstd) we will denote the smallest
randomized error among all such algorithms A with cardinality at most n,

eran(n; H, ρ, Λstd) := inf {eran(A; H, ρ) : A is given by (12) with card(A) ≤ n} .

Here, the infimum is taken with respect to all possible choices of distributions of sample
points ti as well as all possible choices of functions gi,t.

There are a number of results showing that, essentially, Λall is equally powerful in
the deterministic worst case and the randomized case settings for multivariate approx-
imation defined over Hilbert spaces, see, e.g., [6, 11, 13, 15, 21, 26]. For instance, we
know from [15], see also [26], that

eran(n; H, ρ, Λall) ≤ ewor(n; H, ρ, Λall) ≤
√

2 eran(b(n + 1)/2 c ; H, ρ, Λall).

One of the main contributions of the current paper is to relate the power of Λall

with Λstd. Indeed, in Section 3, we provide conditions under which ewor(n; H, ρ, Λall)
and eran(n; H, ρ, Λstd) have similar rates of convergence to zero as n tends to infinity.
This and the following remark are the reasons why, without loss of generality, we can
restrict our attention to simplified randomized algorithms of the form (12).

Remark 1. In the randomized setting, one may consider a very general class of ran-
domized algorithms of the form

Aω(f) = φω (L1,ω(f), L2,ω(f), . . . , Lnω ,ω(f))

with a random element ω distributed according to some probability measure. Here, Li,ω

can be from the class Λstd or Λall, the random mapping φω can be linear or non-linear,
and we may use adaption, see e.g., [4, 6, 7, 12, 13, 15, 18, 21, 26]. Moreover, the number
nω = nω(f) of functional evaluations may be random and may depend adaptively on
f ; in such a case card(A) is defined by sup‖f‖H≤1 Eωnω(f).

Let egen−ran(n; H, ρ, Λall) denote the nth minimal error among all such generalized
randomized algorithms with Li,ω ∈ Λall. Clearly

egen−ran(n; H, ρ, Λall) ≤ eran(n; H, ρ, Λall) ≤ ewor(n; H, ρ, Λall).

The standard proof technique to obtain a lower bound on egen−ran(n; H, ρ, Λall) is the
reduction to the average case with some probability measure on the unit ball of H
which was first applied by Bakhvalov in 1959, see [2], and used in many papers, see
e.g., [6, 7, 11, 13, 15, 18, 21, 26]. By choosing an appropriate probability measure on
the unit ball of H one obtains an estimate in terms of the worst case setting, see e.g.,
[15, 26] for multivariate approximation. More precisely, from [14] we know that varying
cardinality of nω can only help by a fixed factor, and using again the results from [15]
we conclude that even such generalized randomization does not help for Λall since

ewor(n; H, ρ, Λall) ≤ 2
√

2 egen−ran(b(n + 1)/4c; H, ρ, Λall).

In particular, this means that under the conditions of the next section, the simpli-
fied randomized algorithms (12) of this paper are almost as powerful as very general
(perhaps complicated and expensive to implement) randomized algorithms.
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3. Main Result

Throughout this section we assume that the eigenpairs of the compact operator W
satisfy

(13)
√

λn ≤ C0
C(n)

np
∀n = 1, 2, . . .

for positive numbers p and C0, and a monotonically non-decreasing function C(n) for
which C(1) = 1. Let

(14) pk := p
2pk−1 + 1

2p + 1
with p0 := 0 and mk :=

⌊
n(2pk−1+1)/(2p+1)

⌋
.

It is easy to check that

(15) pk = p

(
1−

(
2p

2p + 1

)k
)

.

Hence, pk’s are increasing and limk pk = p. Moreover, the sequence {mk}k is non-
decreasing and mk ≤ n. Let

(16) ωmk
(t) := ρ(t) · umk

(t) with umk
(t) := m−1

k

mk∑
j=1

[ηj(t)]
2 ,

where the ηj’s are given by (10). Clearly, due to orthonormality of the eigenfunctions
ηj, the function ωmk

is a probability density function.
For given n ≥ 1, we consider the following family of randomized algorithms {An,k}∞k=1.

The algorithm An,k will have cardinality at most nk, and will sample the functions at

points whose collection is denoted by ~tn,k. To stress the role of these points we write
An,k = An,k,~tn,k

.

For k = 1, we define

(17) An,1,~tn,1
(f) :=

m1∑
j=1

[
1

n

n∑
`=1

f(τ `) ηj(τ `)

um1(τ `)

]
ηj

with ~tn,1 = [τ 1, τ 2, . . . , τ n] for independent and identically distributed (i.i.d. for short)
points τ `’s that are distributed according to the probability density function ωm1 .

For k ≥ 2, we define
(18)

An,k,~tn,k
(f) := An,k−1,~tn,k−1

(f) +

mk∑
j=1

[
1

n

n∑
`=1

(f − An,k−1,~tn,k−1
(f))(τ `)

ηj(τ `)

umk
(τ `)

]
ηj

with
~tn,k = [~tn,k−1, ~τ n], where ~τ n = [τ 1, . . . , τ n]

for i.i.d. τ `’s that are distributed according to the probability density function ωmk
.

