|
Preface
|
xiii
|
|
Chapter 1. Overview
|
1
|
|
Chapter 2. Example: Continuous Binary Search
|
5
|
|
1. Introduction
|
5
|
|
1.1. Problem Formulation
|
6
|
|
1.2. Information
|
6
|
|
1.3. Model of Computation
|
6
|
|
2. Complexity
|
6
|
|
3. Worst Case Setting
|
8
|
|
4. Average Case Setting
|
10
|
|
5. Probabilistic Setting
|
12
|
|
6. Relative Error
|
13
|
|
6.1. Worst Case Setting
|
13
|
|
6.2. Average Case Setting
|
14
|
|
6.3. Probabilistic Setting
|
16
|
|
7. Comparison of Complexity
|
18
|
|
8. Mixed Settings
|
19
|
|
9. Noisy Information
|
20
|
|
10. Final Comments
|
20
|
|
Chapter 3. General Formulation
|
22
|
|
1. Introduction
|
22
|
|
2. Formulation
|
23
|
|
2.1. Problem Formulation
|
23
|
|
2.2. Information
|
25
|
|
2.3. Model of Computation
|
29
|
|
2.4. How Can We Compute Approximations?
|
32
|
|
3. Complexity in Worst Case, Average Case, and Probabilistic Settings
|
33
|
|
4. Asymptotic Setting
|
36
|
|
5. Randomization
|
37
|
|
Chapter 4. Worst Case Setting : Theory
|
39
|
|
1. Introduction
|
39
|
|
2. Radius and Diameter of Information
|
41
|
|
3. Algorithms
|
45
|
|
3.1. Local and Global Errors
|
45
|
|
3.2. Central Algorithms
|
46
|
|
3.3. Interpolatory Algorithms
|
48
|
|
4. Cardinality Number and Complexity
|
50
|
|
5. Linear Problems
|
52
|
|
5.1. Definition of Linear Problems
|
53
|
|
5.2. Adaption Versus Nonadaption
|
54
|
|
5.3. Optimal Information
|
61
|
|
5.4. Relations between nth Minimal Radii and Gelfand n-widths
|
66
|
|
5.5. Linear Algorithms
|
71
|
|
5.6. Optimal Linear Algorithms and Linear Kolmogorov n-widths
|
85
|
|
5.7. Spline Algorithms
|
89
|
|
5.8. Complexity
|
95
|
|
6. Different Error Criteria
|
99
|
|
6.1. Relative Error
|
99
|
|
6.2. Normalized Error
|
102
|
|
6.3. Convex and Symmetric Error
|
106
|
|
Chapter 5. Worst Case Setting : Applications
|
110
|
|
1. Introduction
|
110
|
|
2. Integration
|
110
|
|
2.1. Smooth Periodic Functions
|
112
|
|
2.3. Weighted Integration in a Reproducing Kernel Hilbert Space
|
123
|
|
3. Function Approximation
|
128
|
|
3.2. Smooth Nonperiodic Functions: Hilbert Case
|
134
|
|
3.3. Smooth Nonperiodic Functions: Banach Case
|
137
|
|
4. Computer Vision
|
138
|
|
5. Linear Partial Differential Equations
|
143
|
|
6. Integral Equations
|
157
|
|
7. Ill-Posed Problems
|
163
|
|
8. Optimization
|
166
|
|
9. Large Linear Systems
|
168
|
|
10. Eigenvalue Problem
|
172
|
|
11. Ordinary Differential Equations
|
176
|
|
12. Nonlinear Equations
|
177
|
|
13. Topological Degree
|
182
|
|
Chapter 6. Average Case Setting : Theory
|
184
|
|
1. Introduction
|
184
|
|
2. Radius of Information
|
186
|
|
3.1. Local and Global Average Errors
|
193
|
|
4. Average Cardinality Number and Complexity
|
201
|
|
5.1. Linear Problems in the Average Case Setting
|
205
|
|
5.2. Gaussian Measures
|
206
|
|
5.3. Central Algorithms
|
210
|
|
5.4. Spline Algorithms
|
214
|
|
5.5. Optimal Nonadaptive Information
|
219
|
|
5.6.1. Adaptive Information with Fixed Cardinality
|
223
|
|
5.7. Complexity
|
233
|
|
5.8. Linear Problems for Bounded Domains
|
241
|
|
5.8.1. Average Radius of Information
|
244
|
|
6. Different Error Criteria
|
251
|
|
6.1. Relative Error
|
252
|
|
6.2. Normalized Error
|
252
|
|
6.2. Normalized Error
|
261
|
|
6.3. General Error Functional
|
263
|
|
6.4. Precision Error
|
273
|
|
Chapter 7. Average Case Setting : Applications
|
277
|
|
1. Introduction
|
277
|
|
2.1. Smooth Functions
|
278
|
|
2.2. Weighted Integration in a Reproducing Kernel Hilbert Space
|
282
|
|
3. Function Approximation
|
289
|
|
