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Abstract— While physical layer capture has been ob-
served in real implementations of wireless devices which
randomly accessing shared channels, fair rate control
algorithms based on accurate channel models describing
the phenomenon have not been developed. In this paper,
using our general physical channel model, we formally
present the characteristics of the feasible domain of a gen-
eral fairness problem and utility fairness under physical
layer capture. We show that the allocation domain is not
convex and the previous optimization schemes cannot be
applied. We further show the objective function for utility
fairness is concave on the domain of channel access attempt
probability. We clarify that the optimal attempt probability
of the node in the log utility fairness is proportional to its
interference effect on its neighbors. Based on our analysis,
we propose a rate determination algorithm to achieve log-
utility fairness for random access networks. Running in a
fully distributed manner, our rate control algorithm can
reach an assignment close to the optimum, in contrast
of the previous algorithms causing node starvation in
presence of physical layer capture. The accuracy of our
algorithm is verified through simulations and our results
indicate the accuracy error for log utility fairness is less
than 5% for 97% of the nodes.

I. INTRODUCTION

While physical layer capture has been reported to
cause unfair allocations in random access networks [1],
fair scheduling has been only studied in literature with
unrealistic wireless models. Traditional modeling of ran-
dom access networks [2], [3], [4] assumes that transmis-
sions are not corrupted if and only if all other nodes
within certain interference ranges centered in the sender
and receiver are not transmitting frames. Transmissions
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outside of the range are assumed not to affect the
transmission at all. With this assumption, conflict graphs
can be formed and simplify analysis on access protocols.

In reality, this assumption generally turns out to be
false. A transmitted frame can get through a collision
and be received at the receiver without error, if the
total interference strength is under some threshold. The
phenomenon is referred to as physical layer capture [5].
However, as the number of simultaneous transmissions
increases, the cumulative interference from the neighbors
may exceed the threshold and corrupt frame reception at
the receiver even when the neighbors may not interfere
in isolation.

The principal problem with prior work is the as-
sumption of static conflict graphs. Assuming interference
ranges, only nodes within the ranges are individually
considered to have conflict relationships. However, in
presence of physical layer capture, the cumulative inter-
ference from a given set of transmitting nodes may or
may not cause conflicts and this makes the conflict graph
dynamic. That is, simultaneous transmissions from spe-
cific sets of nodes, a probabilistic occurrence, causes new
conflict relationships to come and go. Thus, the conflict
graph, especially in dense networks, is constantly chang-
ing thereby frequently nullifying any optimality/fairness
results derived with static-conflict graphs.

Fair allocation algorithms proposed so far rely on
the simplification to physical channel models. In [6],
Nandagopal et al present a fully distributed rate control
algorithm depending only on the loss rate at the re-
ceiver, assuming the effect of interference is completely
symmetric. The algorithm in [7], built using the idea of
interference ranges, quickly determines optimal attempt
probabilities based on the number of neighbors; how-
ever, the effect of cumulative interference signals is not
considered at all. In presence of physical layer capture,
these algorithms inaccurately estimate fair throughputs
potentially causing biased allocations.



The goal of this work is to formally investigate fair-
ness under the effect of physical layer capture in random
access networks. Our major contributions are:

• We first present the general characteristics of fair
bandwidth allocations for random access networks
in presence of physical layer capture. We formally
prove the feasible region of bandwidth allocations
in physical layer capture is non-convex. We further
discuss that the convex conversion technique pro-
posed in the previous work cannot be applied in
physical layer capture.

• Next, we investigate log utility fairness under phys-
ical layer capture. Our analysis demonstrates that
log-utility fairness allows the sender to access the
channel at a probability given by its interference
effect to its neighbors. We prove that the aggregate
utility is a concave function of attempt probabilities
and present a distributed algorithm to assign attempt
probabilities for log-utility fairness.

• Finally, our algorithm is verified through extended
simulations. Our algorithm significantly improves
the minimum node throughput as well as the ag-
gregate utility. The simulation results indicate that
previously proposed algorithm based on conflict
graphs may cause starvation. Ignoring the effect
of cumulative interference, the previous algorithm
tends to assign attempt probabilities higher than
the optimum and make about 22% of nodes in our
simulations starve due to frequent interference.

In this paper, we focus on dense wireless networks like
in offices and urban residential areas. In such networks,
one or few terminals are close to an access point and tend
to capture strong signals from it. The dense distribution
of access points and terminals, however, enlarges the
effect of cumulative interference on frame reception.