Of course, the whole vector ~tn,k consists of components distributed according to the
probability density functions ωm1 , . . . , ωmk

, respectively. Clearly,

card(An,k,~tn,k
) ≤ k n ∀~tn,k ∈ Dnk.
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Theorem 1. Let (13) hold. Then for every n and k,

(19) eran(An,k; H, ρ) ≤ C0

npk

√
k [C(n + 1)]2 + 1.

Proof. The proof is by induction with respect to k. Since An,k,~tn,k
is a linear combination

of ηj for j = 1, 2, . . . ,mk, we have for every n and k,

(20)
〈
An,k,~tn,k

(f), ηj

〉
G

= 0 ∀~tn,k ∈ Dkn, ∀ f ∈ H, ∀ j ≥ mk + 1.

We begin with k = 1. Consider now functions f with ‖f‖H ≤ 1. Due to (8), (10), (11),
and the fact that the eigenfunctions ηj form an orthonormal system in H, we have

‖f − An,1,~τ (f)‖2
G = E1(f ;~t) +

∞∑
j=m1+1

〈f, ηj〉2H ‖ηj‖2
G

= E1(f ; ~τ ) +
∞∑

j=m1+1

λj 〈f, ηj〉2H ≤ E1(f ; ~τ ) + λm1+1,

where

E1(f ;~t) :=

m1∑
j=1

∣∣∣∣∣〈f, ηj〉G − n−1

n∑
`=1

f(τ `) ηj(τ `)/um1(τ `)

∣∣∣∣∣
2

.

It is well-known, and can be easily verified, that then

E~τ (E1(f ; ~τ )) =

∫
D

· · ·
∫

D

E1(f ; ~τ )ωm1(τ 1) · · ·ωm1(τ n) dτ 1 . . . dτ n

≤ 1

n

m1∑
j=1

∫
D

|f(x) ηj(x)|2 ρ(x)

um1(x)
dx =

m1

n

∫
D

f 2(x) ρ(x) dx

≤ m1

n
λ1 ≤ m1

n
C2

0 .

Since m1 ≤ n1/(2p+1) ≤ m1 + 1 ≤ n + 1 and C(n) is monotonic, we obtain

eran(An,1; H, ρ)2 ≤ λm1+1 +
m1

n
C2

0 ≤ C2
0

n2p/(2p+1)
[(C(n + 1)]2 + 1).

This completes the proof for k = 1.
Consider now k ≥ 2 and the algorithm An,k. For functions f with ‖f‖H ≤ 1 we have,

as for the case of k = 1,

(21) ‖f − An,k,~tn,k
(f)‖2

G ≤ λmk+1 + Ek(f ;~tn,k)

with

Ek(f ;~tn,k)

:=

mk∑
j=1

∣∣∣∣∣〈f − An,k−1,~tn,k−1
(f), ηj

〉
G
− 1

n

n∑
`=1

[f − An,k−1,~tn,k−1
(f)](τ `)

ηj(τ `)

umk
(τ `)

∣∣∣∣∣
2

.
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Taking now the expectation of Ek(f ;~tn,k) with respect to ~tn,k and using the indepen-

dence of ~tn,k−1 and ~τ n we obtain

E~tn,k
(Ek(f ;~tn,k)) = E~tn,k−1

E~τn(Ek(f ; [~tn,k−1, ~τ n]))

≤ E~tn,k−1

(
1

n

mk∑
j=1

∫
D

|(f − An,k−1,~tn,k−1
(f))(x)|2 (ηj(x))2

umk
(x)

ρ(x) dx

)
=

mk

n
· E~tn,k−1

‖f − An,k−1,~tn,k−1
(f)‖2

G ≤ mk

n
eran(An,k−1; H, ρ)2

≤ mk n−2pk−1−1 C2
0

(
(k − 1) [C(n + 1)]2 + 1

)
.

This and (21) imply that

eran(An,k; H, ρ)2 ≤ C2
0

[C(mk + 1)]2

(mk + 1)2p
+

mk C2
0 ((k − 1) [C(n + 1)]2 + 1)

n2pk−1+1

≤ C2
0

n2pk
(k [C(n + 1)]2 + 1),

with the last inequality due to monotonicity of C(n) and the fact that

mk ≤ n(2pk−1+1)/(2p+1) ≤ mk + 1 ≤ n + 1.

This completes the proof. �

We already remarked that the exponents pk converge to p. In fact, due to (15), we
have an exponentially fast convergence

p− pk =
2p

2p + 1
(p− pk−1) =

(
2p

2p + 1

)k

p.

Hence, it is enough to perform a few steps to get pk very close to p. More precisely, we
have the following proposition.

Proposition 1. For

k =

⌈
ln(1/δ)

ln(1 + 1/(2p))

⌉
we have

pk ≥ p(1− δ).

Theorem 1 states that we can achieve nearly the same speed of convergence in the
randomized setting in the class Λstd as in the worst case setting in the class Λall. Due
to Remark 1 it is the best possible result. Furthermore, the factors multiplying n−pk in
the randomized case are roughly only

√
k larger than in the worst case. Again, since k

is relatively small, this extra factor is not very important.
Assume now that C(n) ≡ 1 in (13) and take

k = k∗ =

⌈
ln(ln(n))

ln(1 + 1/(2p))

⌉
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for n such that ln(ln(n)) > 1. Then it is easy to show that

eran(An,k∗ ; H, ρ) ≤ eC0 n−p

√
2 +

ln(ln(n))

ln(1 + 1/(2p))
= O

(
n−p
√

ln(ln(n))
)

.