3.1. Smooth Periodic Functions
|
289
|
|
3.2. Smooth Nonperiodic Functions
|
291
|
|
4. Ill-Posed Problems
|
295
|
|
Chapter 8. Probabilistic Setting
|
302
|
|
1. Introduction
|
302
|
|
3. Radius of Information
|
306
|
|
5. Linear Problems
|
308
|
|
5.2. Estimates of the Radius of Information
|
309
|
|
5.3. Optimal Information
|
312
|
|
5.5. Linear Problems for Bounded Domains
|
319
|
|
6. Different Error Criteria
|
321
|
|
6.2. Normalized Error
|
330
|
|
6.3. General Error Functional
|
332
|
|
7. Applications
|
333
|
|
Chapter 9. Comparison between Different Settings
|
338
|
|
1. Introduction
|
338
|
|
2. Integration of Smooth Functions
|
339
|
|
4. Approximation of Smooth Periodic Functions
|
344
|
|
5. Approximation of Smooth Nonperiodic Functions
|
346
|
|
Chapter 10. Asymptotic Setting
|
349
|
|
1. Introduction
|
349
|
|
2. Asymptotic and Worst Case Settings for Linear Problems
|
356
|
|
2.1. Optimal Algorithms
|
357
|
|
2.2. Optimal Information
|
362
|
|
2.3. Continuous Algorithms
|
367
|
|
3. Asymptotic and Worst Case Settings for Nonlinear Problems
|
368
|
|
3.1. Optimal Algorithms
|
368
|
|
3.2. Optimal Information
|
372
|
|
3.3. Applications
|
373
|
|
4.1. Optimal Algorithms
|
376
|
|
4.2. Rate of Convergence
|
380
|
|
4.3. Optimal Information
|
383
|
|
Chapter 11. Randomization
|
385
|
|
1. Introduction
|
385
|
|
2. Random Information and Random Algorithms
|
386
|
|
3. Average Case Setting
|
390
|
|
3.1. Linear Problems for the Whole Space
|
390
|
|
3.2. Linear Problems for Bounded Domains
|
393
|
|
4. Worst Case Setting
|
394
|
|
4.1. Function Approximation and Other Problems
|
394
|
|
4.1.1. Function Approximation
|
396
|
|
4.1.2. Maximum and Extremal Points
|
397
|
|
4.1.3. Function Inverse
|
398
|
|
4.1.4. Topological Degree
|
398
|
|
4.2. Integration
|
400
|
|
4.3. Linear Problems with Unrestricted Information
|
406
|
|
Chapter 12. Noisy Information
|
409
|
|
1. Introduction
|
409
|
|
2. Worst Case Setting with Deterministic Noise
|
409
|
|
2.1. Basic Definitions
|
409
|
|
2.2. Uniformly Bounded Noise
|
411
|
|
3. Average Case Setting with Random Noise
|
416
|
|
3.1. Basic Definitions
|
416
|
|
3.2. Normally Distributed Noise
|
417
|
|
3.3. Does Adaption Help?
|
418
|
|
3.3.1. Examples
|
418
|
|
3.3.2. Adaptive Choice of Observations Does Not Help
|
420
|
|
4. Mixed Setting
|
424
|
|
Appendix
|
427
|
|
1. Functional Analysis
|
427
|
|
1.1. Linear Spaces and Linear Operators
|
427
|
|
1.2. Linear Independence, Dimension, and Linear Subspaces
|
428
|
|
1.3. Norms and Continuous Linear Operators
|
428
|
|
1.4. Banach Spaces
|
430
|
|
1.5. Inner Products and Hilbert Spaces
|
430
|
|
1.5.1. Inner Products
|
430
|
|
1.5.2. Hilbert Spaces
|
431
|
|
1.5.3. Separable Hilbert Spaces
|
431
|
|
1.6. Bounded Operators on Hilbert Spaces
|
432
|
|
1.6.1. Bounded Functionals and Riesz’s Theorem
|
432
|
|
1.6.2. Adjoint Operators
|
432
|
|
1.6.3. Orthogonal and Projection Operators
|
433
|
|
1.6.4. Spectrum
|
433
|
|
2. Measure Theory
|
435
|
|
2.1. Borel sigma-Field, Measurable Sets and Functions
|
435
|
|
2.2. Measures and Probability Measures
|
435
|
|
2.3. Integrals
|
436
|
|
2.4. Characteristic Functional
|
437
|
|
2.5. Mean Element
|
438
|
|
2.6. Covariance and Correlation Operators
|
438
|
|
2.7. Induced and Conditional Measures
|
439
|
|
2.8. Product Measures and Fubini’s Theorem
|
439
|
|
2.9. Gaussian Measures
|
440
|
|
2.9.1. Measure of a Ball
|
440
|
|
2.9.2. Induced and Conditional Measures
|
444
|
|
Bibliography
|
448
|
|
Author Index
|
484
|
|
Subject Index
|
490
|