For MAC protocol, slotted Aloha is considered. Note
that our analysis and fair scheduling algorithm for slotted
Aloha can be extended for CSMA/CA protocols with a
single carrier-sensing range. In CSMA/CA fair schedul-
ing, if the channel is idle, nodes access the channel per
time slot with probabilities determined by scheduling
algorithms. Assuming all nodes are transmitting fixed-
length frames and located within a single sensing range,
the nodes are fully synchronized and the difference from
slotted Aloha is limited to the length of idle slots. Our
extended work for CSMA/CA can be found in [8] and
analysis with multiple ranges is left for the future.

The rest of our paper is structured as follows: sec-
tion II reviews related work. In Section III, our system
model and the characteristics of the feasible allocation
region are presented. Section IV investigates utility fair-

ness in presence of physical layer capture and presents
our distributed rate control algorithm. Section V shows
simulation results of our fair scheduling algorithm. Sec-
tion VI draws the conclusions of this study. All necessary
proofs are provided in the appendix.

II. RELATED WORK

After investigation by Soroushnejad and Geranio-
tis [5], slotted-Aloha systems with the effect of physical
layer capture have been extensively studied. Namislo
analyzes the effect of physical layer capture in [9]. Cidon
et al in [10] investigate the behavior of various collision
resolution algorithms with the capture effect. However,
their analysis and models are limited to networks with a
single receiver and multiple senders. The authors of [11],
[12] present analytical models for multi-hop networks,
but their work assumes that nodes are spatially dis-
tributed according to a Poisson process and only captures
the average throughput over all Poisson configurations.

Analyzing random access protocols in wireless net-
works, [3] provides one of the first analytical models
where interference ranges are used to identify asym-
metric interference. However, without considering cu-
mulative interference signals, the authors suppose that
only multiple transmissions within the ranges destroy the
frames involved. While this assumption carries over to
recent analysis work [2], [4], we have presented the first
analytical model of CSMA/CA random access protocols
in presence of physical layer capture [13]. We formulate
a complete expression for the error probability with the
capture effect. Using the least squares method and fixed
point iteration, our analysis obtains accurate expectation
on error probabilities and throughputs of nodes. The
prediction error for error probability is less than 10%
for more than 98% of nodes.

Rate control algorithms for fairness have been de-
veloped based on models using interference ranges.
For proportional fairness [14], Kar et al [7] show that
optimal attempt probabilities are given by the number
of neighbors in a conflict graph. In [6], Nandagopal et
al, assuming interference relation is symmetric, develop
a general objective function penalizing the sender in
proportional to the local loss rate. However, in presence
of asymmetric interference, the algorithm punishes nodes
that are vulnerable to interference rather than nodes
causing interference.

Wang et al, in [15], [16], propose a distributed algo-
rithm for utility and max-min fairness using the standard
dual approach with conflict graphs. Recent research
for max-min fairness also uses interference ranges and
conflict graphs as in [17], [18]. In real environments,



under the effect of frame capture, the proposed al-
gorithms cannot achieve optimal bandwidth allocations
since interference is asymmetric and cumulative.

III. SYSTEM MODEL

A. General Physical Channel Model

In this paper, we consider link layer fairness with
multiple pairs of a sender and receiver. Senders and
receivers are stationary and randomly placed in an area.
Each sender always has frames to send and access the
channel randomly in each slot. After receiving error-free
frames, receivers immediately acknowledge their sender.

Assuming slotted-Aloha systems, the node throughput
is a function of the attempt rate and successful transmis-
sion probability. The attempt rate is determined by the
node itself but the success of a transmission depends on
the activity of neighbor nodes.

The successful reception of a transmitted frame is
determined through two significant stages. Initially, the
frame must be detected by the receiver. Following this,
the frame must be successfully received in the presence
of interference both from other transmissions and exter-
nal noise sources. In literature, many models for these
two stages have been proposed [19], [20], [21].

Rather than using specific capture models, we in-
troduce capture function ci(J) to generalize. Given a
node set J , that does not include node i, the function
computes the successful detection-and-reception prob-
ability of node i’s transmitted frames, in conforming
to a specific capture model. The capture function is
defined to comply with any capture models and work
in consideration of interference signals from all nodes
in J .