This yields the following proposition.

Proposition 2. Let m = k∗n = Θ(n ln(ln(n))). If C(n) ≡ 1 in (13) then the algorithm
Ām = An,k∗ uses at most m function values and

eran(Ām; H, ρ) = O

(
(ln(ln(m)))p+0.5

mp

)
with the factor in the big O notation independent of d and m and depending only on C0

and p. Hence, modulo a power of ln(ln(m)), we obtain the same speed of convergence
as for the optimal algorithm A∗

m.

We now relate the speed of convergence in the worst case setting for the class Λall

with the speed of convergence in the randomized setting for the class Λstd using the
concept of the optimal rate of convergence.

The optimal rate of convergence in the worst case setting for a class Λ is defined as

pwor(H, ρ, Λ) := sup
{

r > 0 : lim
n→∞

ewor(n; H, ρ, Λ) nr = 0
}

with the convention that the supremum of the empty set is zero. When Λ = Λall then
we have, due to (7),

pwor(H, ρ, Λall) = sup
{

r > 0 : lim
n→∞

√
λn+1 nr = 0

}
.

The optimal rate of convergence in the randomized setting for a class Λ is defined
analogously as

pran(H, ρ, Λ) := sup
{

r > 0 : lim
n→∞

eran(n; H, ρ, Λ) nr = 0
}

.

Then Theorem 1 and Remark 1 yield the following corollary.

Corollary 1.

pran(H, ρ, Λstd) = pran(H, ρ, Λall) = pgen−ran(H, ρ, Λall) = pwor(H, ρ, Λall).

The algorithms An,k achieve nearly the optimal speed of convergence. They use
randomly generated points t1, . . . , tnk with different distributions. Indeed, ωmi

is the
probability density function of t` with i = d`/ke. Note that ωmi

given by (16) depends
on the eigenfunctions ηj in a way that might be sometimes too difficult to implement.
Therefore, it is natural to ask if a similar result could be obtained with the same
distribution for all the points and whether this distribution could be simplified and
be independent of the eigenfunctions ηj. It turns out that this can be achieved under
an additional assumption on the eigenfunctions ηj as already proven in the different
context in [8], where multivariate approximation has been studied in the average case
setting.
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We consider therefore the following algorithms A′
n,k that are modifications of the

algorithms An,k. They are given by (17) and (18), however with the i.i.d. points τ `

distributed according to the density function ρ, i.e., ωi = ρ for every i.

Theorem 2. Suppose that the eigenpairs of the operator W satisfy (13) and

(22) sup
n
‖ηn‖∞ ≤ C2

for a positive constant C2. Then the algorithms A′
n,k satisfy

(23) eran(A′
n,k; H, ρ) ≤ C0 C2

npk

√
k [C(n + 1)]2 + 1.

Proof. The proof of this theorem is very similar to the proof of Theorem 1 as well as
to the proof in [8], and hence is omitted. �

We illustrate the above results by applying them to the space H of d-variate functions
with mixed partial derivatives of order one bounded in the L2-norm. This space has
been considered in many papers dealing with the integration problem as well as the
approximation in the worst case and average case settings.

Example 1. Consider D = [0, 1]d and ρ ≡ 1. The space H is the reproducing kernel
Hilbert space of functions f : [0, 1]d → R with the kernel

K(x, y) =
d∏

j=1

(1 + min(xj, yj)).

It follows from [17, Thm.2.1] that the eigenvalues of the operator W satisfy

λn =
1

(d− 1)! π4d

(
lnd−1(n + e)

n

)2

(1 + o(1)) as n → ∞,

i.e., the assumption (13) holds with p = 1, C0 = 1/(π2d
√

(d− 1)!), and C(n) =

lnd−1(n + e)(1 + o(1)) as n →∞. Then Theorem 1 yields

eran(An,k) ≤
√

k

π2d
√

(d− 1)!

lnd−1(n + e)

npk
(1 + o(1)) as n →∞.

In particular, for k = 4, we have p4 ≥ 0.8 and

eran(An,4) ≤ 4

π2d
√

(d− 1)!

lnd−1(n + e)

n0.8
(1 + o(1)) as n →∞.

Theorem 2 yields a weaker result:

eran(A′
n,k) ≤

√
k 2d/2

π2d
√

(d− 1)!

lnd−1(n + e)

npk
(1 + o(1)) as n →∞

since the L∞-norms of the eigenfunctions ηi are equal to 2d/2(1 + o(1)) as n tends to
infinity, see again [17].
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The assumption (22) may be difficult to verify. We now show that this assumption
can be replaced by another one that is easy to verify; however, at the possible expense
of the speed of convergence. We now assume that

(24) C3 := ess sup
x∈D

√
K(x, x) < ∞

instead of (22). As shown in the following example, (24) does not imply (22).

Example 2. Let D = (0, 1], ρ ≡ 1, ηn = 1(1/(n+1),1/n], and λn = 1/(n(n + 1)).

Clearly K(x, y) =
∑∞

n=1 ηn(x) ηn(y) is a well defined kernel and ηn = ηn

√
n(n + 1)

are orthonormal in L2. Moreover, ηn are the eigenvectors of the operator W , ‖ηn‖∞ =√
n(n + 1), yet K(x, x) ≡ 1, i.e., C3 = 1.

