Research Statement — Heming Cui

Real-world programs are undergoing paradigm shifts, and these shifts introduce reliability and security
problems. One paradigm shift is that programs are moving from single-threaded to multi-threaded. However,
multi-threaded programs are notoriously hard to get right, and a key reason is that these programs have too many
possible thread interleavings, which aggravates understanding, testing, debugging, and can lead to wrong outputs
and security breaches. Another paradigm shift is that programs are becoming larger and more complicated,
while still having to obey critical rules (e.g., allocated memory must be freed, and file updating and disk syncing
must be done consistently), as violating these rules can cause resource leaks and data losses. Unfortunately,
existing techniques can not feasibly check these rules on real-world programs due to program path explosion.
My research is focused on creating effective systems to attack these reliability and security problems.

My approach is that, starting from a fresh and fundamental insight to a critical problem, I search for an
effective solution combined from multiple fields such as systems and program analysis. A fresh and fundamental
insight helps me understand the key challenge and steer my direction, and a combined solution enables me to
leverage the strengths of different fields, such as the practicality of systems skills and rigor of program analysis
techniques. This approach has helped me achieve important research advances: §1 describes three systems
that can greatly improve reliability of multi-threaded programs by reducing the number of thread interleavings,
§2 introduces compelling applications of these systems on advancing two research fields called static analysis
and model checking, and §3 presents results on detecting new security violations in widely used programs.

1 Stable Multi-threading (StableMT)

My primary research is focused on improving reliability of multi-threaded programs by reducing the number
of thread interleavings in these programs. To realize this technique, I have built three systems by collaborating
with colleagues from Columbia University and Carnegie Mellon University.

Multi-threaded programs have become pervasive due to the accelerating computational demand and the rise
of multi-core hardware. Unfortunately, despite much research and engineering effort, these programs are still
notoriously difficult to get right, leading to severe problems including wrong outputs, program crashes, and
security breaches. Our research [5] reveals that a key reason of this difficulty is that multi-threaded programs
have foo many possible thread interleavings, or schedules. Even given only a single input, a program may run
into excessive schedules, depending on factors such as hardware timing and OS scheduling. Considering all
inputs, the number of schedules is even much greater. Finding a buggy schedule in this huge schedule set is
like finding a needle in a haystack, which aggravates understanding, testing, and analyzing of programs. For
instance, testing is ineffective because the schedules tested in the lab may not be the ones run in the field.

To reduce the number of schedules for all inputs, we have studied the relation between inputs and schedules
of real-world programs, and made a surprising discovery: many programs require only a small set of schedules
to efficiently process a wide range of inputs. Leveraging this discovery, we have proposed the idea of stable
multi-threading (StableMT) [5] that reuses each schedule on a wide range of inputs. StableMT conceptually
maps all inputs to a greatly reduced set of schedules, drastically shrinking the “haystack”, making the “needles”
much easier to find. StableMT can greatly benefit understanding multi-threaded programs and many reliability
techniques, including testing, debugging, replication, and verification. For instance, testing schedules in such a
much smaller schedule set becomes a lot more effective.

StableMT is complementary to another idea called deterministic multi-threading (DMT) that enforces the
same schedule on each input. Our research [5] has shown that although DMT is useful, it is not as useful as
commonly perceived, because a DMT system can map slightly changed inputs to very different schedules, which
can easily cause very different program behaviors. Furthermore, the number of schedules for all inputs in DMT
can still be extremely large, which is the key problem that StableMT mitigates. Notably, StableMT has attracted



the research community’s interest since it was initially proposed by us in 2010 [3], and most subsequent systems
are both StableMT and DMT.

To realize StableMT, we have built three systems, TERN [3], PEREGRINE [2], and PARROT [1], with each
addressing a distinct challenge. Unless specified, these systems use a common definition for “schedule”: a total
order of synchronization operations (e.g., lock acquisitions).

The first challenge of implementing StableMT is how to find highly reusable schedules for different inputs.
The more reusable a schedule is, the fewer schedules are needed. However, finding highly reusable schedules
is hard with existing static or dynamic techniques, because statically computed schedules are in general not
guaranteed to work at runtime due to the halting problem, and dynamically computing schedules may be slow.