With capture function ci(J), the success transmission
probability qi and node throughput xi of node i are
described by:

qi =
∑

J⊂Ni

ci(J)
∏
j∈J

fj

∏
k∈Ni−J

(1 − fk), and

xi = fiqi = fi(
∑

J⊂Ni

ci(J)
∏
j∈J

fj

∏
k∈Ni−J

(1 − fk)), (1)

where Ni = N − {i}, N is the entire set of nodes and
fj is the per-slot transmission probability of node j.

Note that we do not consider channel fading here, as-
suming all nodes in the network are stationary. Although
channel fading would cause the received signal power to
fluctuate, the incoming signal strength is assumed to be
approximately constant for stationary nodes at a given
power level, as observed in [22].

Now we present a simple example that depicts the
problems of an access rate allocation based on static-
conflict graphs. Figure 1 shows an example of the Flow-
in-the-Middle (FIM) problem [4] where a flow in the
middle of two others could starve. Node i, j and k are
placed mutually apart and any two signals from them
do not interfere with each other (as in time slot A to
D). However, simultaneous transmissions from j and k
causes frame corruption to node i (in time slot E). In
our general model, ci is zero if J = {j, k} and one
otherwise. cj and ck are equal to one.

Node j Node k

Node iInterference Ranges

(a) Node Placement

���
���
���
���Node i

Node k

Time SlotA B C D E

Node j

Frame Transmisison

Corrupted
Frame

(b) Channel Access

Fig. 1. Flow-in-the-Middle Example.

In the traditional modeling, the static-conflict graph is
formed with vertices for node i, j and k and has no edges
since there are no peer nodes within interference ranges.
As the conflict could not be identified in the graph, all
nodes in Figure 1 would be allowed to transmit frames
all the time for any given fairness. This would make node
i starve and result in an unfair bandwidth allocation.

B. General Fairness Problem and Feasible Region

In this section, we formulate a general fairness prob-
lem and show that the feasible region is not convex.
In literature, a general fairness problem is viewed as a
mathematical optimization problem with constraints. For
any fair allocations, the general fairness problem, P is
formulated by:

P : max
i

g(yi)

yi ≤ xi = fiqi (2)

The objective function g is determined for given fair-
ness. For example, g is the aggregate utility (

∑
i log (yi))

in log-utility fairness. For max-min fairness, g is given by
−1

2

∑
i (log (yi))2 with additional constraints where yi ≤

ys for all neighbor s [16]. In this general formulation,
a fairness problem is to seek the values of the variables
yi from within an allowed region of node throughputs to
maximize the objective function.

We now show that the feasible allocation region for
yi is not convex. Define J as an interference set of i if
ci(J) < 1. Set J is referred to as a minimum interference
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Fig. 3. 5-Node Example.

set of i if ci of any proper subset of J is one. Our non-
convexity theorem is presented as follows:

Theorem 1 (Non-Convexity of Feasible Region): if
there exists node i and its minimum interference set,
I in the network such that the size of I is greater
than one, the feasible region of node throughputs is
non-convex.
The proof is presented in Appendix.

For the example in Figure 1, the feasible throughput
region, plotted in Figure 2, is non-convex since the
minimum interference set of node i is {j, k}.

Theorem 1 indicates that the powerful tools of convex
analysis are not applicable for fairness in presence of
physical layer capture. In the previous channel mod-
els with interference ranges, constraints for yi are de-
scribed as convex by using maximal cliques on conflict
graphs [6] or the conversion techniques presented in [16],
[15]. The authors of [16], [15] also show that the con-
verted convex optimization problems are easily solved
by the dual and primal approaches. However, due to
the dynamicity of conflict graph, cliques in presence of
physical layer capture would not describe all contentions
among nodes. On the other hand, transformed constraints
for yi by the techniques in [16], [15] are not convex if
the effect of cumulative interference is significant. We
prove this by a counter example. Consider the example
in Figure 1. Applying the transforming techniques to
the constraints in general problem P , the logarithm of
yi must be less than or equal to the sum of log (fi)
and log (qi). However, the logarithm of qi, equal to
log (1 − fjfk) in this example, is neither convex nor
concave function of fj and fk. It then follows that the
equivalent problem is not convex.

Non-convex optimization problems, like the general
fairness problem, are generally hard. Simply applying the
convex optimization techniques proposed in [23], [15]
tends to fall into the extreme points of the feasible region
and reach unfair stable states. Instead, we present our fast
algorithm for log-utility fairness in Section IV.