The assumption (24) implies that

‖f‖∞ = ess sup
x∈D

| 〈f, K(x, ·)〉H | ≤ ‖f‖H ess sup
x∈D

√
K(x, x) ≤ C3 ‖f‖H ∀ f ∈ H.

Furthermore, the eigenvalues of W are summable. Indeed, K(x, y) =
∑∞

j=1 ηj(x)ηj(y)

and (9) yield
∞∑

j=1

λj =
∞∑

j=1

∫
D

ηj(x)2ρ(x) dx =

∫
D

K(x, x)ρ(x) dx ≤ C2
3 .

This implies that nλn ≤
∑∞

j=1 λj ≤ C2
3 and√

λn ≤ C3 n−1/2.

Hence, (13) holds with p ≥ 1/2, and C0 ≤ C3.
Consider now a family of algorithms A′′

n,k that differ from A′
n,k only by the definition

of the values mk. We now define mk, for k = 1, 2, . . . , such that

λmk+1 ≤ C3 C4(k − 1)

n1−2−k ≤ λmk
,

where

C4(k) := 2 C3

(
C0

2C3

)2−k

≤ 2 C3.

Theorem 3. Let (24) hold. Then the algorithms A′′
n,k satisfy

eran(A′′
n,k; H, ρ) ≤ C4(k) n−1/2+2−k−1

.

Proof. As in the proof of the previous theorems, consider first k = 1 and the cor-
responding term E1. Its expectation with respect to the points τ ` for ‖f‖H ≤ 1 is
bounded by

E~t (E1(f ; ~τ )) ≤ 1

n

m1∑
j=1

∫
D

[f(x) ηj(x)]2 ρ(x) dx =
1

n

∫
D

f 2(x) ρ(x)

m1∑
j=1

ηj(x)2 dx.

Note that
m1∑
j=1

ηj(x)2 =

m1∑
j=1

λ−1
j ηj(x)2 ≤ λ−1

m1

m1∑
j=1

ηj(x)2 ≤ λ−1
m1

K(x, x) ≤ λ−1
m1

C2
3 .
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Hence

E~t (E1(f ; ~τ )) ≤ C2
3

n λm1

∫
D

f 2(x) ρ(x) dx =
C2

0 C2
3

n λm1

.

This means that

eran(A′′
n,1; H, ρ)2 ≤ λm1+1 +

C2
0 C2

3

n λm1

≤ 2C0 C3√
n

due to the definition of m1. Hence we have that

eran(A′′
n,1; H, ρ) ≤ C4(1) n−s1

since C4(1) =
√

2C0C3 and with s1 = 1/4, as claimed.
Suppose by induction that

eran(A′′
n,k; H, ρ) ≤ C4(k) n−sk with sk = 1

2
− 2−k−1.

For the algorithm A′′
n,k+1 we have

E~tn,k+1
(Ek+1(f ;~tn,k+1))

≤ E~tn,k

(
1

n

∫
D

|(f − A′′
n,k,~tn,k

(f))(x)|2 ρ(x)

mk+1∑
j=1

η2
j (x)/λj dx

)

≤ C2
3

λmk+1
n

eran(A′′
n,k; H, ρ)2 ≤ C2

3 C2
4(k)

λmk+1
n1+2sk

.

Due to the definition of mk+1 we have

eran(A′′
n,k+1; H, ρ) ≤

(
λmk+1+1 +

C2
3 C2

4(k)

λmk+1
n1+2sk

)1/2

≤ C4(k + 1)n−sk+1

with

C4(k + 1) =
√

2 C3 C4(k).

It is easy to show that

C4(k) = 2 C3

(
C0

2 C3

)2−k

≤ 2 C3,

as claimed. �

As already pointed out, (24) implies that λn = O(n−1/2). Since the convergence rate
of the errors of the algorithms A′′

n,k approaches n−1/2, they are almost optimal only

when the eigenvalues λn do not converge to zero much faster than n−1/2.

4. Multivariate Integration

Based on the results of Section 3, we now derive efficient randomized algorithms for
multivariate integration. For this problem, we want to approximate

Iρ(f) :=

∫
D

f(x) ρ(x) dx
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by randomized algorithms of the form

Q(f ; ω) =
n∑

j=1

f(tj,ω) aj,ω

for some random element ω with tj,ω ∈ D and aj,ω ∈ R. The randomized error of Q is
given by

eran(Q; H, Iρ) :=
√

Eω(Iρ(f)−Q(f ; ω))2.

We now use a well-known variance reduction technique for deriving a randomized algo-
rithm Quadn,k,~t,~y from a randomized algorithm Algn,k,~t for multivariate approximation:

(25) Quadn,k,~t,~y(f) := Iρ

(
Algn,k,~t(f)

)
− 1

n

n∑
`=1

[
f − Algn,k,~t(f)

]
(y`)

for i.i.d. points y` whose distribution has ρ as its density. It is well-known and easy to
verify that

E~y

(
Iρ(f)−Quadn,k,~t,~y(f)

)2 ≤ 1

n
‖f − Algn,k,~t(f)‖2

G ∀~t.

This and the results of the previous section yield the following proposition.

