
Mixed scheduling disciplines for network flows

Hanhua Feng Vishal Misra
Columbia University, New York, NY 10027

ABSTRACT
We introduce a novel method to prove that the FBPS discipline
has optimal mean sojourn time and mean slowdown ratio for DHR
service time distributions in an

���������
queue. We then discuss the

problems related to FBPS, and propose a new scheduling discipline
to overcome these problems.

1. INTRODUCTION
Recently researchers have shown a great interest in scheduling

disciplines such as shortest remaining processing time (SRPT) for
network flow scheduling [1], since it provides the optimal mean so-
journ time (response time). However, operating systems, software
applications and devices like routers usually do not know the re-
maining job size, which makes the SRPT scheduling discipline dif-
ficult to implement. Various alternatives have been sought. Among
them, the foreground-background processor-sharing (FBPS) disci-
pline1 can be considered as a temporal reverse of SRPT; it prefers
the job that has the least attained service time. Researchers have
found for heavy-tailed job size distributions, FBPS performs com-
parably to SRPT.

There is a problem in both SRPT and FBPS. If some small jobs
and a large job are in the system, the large job won’t wait for a
long time because of the small jobs. However if a moderately large
job and a large job are in the system, the service for the large job
has to be interrupted for a long time. Generally speaking, both
these disciplines do not give smooth service particularly expected
for network clients, and user impatience or some protocol defined
timeout could result in wasted resources.

In a recent abstract, Guo and Matta[2] studied by simulation
a special multilevel processor sharing (ML-PS) scheduling disci-
pline, in which those jobs that have so far received less than a cer-
tain amount of service time (the threshold) get more processor time
than each of the other jobs. One extreme is ML-PRIO, letting the
former jobs occupy the whole processor if there are such jobs. They
showed that in this case, if the service time distribution is bounded-
Pareto, the response time of short jobs will get significantly im-
proved while the response time of large jobs increased by only a
little. ML-PRIO can be considered as a degraded FBPS sched-
uler that can only identify two discretized service times: large and
small. If the threshold is not very large, it will not have the problem
in SRPT and FBPS mentioned above.

In this abstract, we first prove that, if the service time distri-
bution has a decreasing hazard rate (DHR), the FBPS is optimal
for both mean sojourn time and mean slowdown ratio (which is
defined as the ratio of sojourn times to service time), among all
�
It has other names in the literatures: feedback(FB), least attained

service time(LAST), or least attained service(LAS).

scheduling disciplines that do not make use of the remaining ser-
vice time. Then, we present another mixed scheduling discipline
called FLIPS, that also does not suffer from the previous problem
in SRPT and FBPS. This discipline, as well as the ML-PRIO, be-
longs to a family of multilevel scheduling disciplines studied by
Kleinrock[3] in the early 70’s.

2. THE OPTIMALITY OF FBPS
Let 	�
��� be the service time distribution of a job and ��
��� be its

density function. A distribution is said to have a decreasing hazard
rate (DHR) if ������������ ����� is monotonically decreasing, and to have a

increasing hazard rate (IHR) if ������������ ����� is monotonically increasing.
Then we have the following theorems.

Theorem 2.1. For a DHR service time distribution, the expected
sojourn time of an

���������
queue under the FBPS discipline is

optimal among all scheduling disciplines in which the remaining
service time is unknown.

Theorem 2.2. For a DHR service time distribution, the expected
slowdown ratio of an

������� �
queue under the FBPS discipline is

optimal among all scheduling disciplines in which the remaining
service time is unknown.

In a recent report, for DHR distributions, it was showed that the
mean service time of FBPS is better than processor-sharing(PS) [7].
We will now present a proof of these two theorems, which are more
general. Righter et al. proved Theorem 2.1 with a discrete model[5,
6].