C. Max-Min and Log Utility Fairness

In this section, we compare max-min and log-utility
fairness. Max-min fair scheduling generally obtains

lower aggregate throughput with asymmetric interfer-
ence. We first present the following theorem for max-min
fairness in presence of physical layer capture:

Theorem 2 (Throughput in Max-Min Fairness):
for the max-min fairness, the throughput of a node
interfering is at most them of its interfered neighbors.

Even when cumulative interference from multiple
neighbors does not occur frequently, throughput of the
interfering neighbors would drop for max-min fairness.
Figure 3 shows this example. Assuming simultaneous
transmissions from node k, l and m interfere with node
i and j, all the nodes have the same throughput as that
of the other nodes, i and j in max-min fairness.

However, for log-utility fairness, the throughput of
outer nodes as well as the total throughput is boosted
by small reducing inner nodes’ throughputs. In this
example, the log-utility fair allocation achieves aggregate
throughput almost twice that of max-min fairness [24].
Note that the denser the network is, the more interfering
outer nodes like node k to m may exist; the throughput
enhancement can be larger. This property makes log-
utility fairness, well known as a robust trade-off between
fairness and efficiency [25], more preferred in presence
of physical layer capture. More details on our choice of
log-utility fairness can be found in [24].

IV. LOG-UTILITY FAIR SCHEDULING

A. Concaveness of Utility Function

Considering cumulative interference, the log utility
function is neither convex nor concave since the domain
of node throughputs is not convex. However, the log
utilities on the domain of attempt probabilities, which is
|N |-dimensional space, are always concave. We present
the theorem of concaveness as follows:

Theorem 3 (Concaveness of Log Utilities): the sum
of log utilities on the domain of attempt probabilities
in presence of physical layer capture is concave.

This property is also valid for general utilities as in the
following corollary. Note that the general form of utility
functions is Ui(F ) = −1/xv

i for attempt probability
vector F and v > 0. When v = 1, the utility func-
tion characterizes the minimum potential delay fairness
model [26]. For the special case when v = 0, the utility
function is given by Ui(F ) = log (xi).

Corollary 1 (Concaveness of General Utilities):
the sum of general utilities on the domain of attempt
probabilities in physical layer capture is concave.

The concaveness property allows to use partial deriva-
tives for the optimal allocation. Since the general utility
is differentiable and concave, partial derivatives with
respect to attempt probabilities should be zero at the



maximum. Furthermore, if each node individually tries
to make its partial derivative zero by changing its attempt
probability, the optimal point is obtained, as follows:

Theorem 4 (Convergence): if each node adjusts its
attempt probability in order to satisfy the condition
where the partial derivative is zero, the system converges
to the optimal allocation point maximizing the aggregate
utility.

Based on Theorem 4, we present our novel distributed
algorithm for log utility fairness in the next sections.

B. Formulation for Optimal Attempt Probability

We first formulate the optimal attempt probability
of node i maximizing the aggregate utility. Let S =∑

i log(xi). The partial differentiation of S with respect
to the attempt probability fi of node i is written as:

∂S

∂fi
=

1
fi

−
∑

j

qj |̄i − qj|i
qj︸ ︷︷ ︸

A

= 0, (3)

where qj|i is the conditional probability of successful
transmissions from node j, given node i is transmitting
frames in the same slot. qj |̄i is the conditional successful
probability of node j when node i is transmitting no
frame. Note that qi|i = qi and qi|̄i = 0 by definition.

Since qj = (1 − fi)qj |̄i + fiqj|i and qj |̄i − qj|i equals
(qj − qj|i)/(1 − fi), Equation 3 is simplified and the
optimal attempt probability f∗

i satisfies the following:

1 − f∗
i

f∗
i

=
∑

j

(1 −
q∗j|i
q∗j

). (4)

Equation 4 is interpreted as follows: at the optimal
state, the sender is charged a price equal to the sum
of its interference effect to neighbors, to access the
channel. The effect of interference to neighbor node
j is here defined as (1 − q∗j|i/q∗j ), gauging how much
the transmissions of j are degraded by node i. The
price is paid with the average number of waiting slots
(1/f∗

i − 1). Note that ignoring the effect of cumulative
interference, q∗j|i/q∗j in the equation is either zero (if i
is within the interference range of j) or one (otherwise)
and the number of waiting slots in Equation 4 becomes
equivalent to the number of neighbors in the interference
ranges, as shown in the previous model [7].