Proposition 3. Let Qn,k,~t, Q′
n,k,~t

, and Q′′
n,k,~t

be the randomized algorithms obtained by

applying (25) with Alg equal to An,k,~t, A′
n,k,~t

, and A′′
n,k,~t

from Section 3, respectively.

Each of them uses at most n(k + 1) function values and, under the corresponding
assumptions from Section 3, their randomized errors are bounded from above by

C0

n1/2+pk

√
k[C(n + 1)]2 + 1,

C0 C2

n1/2+pk

√
k[C(n + 1)]2 + 1, and

C4(k)

n1−2−k−1 ,

respectively.

We stress the increase by 1/2 in the order of convergence for multivariate integration.

5. Application to Weighted Korobov Spaces

In this section we consider multivariate approximation for the weighted Korobov
space of periodic functions defined over D = [0, 1]d, see e.g., [8, 9, 16]. We take ρ ≡ 1
and then G = L2([0, 1]d). To stress the dependence on the number d of variables, we
will write Hd and Gd instead of H and G, and we will drop ρ from all the notation.

Let α be a given number greater than 1, and γ = {γd,u}d,u be a given family of
non-negative numbers, called weights. This family is indexed by d ∈ N+ and u ⊆
{1, 2, . . . , d}. The reproducing kernel Kd of the weighted Korobov space Hd is of the
form

Kd(x, y) = γd,∅ +
∑

∅6=u⊆{1,2,...,d}

γd,u Kd,u(x, y),

where

Kd,u(x, y) =
∏
j∈u

∑
k 6=0

exp(2π ı k(xj − yj))

|k|α
with ı =

√
−1.
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It is convenient to write Kd(x, y), see [3], as

Kd(x, y) =
∑
h∈Zd

β(h, γ)e2π ı h·(x−y),

where Zd = {. . . ,−1, 0, 1, . . . }d, h · x =
∑d

j=1 hjxj denotes the inner product of the
vectors h and x, and

β(h, γ) =


γd,∅ if h = (0, 0, . . . , 0),

γd,uh

∏
j∈uh

|hj|−α if h 6= 0 with uh = {j : hj 6= 0}.
The weighted Korobov space Hd is equipped with the inner product

〈f, g〉Hd
=
∑
h∈Zd

β(h, γ)−1 f̂(h) ĝ(h) ∀ f, g ∈ Hd,

where

f̂(h) =

∫
[0,1)d

exp(−2π ıh · x) f(x)dx

is a Fourier coefficient of f . Here, if β(h, γ) = 0 then we assume that f̂(h) = 0 for all
f ∈ Hd, and we adopt the convention that 0/0 = 0.

If α is an even integer, the reproducing kernel Kd is related to the Bernoulli polyno-
mials Bα. For α even, we have for x ∈ [0, 1],∑

h 6=0

e2π ı hx

|h|α
=

(−1)α/2+1(2π)α

α!
Bα(x).

In this case the kernel Kd can be written as

Kd(x, y) = γd,∅ +
∑

∅6=u⊆{1,2,...,d}

γd,u

(
(2π)α(−1)α/2+1

α!

)|u|∏
j∈u

Bα({xj − yj}),

where the notation {x} means the fractional part of x, {x} = x− bxc.
The role of α is to specify how fast Fourier coefficients decay which is also related to

the regularity of the functions from the space Hd. Roughly speaking, functions from Hd

have square integrable mixed partial derivatives of order ≤ α/2. The role of the weights
γd,u is to quantify the importance of the interactions of variables from the subset u; the
smaller the weight γd,u the less significant the interaction.

Often in the literature, the so called product weights are considered, i.e.,

γd,∅ = 1 and γd,u =
∏
j∈u

γd,j

for given weights 0 ≤ γd,d ≤ γd,d−1 ≤ · · · γd,1 ≤ 1. For product weights, the kernel takes
the following form

Kd(x, y) =
d∏

j=1

(
1 + γd,j

∑
k 6=0

exp(2π ı k(xj − yj))

|k|−α

)
.

For general weights γd,u, it follows from [8] that the eigenpairs of the operator W =
Wd are:
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• for u = ∅,
λd,∅ = γd,∅ and ηd,∅ ≡ 1,

• for u 6= ∅, (
λd,ku , ηd,ku,`

)
for ` = 1, 2. Here, ku = [k1, k2, . . . , k|u|] with all kj 6= 0 for j ∈ u, and

λd,ku = γd,u

∏
j∈u

k−α
j

is an eigenvalue of multiplicity two and the corresponding two eigenvectors,
orthonormal in Gd, are

ηd,ku,1(x) =
√

2 cos

(
2π
∑
j∈u

kjxj

)
and ηd,ku,2(x) =

√
2 sin

(
2π
∑
j∈u

kjxj

)
.

For the weighted Korobov space we may apply Theorem 2 with

C2 =
√

2 ∀ d.

This means that we can now use uniform distribution for all sample points in the
algorithm A′

n,k whose error bounds are worse only by a factor
√

2 than the error bounds
of the algorithm An,k which uses a more complicated distribution of its sample points.