TERN [3], our first StableMT system, addresses the schedule-finding challenge by proposing a technique that
records a set of past, working schedules, and then reuses these schedules on future inputs when possible. This
technique is inspired by a real-world analogy that human and animals tend to migrate along past, familiar routes
and avoid possible hazards in unknown ones. To find a schedule suitable for an input, TERN leverages a set of
advanced program analysis techniques to compute preconditions on inputs that match a schedule. Evaluation on
a diverse set of popular programs showed that TERN can reuse a small set of schedules to process a wide range
of inputs. For instance, just 100 schedules for the Apache web server can process 90.3% of a 4-day trace (122K
requests) from the Columbia CS department website.

The second challenge of implementing StableMT is how to efficiently make executions follow schedules
without deviating. This challenge has existed in the area of deterministic execution and replay for decades. Pre-
vious work typically enforces two types of schedules: a total order of shared memory accesses (mem-schedule),
and a total order of synchronization operations (sync-schedule). The mem-schedules are fully deterministic even
with data races, but they are several times slower than traditional multi-threading. The sync-schedules incur only
modest overhead because most code is not synchronization and thus can still run in parallel, but these schedules
may deviate if there are data races. Overall, despite much research effort, people can only choose either full
determinism or efficiency, but not both.

To tackle this challenge, our second StableMT system, PEREGRINE [2], leverages the following observation:
although data races exist in some programs, the races tend to occur only within minor portions of an execution,
and the majority of the execution is still race-free. Therefore, we can enforce a sync-schedule in the race-free
portions of an execution and resort to a mem-schedule only in the racy portions, combining both the efficiency
of sync-schedules and determinism of mem-schedules. PEREGRINE implements hybrid-schedule with a new
technique that first records an execution trace of all executed instructions on a new input, and then relaxes the
trace into a highly reusable hybrid-schedule. Evaluation on a diverse set of programs showed that PEREGRINE
provides both determinism and efficiency, and can frequently reuse schedules for half of the evaluated programs.
PEREGRINE has been featured in media such as ACM Tech News, TG Daily, and Physorg.

In the last four years, StableMT has achieved promising advances and attracted the research community’s
interest. Numerous StableMT systems have been built, including our TERN and PEREGRINE systems. However,
it remains an open challenge whether StableMT can be made simple and deployable. Previous StableMT systems
either run into slow schedules that serialize parallel computation, or are fairly hard to deploy due to their high
complexity (e.g., TERN and PEREGRINE require sophisticated program analysis).

To address this challenge, we have built our third and latest StableMT system, PARROT [1], a simple, deploy-
able runtime that enforces a well-defined round-robin schedule for synchronization operations, vastly reducing
the number of schedules. To mitigate the serialization problem that causes big slow-down, PARROT uses an
insight based on the 80-20 rule: most threads spend most execution time in only a few core computations, and
PARROT only needs to make these core computations parallel. Accordingly, PARROT provides a new abstrac-
tion called performance hints for developers to annotate core computations. These hints, which are intended
to improve parallelism of core computations, are not real synchronization, and can be safely ignored without



affecting correctness of a program. Evaluation on a wide range of 108 popular programs (e.g., Berkeley DB
and MPlayer), which is roughly 10x more programs than any previous StableMT or DMT evaluation, showed
that, these hints were easy to add and made PARROT fast (12.7% mean overhead on 24-core machines). Due to
PARROT’s simplicity and high practicality, we have made it open source for deployment.

2 Applications of StableMT

To demonstrate the potential of StableMT, we have applied PEREGRINE [2] to improve static analysis, a popular
technique that analyzes a program and gets high coverage (e.g., covers all possible schedules) without executing
code. One shortcoming of static analysis is that it suffers from poor precision: to get high coverage without
executing code, static analysis has to over-approximate the huge schedule set and includes many schedules that
will never occur. Therefore, static analysis often raises excessive false reports from the impossible schedules,
which buries real bugs in noise. Fortunately, StableMT can drastically shrink the schedule set for static analysis.
We have created a static analysis framework [6] that uses PEREGRINE to greatly reduce the number of possible
schedules. This reduction enables the framework to soundly avoid most false reports without missing bugs, and
to detect seven new harmful data races in heavily studied programs.