C. Obtaining Optimal Point

We provide an algorithm for optimal rates using the
fixed-point iteration. Let F ∗ be the optimal attempt
probability vector satisfying Equation 3 and function
f(F ∗) = F ∗. Since function f is continuous and maps
a rate vector to another, f has a fixed point (Brouwer’s

fixed point theorem [27]). We can further show that f
converges to the fixed point as an immediate conse-
quence of Brouwer’s theorem and Theorem 4. Thus, if
we know f , F ∗ is obtained by continuously applying f .

Now, we formulate function f satisfying Equation 3.
Assume that for all j, qj|i and qj are known. To make the
equation simple, we approximate Part A in Equation 3
to a linear function of fi as follows:

Part A ≈ afi + b. (5)

Recall that Part A depends on fi, qj|i, qj |̄i and qj but
qj can be computed from the others. With known qj|i
and qj |̄i, we obtain a and b by applying the least squares
method. Varying fi, we uniformly sample K points from
the curve of Part A and find a linear function that closely
approximates the sampled data. The approximation error
is very small in most of cases; the square of the residuals
is at least 0.968194017 for typical values of f∗

i . Details
are found in [28]. After linear approximation, we have
a quadratic formula 1/fi = afi + b from Equation 3 and
fi is finally given by:

fi =

{
min (−b+

√
b2+4a

2a , 1) (if a > 0) and

min (1
b , 1) (if a = 0),

(6)

where min (∞, 1) = 1. The total computation time of fi

is O(K · |N |), where K is the number of sample points.
We show the solution is always unique. Since Part A

in Equation 3 is a strictly increasing function of fi, any
lines connecting any two points on the curve of Part A
have a positive slope (i.e., a of Equation 5 is always
positive); linear functions with slope a > 0 have only a
single common point with inverse function 1/fi.

Algorithm 1 Distributed Fair Allocation Algorithm
1: Each node i performs the following steps. The node

i terminates this iteration process when the previous
and updated values of fi differ within a threshold ε

2: for every round do
3: Request for each neighbor j to send back the

estimated error probabilities qj|i and qj |̄i.
4: Compute a new attempt probability fi with the er-

ror probabilities of the neighbors from Equation 6.
5: end for

With function f (i.e., Equation 6), we implement
Algorithm 1 in a distributed way to achieve log utility
fairness. Assuming node i knows neighbors that it in-
terferes with (i.e., nodes whose successful transmission
probability is affected by the behavior of i), nodes com-
municate with the neighbors over wired or wireless links.



TABLE I

OPERATION PARAMETERS

Physical Layer Ant. Efficiency 0.8
Frequency 5GHz Antenna Loss 0.5dB

Path Loss Model Two Ray Antenna Height 1.5m
Shadowing Model Constant MAC Layer
Shadowing Mean 4dB MAC Protocol Slotted

Fading Model None Aloha
Temperature 290K Slot Time 177µs
Noise Factor 7 Tx Time 177µs

Tx Power 16dBm Tx Speed 54Mbps
Rx Sensitivity -82dBm MAC Header 28 bytes

Antenna Omni. ACK Frame 14 bytes

Note that access points in corporate and residential areas
are typically connected to a wired local area network and
can often cooperate with each other. The information of
neighbors can be entered by the network administrator.

In Algorithm 1, each node updates its attempt prob-
ability until it converges; nodes stop the process when
the difference of the updated probability is less than a
threshold. To calculate their new attempt probabilities,
nodes need to know the following: the error probabilities
qj|i and qj |̄i of neighbor j, as in Equation 5.

To obtain qj|i and qj |̄i, node i only needs to request
interfered neighbors whose qj|i is not zero. If node j
is close enough, collisions occur with the node i and
qj|i = 0. qj |̄i equals to qj and the term for node j in
Part A is always one regardless of the value of fi. Thus,
node i requests the limited number of neighbors and all
information for rate computation is locally obtained.

As the final remark, qj|i and qj |̄i can be measured
by real time. For qj |̄i, whenever needed, node i holds
off its transmissions and ask the neighbors to measure
the successful transmission probability, which is qj |̄i.
Obtaining qj|i is not simple since neighbors do not know
when node i is transmitting. Instead, node i requests the
current success probability of transmission to neighbors.
Then, qj|i can be computed from the measured qj |̄i, the
probability and the current value of fi.

V. SIMULATION RESULTS

A. Simulation Parameters

To verify our algorithm, pairs of a sender and receiver
are randomly placed in an area 100×100 m2. The
distance between a sender and receiver is selected in
a random way but the maximum is set to 30, 10 and 5
meters respectively. 10 different random placements are
considered for each number of node pairs.