As in [8], for r ∈ [1, α), consider

(26) Md,r :=
∑
u,ku

λ
1/r
d,ku

= γ
1/r
d,∅ +

∑
∅6=u

γ
1/r
d,u [2 ζ(α/r)]|u| ,

where ζ is the Riemann zeta function, ζ(x) =
∑∞

j=1 j−x for x > 1. For product weights,
Md,r reduces to

Md,r =
d∏

j=1

(
1 + 2γ

1/r
d,j ζ(α/r)

)
.

If λd,1 ≥ λd,2 ≥ . . . are the ordered eigenvalues λd,ku , then the nth largest eigenvalue

satisfies λ
1/r
d,n n ≤ Md,r, i.e.,

(27) λd,n ≤ M r
d,r n−r.

Therefore we can apply Theorem 1 with p = r/2, C0 = M
r/2
d,r , and C(n) ≡ 1 to conclude

that

eran(Ad,n,k; Hd) ≤

√
(k + 1) M r

d,r

npk
with pk =

r

2

[
1−

(
r

r + 1

)k
]
→ r

2
.

For the algorithms A′
n,k, Theorem 2 yields

eran(A′
n,k; Hd) ≤

√
2(k + 1) M r

d,r

npk
.

Since r can be arbitrarily close to α, we have

eran(n; Hd, Λ
std) = O(n−α/2+δ) as n → ∞.
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The exponent α/2 is optimal since even for d = 1 we have e(n; H1, Λ
all) = Θ(n−α/2).

We stress that the implied factor in the O-notation may depend on δ and d, and may
go to infinity as d and/or δ−1 goes to infinity, see the next section where this problem
is discussed in detail.

6. Tractability

As in the previous section, we consider multivariate approximation for a sequence of
spaces Hd and Gd for d = 1, 2, . . . . The weight ρ in the space Gd may also depend on
d, and we write ρ = ρd.

We are now mostly interested in large d and want to verify when the minimal error
bounds are polynomially dependent on d or even independent of d. This leads us to
tractability which has been extensively studied in information-based complexity.

To stress the dependence on d, we denote the minimal errors as

ewor(n, d) = ewor(n; Hd, ρd, Λ
all),

eran(n, d) = eran(n; Hd, ρd, Λ
std).

For n = 0, we do not sample functions, and we have the initial errors

ewor(0, d) = eran(0, d) = ‖W 1/2
d ‖,

where Wd = W is given by (3).
For ε ∈ (0, 1), we denote

nwor(ε, d) = min{n : ewor(n, d) ≤ ε ewor(0; d) },
nran(ε, d) = min{n : eran(n, d) ≤ ε eran(0; d) }

as the minimal number of information evaluations needed to reduce the initial error by
a factor ε. We stress that one information evaluation in the worst case setting means
a functional from the class Λall, and in the randomized setting a functional from the
class Λstd. We are ready to recall the notion of tractability and strong tractability, see
[31].

Multivariate approximation is tractable in the worst case setting for the class Λall

(and for the sequence of spaces Hd and Gd) iff there are non-negative numbers c, perr

and qdim such that

nwor(ε, d) ≤ c ε−perr d qdim ∀ ε ∈ (0, 1), ∀ d = 1, 2, . . . .

Multivariate approximation is tractable in the randomized setting for the class Λstd

(and for the sequence of spaces Hd and Gd) iff there are non-negative numbers c, perr

and qdim such that

nran(ε, d) ≤ c ε−perr d qdim ∀ ε ∈ (0, 1), ∀ d = 1, 2, . . . .

The numbers perr and qdim are called the exponents of tractability. We stress that they
need not to be uniquely defined.

If qdim = 0 in the formulas above then multivariate approximation is strongly tractable
and the infimum of perr satisfying the formulas above with qdim = 0 is called the expo-
nent of strong tractability.

Based on Theorem 1, we now prove the following theorem.
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Theorem 4. Consider multivariate approximation for the spaces Hd and Gd. Then

(i): Strong tractability in the worst case setting for the class Λall is equivalent to
strong tractability in the randomized setting for the class Λstd. Furthermore the
exponents of strong tractability are the same.

(ii): Tractability in the worst case setting for the class Λall is equivalent to tractabil-
ity in the randomized setting for the class Λstd. Furthermore the exponents of
tractability are roughly the same, i.e., if

nwor(ε, d) ≤ c ε−perr d qdim for all ε ∈ (0, 1) and d = 1, 2, . . . ,

then

nran(ε, d) ≤ min
k

k ·
⌈[

3 c k perr/2 ε−perr d qdim
][1−( 2

2+perr
)

k
]−1⌉

= O
([

ln(ln(ε−1 + d + 1))
](1+perr)/2

ε−perr d qdim

)
.

Proof. Clearly, eran(n; Hd, ρd, Λ
all) ≤ eran(n; Hd, ρd, Λ

std). Remark 1 states

ewor(n; Hd, ρd, Λ
all) ≤ 2

√
2 eran(b(n + 1)/4c; Hd, ρd, Λ

std).

This means that (strong) tractability in the randomized setting for the class Λstd implies
(strong) tractability in the worst case setting for the class Λall. Thus, it is enough
to prove that (strong) tractability in the worst case setting for Λall implies (strong)
tractability in the randomized setting for Λstd. Assume then that

nwor(ε, d) ≤ c ε−perr d qdim ∀ ε ∈ (0, 1), ∀ d = 1, 2, . . . .