Lemma 2.3. Let ! "�#%$'& be a closed interval on (*) . Let +�
���
be a non-negative, monotonically increasing integrable function
bounded in ! "�#,$-& , .�
��� be an integrable bounded function such
that .�
"/�102.�
$3�4065 , 7�
��� is a function either non-positive, non-
negative, or zero. For any 8:9;! "�#�$'& , suppose .�
<8 � �>=@?�A�B �3C'D .�
���
and .�
<8) �>=@?�A�B �3E'D .�
��� are well-defined, (so for 7�
���), and

7�
<8 � �F.�
<8 � �HG
I DJ +�
���F.�
���K+ �ML�5N# (1)

then IPO
J .�
���K+ �*L�5N#

PROOF OF LEMMA 2.3. For any QSR�5 we have

+�
�
<8TGPQ'� � �F.�
�
<8SGUQ'� � �HG
I D)�VJ +�
���F.�
���K+ �WL�5NX

Letting Q�� 5 ,

7�
<8) �F.�
<8) �HG
I DJ +�
���F.�
���K+ �ML�5�#

Without lost of generality, we can let .�
��� be right-continuous,
i.e., .�
��� 0�.�
�) � .

Since .�
��� is integrable, it must also be measurable. Therefore
sets

� ��� .�
����R 5�� and
� ��� .�
����� 5	� should be Borel sets,

which contains countable open or closed intervals.
We only prove for the case that the number of these intervals

are finite. It is easy to extend it to the case where the intervals are
countably infinite, by taking approximations of .�
��� .

For the finite case of
 intervals, this theorem is proved by induc-
tion. Let
"��,#�$� � be maximum intervals such that either .�
��� R 5
or .�
������5 for all � 9
"��,#�$��F� , where � 025�# � #�� #3X X X .

Clearly, for any 8�9 � " � ��� ���������� � $ � ��� �������� , since
" � #�$ � � is maxi-
mum, we have .�
� � �F.�
������5 . Therefore for these 8 ’s,

I DJ +�
���F.�
���K+ �ML�5NX (2)

In the first interval
"���#%$� � , .�
��� must be positive, otherwise (2)
will not be satisfied at 8 0 $ � . Thus O"!� .�
��� L 5 . Since +�
��� is
increasing, we also have

5#� I O$!
J +�
���F.�
���K+ �%�P+�
$ � � I O$!

J .�
���K+ ��X
Suppose we have

IUO$&
J +�
���F.�
���K+ �%��+�
$� � IUO$&

J .�
���K+ � (3)

for � 025N# � #3X X X #('*) �
, '*L�5 .

Then for interval
" � #�$ � � , there are two cases:
(1) In the case that .�
���1R�5 for all � 9
" � #%$ � � , we have

I O"+
J +�
���F.�
���K+ �
� +�
$-, ��� � IUO +.0/

J .�
���K+ � G +�
$-,�� IUO +
J + .�
���K+ �

� +�
$-,�� IUO +
J .�
���K+ ��X

(2) In the case that .�
������5 for all � 9
" � #%$ � � , we have
I O1+
J +�
���F.�
���K+ �
0

I O +.0/
J +�
���F.�
���K+ �2) IUO +

J + +�
���3 .�
���3 + �
� +�
$-, ��� � I O +.0/

J .�
���K+ �*) +�
"0, � I O +
J + 3 .�
���3 + �

� +�
$, ��� � I O"+
J .�
���K+ �

� +�
$-, � IUO +
J .�
���K+ �

Hence for either case, (3) is true for � 04' . Let ' 05
�) �
, we

have

5*� I O$6 .0/
J +�
���F.�
���K+ �7�P+�
$ � ��� � I O"6 .0/

J .�
���K+ ��X

Since either $S0@$ � ��� or .�
���9825 for � 9
$ � � � #�$-& , we have
I O
J .�
���K+ �*L�5NX

To prove 2.1, we first introduce some notations. We denote the
sojourn time of a job of size � by :
��� , and by ;<:
��� its expecta-
tion. The sojourn time of a job with any size is denoted by random
variable : .

We denote by random variable =
��� the number of jobs which
have so far received less than � seconds of services, and by random
variable >
��� their remaining service time before � seconds, and
by random variable ?:
A@-#,��� the remaining service time before �
seconds for a single job with attained service time of @ , where @B�� .