Our simulator is based on Qualnet simulator, which
provides a more accurate channel model than ns-2 [29].

Table I shows the operation parameters. The transmitter
is in half-duplex mode and operating in the 802.11a 5-
GHz channel. From locations of nodes, we compute the
strength of signals using the two-ray path loss model
and the BER (bit error rate) of the received frame is
obtained from calculation of Qualnet. Receiving an
uncorrupted frame, the receiver always responds with an
acknowledgment.

MAC protocol is slotted Aloha. Nodes are synchro-
nized and channel accesses occur at every slot. The at-
tempt probability is determined by a given fair algorithm,
which is adjusted from the frame error probability.

B. Minimum Interference Set

We first investigate the size of minimum interference
sets. Varying the number of nodes from 6 to 16, we
measure minimum interference sets of all nodes. Figure 4
shows a node placement example with the total 6 node
pairs. Here, all odd-numbered nodes are senders, which
are connected in the figure with corresponding receivers.
The maximum distance is 10 meters in this example.
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Fig. 4. 6 Node-Pair Example.

Figure 4(b) shows the minimum interference sets of
the receivers. The interference sets are displayed under
the corresponding receivers. For example, Receiver node
2, placed 8.65m away from its sender Node 1, has 5
minimum interference sets, {Node 3}, {Node 5}, {Node
7}, {Node 9} and {Node 11}. However, Receiver 4
has two single-node sets and two two-node sets. Since
the receiver is 5.23m away, shorter than the distance of
Receiver 2, and located further right in the area, Node 5,
7 and 11 cannot interfere in isolation. Note that Receiver
12 does not have an interference set.

In Figure 5, we show the statistics of all minimum
interference sets for 6 to 16 node pairs in our simulations.
With 6 node pairs and the maximum distance 30 m,
which is denoted as ‘(30,6)’ in the figure, most of the
minimum interference sets have a single interferer. The
black portion of the histogram indicates the percentage
of interference sets including only a single interferer, and
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hence prior work on static-conflict graphs is applicable.
However, as either the node density increases or the
distance becomes shorter, the percentage of single-node
interference sets decreases. In these scenarios, dynamic-
conflict graphs come into play and our algorithm be-
comes more accurate than prior work.

C. Optimality Test

The performance of our algorithm is compared with
the algorithm using conflict graphs [7]. The algorithm
in the previous work is referred to as CG. The Newton-
Raphson method [30] is used to obtain the optimum.
Note that unlike ours, the Newton-Raphson method is
not suitable for distributed scheduling since it uses the
Hessian matrix of the aggregate utility formed from the
information of all nodes’ transmission errors.

Figure 6 shows the results from the previous example.
Compared to the optimum, algorithm CG allows nodes
to transmit frames with higher rates. Since the algorithm
does not consider nodes outside of interference ranges,
it underestimates the transmission error probabilities and
assigns higher attempt probabilities. For example, Node
5 and 7 are allowed high-rate transmissions since they
belong only in Node 2’s interference range. However, al-

lowing higher attempt probabilities degrades the through-
put of nodes whose link quality is not good. Nodes with
many minimum interference sets, like Node 3 and 9,
suffer from high transmission errors. This may cause
node starvation, worsening the problem of unfairness.

Figure 7 shows the entire results from our simulations.
The total number of the simulations is 180 and the
number of node pairs runs from 6 to 16. Given a number
of nodes, we plot in Figure 7(a) the average difference of
the aggregate utility between ours and algorithm CG’s.
Note that we compute the base-10 logarithm and set the
maximum and minimum attempt probabilities to 0.9999
and 0.001 to prevent complete node starvation.

With the maximum distance 30 m, the log utility is
not much improved. However, as the maximum distance
becomes short and the capture probability increases, the
aggregate utility significantly increases by up to 10.
Furthermore, in algorithm CG, several nodes is starved
due to the aggressive attempt probability allocations.
More than 22% of the nodes starve with a throughput
less than 0.001 with the maximum distance 5m.