Here, qdim = 0 for strong tractability, and qdim > 0 for tractability. Note that nwor(ε, d) ≥
1 which for ε tending to one and d = 1 implies that c ≥ 1.

Let n = bc ε−perr d qdimc. If we vary ε ∈ (0, 1) then n varies in (dc d qdime,∞). It is easy
to check that

ε =

(
c d qdim

n + η

)1/perr

for some η ∈ [0, 1).

From Section 2.1 we know that ewor(0, d) =
√

λd,1 and

nwor(ε, d) = min
{

k :
√

λd,k+1 ≤ ε
√

λd,1

}
,

where λd,k’s are ordered eigenvalues of the operator Wd = W . This yields that

(28)
√

λd,n+1 ≤
(

c d qdim

n

)1/perr √
λd,1 for n > dc d qdime.

This implies that (13) holds with p = 1/perr, C0 =
√

λ1 and

C(n) =


dc d qdime for n = 1, 2, . . . , dc d qdime,

(
1 + 1

n

)1/perr
(c d qdim)1/perr for n > dc d qdime.

From (15) we have

pk = p

[
1−

(
2p

2p + 1

)k
]

=
1

perr

[
1−

(
2

2 + perr

)k
]

.
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From Theorem 1 we conclude that

eran(An,k; Hd, ρd) ≤
√

k [C(n + 1)]2 + 1

npk

√
λd,1 ≤ ε

√
λd,1

holds if

n =

ε−1/pk

[
k

(
1 +

1

n + 1

)2/perr

(c d qdim)2/perr + 1

]1/(2pk)


≤

ε−1/pk

[
k 22/perr

(
1 +

1

n + 1

)2/perr

(c d qdim)2/perr

]1/(2pk)


≤
⌈[

3 c k perr/2 ε−perr d qdim
][1−( 2

2+perr
)

k
]−1⌉

.

The cardinality of An,k is at most nk, and therefore nwor(ε, d) ≤ nk which proves
(strong) tractability in the randomized setting for the class Λstd. The exponents of
tractability can be arbitrarily close to perr and qdim if k is large enough. This completes
the proof of (i) and the first part of (ii). We now take

k =

⌈
ln(ln(ε−1 + d + 1))

ln((2 + perr)/2)

⌉
.

Then (2/(2 + perr))
k ≤ 1/ ln(ε−1 + d + 1) and the second formula in (ii) easily follows.

This completes the proof. �

Theorem 4 states the equivalence between (strong) tractability in the randomized
setting for the class Λstd with (strong) tractability in the worst case setting for the class
Λall. We stress that it is relatively easy to verify when (strong) tractability holds in
the worst case setting for the class Λall since it requires to analyze the behavior of the
eigenvalues λi = λd,i. The latter problem has already been analyzed in many papers.

We illustrate the last point for the weighted Korobov spaces from Section 5 for
general weights γd,u with d = 1, 2, . . . and u ⊆ {1, 2, . . . , d}. For γ = {γd,u} and q ≥ 0,
define

rα(γ, q) := sup

 r ∈ (0, α) : sup
d=1,2...

1

d q

∑
u⊆{1,2,...,d}

(
γd,u

γd,max

) 1
r

[2ζ(α/r)]|u| < ∞

 .

Here,

γd,max = max
u⊆{1,2,...,d}

γd,u,

ζ is, as in the previous section, the zeta Riemann function, and |u| = 0 for u = ∅.
Note that ζ(α/r) is well defined since α/r > 1 and 2ζ(α/r) > 2. We also adopt the
convention that sup ∅ = 0.

Theorem 5. Consider multivariate approximation for the weighted Korobov spaces
defined as in Section 5. Then
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(i): Strong tractability in the worst case setting for the class Λall and in the ran-
domized setting for the class Λstd holds iff rα(γ, 0) > 0. When this holds then
the exponent of strong tractability is 2/rα(γ, 0).

(ii): Tractability in the worst case setting for the class Λall and in the randomized
setting for the class Λstd holds iff rα(γ, q) > 0 for some positive q.

(iii): If rα(γ, q) > 0 for some q ≥ 0 then

nwor(ε, d) ≤ Cr d q ε−2/r ∀ r ∈ (0, rα(γ, q))

with

Cr = sup
d=1,2...

1

d q

∑
u⊆{1,2,...,d}

(
γd,u

γd,max

) 1
r

[2ζ(α/r)]|u|

which is finite.

Proof. Assume first that (strong) tractability holds. Then for some non-negative c, perr

and qdim we have

nwor(ε, d) ≤ c d qdim ε−perr ∀ ε ∈ (0, 1), ∀ d = 1, 2, . . . .

We know that perr ≥ 2/α since nwor(ε, 1) = Θ(ε2/α), and in the case of strong tractabil-
ity qdim = 0. From (28) we get

λd,n+1 ≤
(

c d qdim

n

)2/perr

λd,1 for n > d c d qdim e

with d c d qdim e ≥ 1, and therefore d c d qdim e ≤ 2 c d qdim . Note that λd,1 = γd,max.
Using (26) we then obtain for r ∈ (0, 2/perr) and q ≥ 2qdim/(rperr) > qdim,

1

d q

∑
u⊆{1,2,...,d}

(
γd,u

γd,max

) 1
r

[2ζ(α/r)]|u| =
1

d qλ
1/r
d,1

∞∑
j=1

λ
1/r
d,j

≤ d c d qdim e
d q

+
(c d qdim)2/(rperr)

d q

∞∑
j=d c d qdim e+1

j−2/(rperr)

≤ 2c

d q−qdim
+

c2/(rperr)

d q−2qdim/(2perr)
ζ

(
2

rperr

)
.