In addition, PARROT [1] has demonstrated that StableMT can greatly advance model checking, a dynamic
testing technique that systematically explores schedules for errors on an input. Although industry and academia
have made model checking effectively find errors in real-world programs, this technique can check only a very
tiny fraction of schedules even after checking for thousands of years, as the number of possible schedules can be
very large. Because StableMT vastly reduces the number of possible schedules, with it model checking enjoys
much higher coverage (i.e., the ratio of checked schedules over all possible schedules). We have integrated
PARROT with a state-of-the-art model checking tool called DBUG. Evaluation on 61 popular programs contain-
ing large schedule set showed that, PARROT improved DBUG’s coverage by many orders of magnitude for 56
programs, reducing the schedule set in most of these 56 programs to only one schedule under our input setup.

3 Detecting Reliability and Security Rule Violations

Apart from StableMT, my research also involves checking reliability and security rule violations. Programs
must obey many rules, such as assertions must succeed, allocated memory must be freed, and file updating and
disk syncing must be done consistently. It is crucial to verify programs with these rules, because violating them
can easily lead to critical failures such as program crashes, resource leaks, data losses, and security holes. Unfor-
tunately, existing techniques can not precisely verify a program with high program path coverage. For example,
although symbolic execution, a popular program analysis technique, can systematically explore program paths
to find errors, this technique suffers from path explosion: it can rarely explore however a tiny portion of program
paths, because a typical program is complicated and contains exponentially many paths. This poor path coverage
makes rule violations extremely hard to check in real-world programs.

To address this problem, we propose WOODPECKER [4], a rule-directed symbolic execution system. The
insight behind WOODPECKER is: only a small portion of paths are relevant to rules, and the rest (majority)
of paths are irrelevant and do not need to be verified. WOODPECKER directs symbolic execution towards the
program paths that are relevant to a built-in rule, and soundly prunes redundant paths without missing rule
violations. Evaluation on 136 widely used programs showed that WOODPECKER effectively verified 28.7%
of program and rule combinations, whereas a top-of-the-line symbolic execution system verified only 8.5%.
In addition, WOODPECKER detected a total of ten serious data loss or security violations in git, CVS, and
useradd. These violations can corrupt repositories or hack OS user accounts, and most of them have been
quickly confirmed or fixed by the corresponding developers.



4 Future Plans

In the short term, I plan to explore the potential of StableMT to benefit other reliability fields such as concurrency
error detection, debugging, verification, and state machine replication (SMR). For instance, SMR has become
a dominant fault-tolerance technique in distributed systems, but SMR for multi-threaded programs, which is
driven by the accelerating computational demand, is still difficult. A root cause of this difficulty is the execution
divergence among replicas caused by the enormous number of thread schedules and the nondeterministic arrival
timings of requests. I plan to attack this root cause by integrating StableMT with PAX0S: StableMT drastically
reduces the number of schedules, and PAXOS coordinates the order of arriving requests among replicas as well
as the deterministic logical timings of these requests in StableMT’s schedules. By doing this, multi-threaded
SMR may be made feasible.

In the medium term, I plan to design and implement a unified reliable and secure framework for parallel
and distributed computing. Firstly, this framework requires a new language and synchronization primitive for
developers to express the tradeoff between the amount of possible schedules and performance. Secondly, it
requires a new program analysis engine that can conveniently plug in dynamic checking algorithms to analyze
the whole system without interrupting normal executions. Last but not least, it requires a new runtime that
can enforce developers’ intention from the new language, and can automatically deploy reliability and security
services including replication and auditing. Realizing this framework will encourage collaborations among
diverse fields such as systems, programming languages, networking, algorithms, and security. I believe these
exciting collaborations can realize a common goal: making programs reliable and secure.

In the long term, I am willing to attack a broad range of critical problems caused by the paradigm shifts
of computing. For instance, I would like to explore how datacenters reshape existing software. If a datacenter
continues to become a “big computer”’, how do we design the process and thread models in this new computer?
Can we leverage some StableMT techniques to ensure good reliability for these future processes and threads?
How do we reconstruct TCP and UDP to improve throughput for the aggregated workloads within a datacenter?
Shall we reexamine existing distributed protocols within this approximately synchronous network? I think
each of these questions can raise fundamental problems, and I look forward to applying all my enthusiasm,
knowledge, and skills to fight against these problems.
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