While log utility is an implicit measure of perfor-
mance, we now depict tangible improvements in the
functioning of the network. Figure 7(b) shows the ratio
of the minimum node throughputs in ours and algorithm
CG’s, excluding the starved nodes that have through-
put less than 0.001. The maximum distance is 5m.
Even discounting starved ones, our algorithm allows a
higher throughput to nodes with low-quality links. The
minimum node throughput in the network is improved
by around 5 times on average with the maximum dis-
tance 5m. In the entire simulations, the minimum node
throughput except that of starved nodes increases by
more than 3.18 times on average. Note that the total
throughput is not affected so much. The total throughput
decreases by 7% with the maximum distance 5m and 5%
on average of the all simulation results.

To measure fairness in terms of node throughput, the
Jain’s fairness index [31] is presented in Figure 7(c).
While our algorithm achieves stable throughput fairness,
the algorithm CG worsens the unfairness as the effect of
physical layer capturing increases.

In Figure 8(a) and 8(b), we show the accuracy of
our algorithm, given by the difference divided by the
optimum. In total 1,980 rate computations, our accuracy
error is less than 5% for more than 97% of nodes. Using
algorithm CG, more than 55% of the total nodes are
assigned attempt rates 20% larger than the optima.

The convergence time of our algorithm is also in-
vestigated. Our algorithm is run until the difference
between the previous and updated attempt probabilities
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is less than 10−7. Time is measured in unit of processing
rounds. As shown in Figure 8(c), the convergence time
is related to the topology of the network rather than the
number of nodes. With the same maximum distance,
varying the number of nodes does not significantly
change the results. We also plot the convergence time
of the Newton-Raphson method for comparison. Even
though the method can be improved by using the line
search, the computation time with a fixed step size is
longer than ours. The overall convergence time of our
algorithms for a medium sized network should range
within a few seconds with the same assumption in [15].

VI. CONCLUSIONS

In this paper, we have investigated the characteristics
of fair allocations in presence of physical layer capture.
The effect of physical layer capture has not been fully
covered in literature on fair scheduling. We present a
general model of physical layer channel and show that
the feasible region of allocation vectors is non-convex in
presence of physical layer capture.

In observation that the previous fair scheduling al-
gorithms may not achieve optimal allocations, a new
algorithm for log-utility fairness is present to determine
the attempt probabilities of nodes. We first prove the
concavenss of general utility on the domain of attempt
probability and clarify that for log-utility fairness, the
optimal attempt probability is given by the interfer-
ence effect, defined as how much the transmissions of
neighbors are degraded by the node. To run in a fully
distributed way, we design the new scheduling algorithm
such that it runs at each node with information locally
available within the one-hop neighborhood.

As a result of the accuracy of our algorithm, the
minimum node throughput as well as the aggregate
utility is boosted up by 5 times on average. Furthermore,
our algorithm prevents nodes from starvation unlike
the previous algorithms discounting of dynamic-conflict
graphs and causing starvation of nodes with weak links.
Simulation results also show that the convergence time is
less then 15 rounds with various numbers of node pairs
in a 100×100-m2 area. The convergence time may be



less than a few seconds for a median sized network.

APPENDIX

A. Proof of Theorem 1

We prove the theorem by showing that there exists a
line segment joining a pair of allocation vectors that lies
outside of the feasible region. Consider node i and node
j and k belonging to a minimum interference set I of
i. Without loss of generality, we assume that no nodes
of I have minimum interference sets such that the sets
are included in I and the size of the sets is greater than
one. If any nodes have such sets, then we choose one
of them and one minimum interference set for the node
until the assumption is satisfied.

We first prove the theorem assuming that {i} is not a
minimum interference set of any nodes in I . Let 0 < a <
1 and X1 be a throughput vector obtained with fi = 1,
fk = 0 and fl = a for all other node l in I . Let X2 be
a throughput vector obtained with fi = 1, fj = 0 and
fl = a for all other node l. Note that the throughput
of a node becomes zero if its attempt probability equals
zero. Let X1(i) be the node throughput of i in vector
X1. X1(i) and X2(i) are one because either j or k of
the minimum interference set does not transmit frames
and node i would experience no transmission errors.

Let X be an allocation vector such that X = αX1 +
(1 − α)X2. Assume there exists an attempt probability
vector F (. . . , fi, . . . , fj , . . .) achieving throughput allo-
cation X . For any α > 0, X(j), X(k) and X(l) for all
other node l in I must be positive because the attempt
probabilities of the nodes in I are in the range of 0 to 1
and node i cannot interfere with the nodes in isolation.
As a result, we have fj , fk and fl > 0 and qi < 1.
However, X(i) must be 1 since X1(i) = X2(i) = 1. No
F is feasible such that makes X(i) equal to one and the
feasible region is non-convex.