Hence rα(γ, q) ≥ r > 0. Since r can be arbitrarily close to 2/perr this yields that
rα(γ, q) ≥ 2/perr > 0. For strong tractability we have qdim = 0 and we can take q = 0
which implies that rα(γ, 0) ≥ 2/perr > 0.

Assume now that rα(γ, q) > 0 with q = 0 for strong tractability. Hence, for r ∈
(0, rα(γ, q)) we have Cr < ∞ with Cr given in (iii). From (27) we conclude

λd,n ≤

(
∞∑

j=1

λ
1/r
d,j

)r

n−r

=

 ∑
u⊆{1,2,...,d}

(
γd,u

γd,max

) 1
r

[2ζ(α/r)]|u|

r

n−r λd,1

≤ Cr
r d qr n−r λd,1.
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Then λd,n+1 ≤ ε2λd,1 if Cr
rd

qr(n + 1)−r ≤ ε2 which holds for

nwor(ε, d) ≤ n ≤ Cr d q ε−2/r.

Hence, we have tractability for q > 0 and strong tractability for q = 0. Furthermore, r
can be arbitrarily close to rα(γ, q) and therefore

nwor(ε, d) ≤ Cr d q ε−perr

with perr arbitrarily close to 2/rα(γ, q). For q = 0 this means that the exponent of
strong tractability is 2/rα(γ, q). This completes the proof. �

The definition of r(γ, q) simplifies for product weights, i.e., for

γd,∅ = 1 and γd,u =
∏
j∈u

γd,j with 0 ≤ γd,d ≤ · · · ≤ γd,1 ≤ 1.

Indeed, we then have

rα(γ, q) = sup

{
r ∈ (0, α) : sup

d
d−q

d∏
j=1

(
1 + 2 γ

1/r
d,j ζ(α/r)

)
< ∞

}
.

The necessary and sufficient conditions for (strong) tractability can be simplified due
to the following equivalences:

(29) rα(γ, 0) > 0 iff sup
d

d∑
j=1

γ
1/r
d,j < ∞ for some r ∈ (0, α),

and

(30) rα(γ, q) > 0 for some q > 0 iff sup
d

∑d
j=1 γ

1/r
d,j

ln(d + 1)
< ∞ for some r ∈ (0, α).

For example, take γd,j = 1 for j = 1, 2, . . . , min (d, dβ ln(d + 1)e) for some positive β.
Then strong tractability does not hold since rα(γ, 0) = 0. However, tractability holds
since rα(γ, q) > 0 for q ≥ β ln(1 + 2ζ(α/r)) with r ∈ (0, α).

The situation is even simpler when the weights are independent of d as indicated in
the following proposition.

Proposition 4. Consider multivariate approximation for the weighted Korobov spaces
as in Section 5. If the weights γ are of product form and do not depend on d, i.e.,

γd,j = γj ∀ d, j and 1 ≥ γ1 ≥ γ2 ≥ · · · ≥ 0

then tractability is equivalent to strong tractability which, in turn, is equivalent to

(31)
∞∑

j=1

γ
1/r
j < ∞

for some r ∈ (0, α). When this holds then the exponent of strong tractability equals
2/ min(α, r∗), where r∗ is the supremum of r satisfying (31).
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Proof. It is enough to prove that tractability implies strong tractability. Assume that
we have tractability. Then r(γ, q) > 0 for some positive q, and (30) yields

c∞ := sup
d

∑d
j=1 γ

1/r
j

ln(d + 1)
< ∞

for a positive number r < α. Then for any d ≥ 1, we have dγ
1/r
d ≤ c∞ ln(d + 1). For

any positive δ, and a = r/(1 + δ) we obtain
∞∑

j=1

γ
1/a
j ≤ c1+δ

∞

∞∑
j=1

ln1+δ(d + 1)

d1+δ
< ∞.

This and the equivalence (29) imply strong tractability and that rα(γ, 0) ≥ a. Since a
can be arbitrarily close to r and r can be arbitrarily close to min(α, r∗), we conclude

that rα(γ, 0) ≥ min(α, r∗). For r ≥ min(α, r∗), the product
∏∞

j=1(1 + 2γ
1/r
j ζ(α/r)) is

divergent or not well defined, and therefore rα(γ, 0) ≤ r∗. Hence, rα(γ, 0) = min(α, r∗).
Theorem 5 states that the exponent of strong tractability is 2/rα(γ, 0) which completes
the proof. �
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[31] H. Woźniakowski, Tractability and strong tractability of linear multivariate problems, J. Com-

plexity, 10 (1994), 96-128.

Department of Computer Science, University of Kentucky, 773 Anderson Hall, Lex-

ington, KY 40506-0046, USA

E-mail address: greg@cs.uky.edu

Department of Computer Science, Columbia University, New York, NY 10027, USA,

and Institute of Applied Mathematics, University of Warsaw, Warsaw, Poland

E-mail address: henryk@cs.columbia.edu