Now, let some of nodes in I have {i} as a minimum
interference set. Assume j is one of the nodes. If j
either interfere with or is interfered by some node l in
I , the non-convexity is proven by showing no attempt
probabilities available for node i and j to have such a
X with X1 from a probability vector (fi = 1, fj =
0, fl = 1) and X2 from (fi = 1, fj = 0, fl = 1). When
j would neither interfere nor be interfered, having X1

from a vector (fi = 1, fj = 0, fl = a) for all other node
l, X2 from (fi = 0, fj = 1, fl = a) and α = 1/2, no
attempt probabilities could be found for node i and j to
make X(j) = X(i) = 1/2.

B. Proof of Theorem 2

We prove the theorem by contradiction. Recall that
the node throughput is given by Equation 1. It is simply

shown that for any node i, if any neighbor node j
belonging in node i’s minimum interference sets reduces
attempt probability fj , throughput xi increases. Now,
assume a max-min fair scheduling algorithm produces xi

and xj , and xi < xj . By the lexicographic definition of
the max-min fairness [32], decreasing xj could not help
increase xi after fair scheduling finishes. However, since
xj is in proportion of fj , xi could increase and equal
to a new value of xj by changing fj . This contradicts
the assertion that the scheduling algorithm achieves the
max-min fairness and we have xi ≥ xj .

C. Proof of Theorem 3 and Corollary 1

Let S be the aggregate log utility of attempt probabil-
ity vector F . That is, S(F ) =

∑
i log (fi) +

∑
i log (qi),

where F = (. . . , fi, . . .). We prove the concaveness by
showing the following concave inequality is preserved
for all F1 and F2 and α ∈ [0, 1]:

S(αF1 + (1 − α)F2) ≥ αS(F1) + (1 − α)S(F2), (7)

We use the theorem that the sum of concave func-
tions is concave. Since the aggregate log utility S is∑

i log (fi) +
∑

i log (qi), the concaveness is proven if
log (fi) and log (qi) are concave functions of attempt
probability vector F .

First, log (fi) is trivially a concave function. Now,
consider qi =

∑
J ci(J)

∏
j fj

∏
k (1 − fk). Assuming

F3 = αF1 + (1 − α)F2, we can show that qh(F3) =
αqh(F1)+(1−α)qh(F2) since qh is a linear function of
fi. Let Qh(F ) = log (qh(F )). the following inequality
must be satisfied for Qh to be concave:

qh(F3) ≥ qh(F1)α × qh(F2)(1−α). (8)

Since AαB(1−α) ≤ αA + (1 − α)B for all A, B > 0,
the right side of Inequality 8 is less than or equal to
αqh(F1)+(1−α)qh(F2), which is qh(F3). Thus, log (qi)
is concave and the aggregate log utility is also concave.

Now, we prove the general utility function is also
concave. For a given probability vector F , let Gi(F ) =
1/xv

i and Hi(F ) = log (Gi(F )) = −v log (xi). Since
log (xi) is a concave function of F , Hi is convex and
we have the following inequality:

α log (Gi(F1)) + (1 − α) log (Gi(F2)) ≥ log (Gi(F3)).
(9)

The left side of Inequality 9 is less than or equal
to log (αGi(F1) + (1 − α)Gi(F2)) since AαB(1−α) ≤
αA + (1 − α)B. We have αGi(F1) + (1 − α)Gi(F2) ≥
Gi(F3) and Gi is convex. Thus, the general utility
function,

∑
i −Gi is the sum of concave functions and

the utility function is also concave.



D. Proof of Theorem 4

We show the outline of our proof. Consider an at-
tempt probability vector F1 = (. . . , fi, . . .). Let F2

be a probability vector after updating fi to satisfy the
condition where the partial derivative is zero. From the
concaveness of aggregate general utilities, we have the
following inequality:

S(F2) − S(F1) ≥ ∇S(F2)(F2 − F1), (10)

where S is an aggregate utility function of probability
vectors. Let F (i) be the attempt probability of node i in
vector F . Since only fi has been updated, F2(j)−F1(j)
is zero for all other j. Furthermore, ∂S/∂fi is equal to
zero at the updated vector F2. We have ∇S(F1)(F2 −
F1) = 0 and S(F2) ≥ S(F1). Thus, updating the
attempt probability improves the aggregate utility and
the maximum finally will be reached by repeating this.
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