Lemma 2.4. Among all disciplines, the FBPS discipline minimizes; ! >
���F& .
PROOF OF LEMMA 2.4. At any time if there is no arrival, >
���
decreases by a fixed rate, which is independent of the scheduling
descipline, as long as the processor is serving a job that has an at-
tained service time smaller than � . For any � L�5 , FBPS discipline
devotes all the processor time to serve jobs with attained service
smaller than or equal to � , if these jobs are present. Thus the aver-
age of total remaining service time of these jobs, ; ! >
���F& , should
be minimum.

PROOF OF THEOREM 2.1. According to [4], we have

+
+ � ;2=
��� 0DC�! �) 	�
���F& ++ � ;<:
���-X (4)

By definition of >
��� and ?:
� #1@%� we have

; ! ?:
��#1@��F&�0
��)E@%� �) 	�
� � ��) 	�
A@%� G
I � .F
HG*)I@%� +�	�
HG ��) 	�
A@%�

and

>
��� 0 I � .� . ?:
��#"@%�K+J=
A@��
;#>
��� 0 I � .� . ; ! ?
��#1@��K+J=
A@%�F&

0
I � .� . ; ! +J=
A@%�

+�@ &�; ! ?:
��#K@��F& +�@ (5)

0
I � .� . +J;L=
A@%�

+�@ M

��)N@�� �) 	�
� � ��) 	�
A@%�

G
I � .F GO)E@�) 	�
A@%� +�	�
HG �$P +�@

0QC I � .� . ! �) 	�
A@%�F& +J;<:
A@%�+�@ M

�O)N@�� �);	�
� � ��);	�
A@��

G
I � .F GO)E@�) 	�
A@%� +�	�
HG � P +�@

0QC I � .� .SR
�%)I@%� ! �) 	�
� � �F&
G
I � .F
HG*)I@%�K+�	�
HG��$P�+J;<:
A@%� (6)

SinceI � .F
HG*)I@%�K+�	�
HG �
0) I � .F
HGO)E@%�K+�! �) 	�
HG��F&
0) !
HG*)N@�� ! �);	�
HG �F& & � .� � F G I � .F ! �) 	�
HG��F& +	G
0)
�O)I@%� ! �) 	�
� � �F&NG

I � .F ! �) 	�
HG��F& +	G
we have;*>
��� 0 C I � .� .

� I � .F ! �);	�
HG �F& +	G P +J; :
A@��
0 C � ;<:
A@%� I � .F ! �);	�
HG �F& +	G P � .F ��� .) C I � .� . ;<:
A@��K+�� I � .F ! �) 	�
HG��F& +	G��
0 C I � .� . ;<:
A@�� ! �);	�
A@��F& +�@
0 C I � .� . ! ;<:
A@%����
A@��F& �) 	�
A@��

��
A@%� +�@ #
By Lemma 2.4 we have >
���9) >
��� FBPS L�5 , therefore,

5#� >
���) >
��� FBPS

0 C I � .� . ! ; :
A@��) ;<:
A@%� FBPS & ��
���
�) 	�
A@%�
��
A@%� +�@ (7)

Define

+�
��� = C �);	�
���
��
��� #

.�
��� = ! ; :
���) ;<:
��� FBPS & ��
���-# and

7�
��� = 5N#
by Lemma 2.3, we have

5 � I��� . .�
���K+ �
0

I �� . ! ; :
���) ;<:
��� FBPS & ��
���K+ �
0 ; ! :S&0) ;M! :S& FBPS #

which means ;M! :S&HL ; ! :S& FBPS.

Remark 2.5. The condition that a scheduling discipline should not
use any information about remaining job size is necessary, because
in (5) we assume +J=
A@%� � +�@ and ?:
A@�� are independent. Therefore,
the SRPT scheduling discipline, using the job size information, will
not satisfy this assumption. Similarly, the SRPT discipline does not
satisfy Kleinrock’s conservative law [4] that states �� . :
��� ! �)	�
���F& + � is constant.

Remark 2.6. The bounded-Pareto distribution is not DHR because
of the effects of truncation on both sides, therefore the FBPS is
not strictly optimal for this distribution. However, the property of
DHR can be approximately used in so-called heavy-tailed property
distributions, so one can say that the FBPS has almost the best
mean sojourn time.

PROOF OF THEOREM 2.2. From (7), we can also get

5*� >
���9) >
��� FBPS

0 C I � .� . M ; :
A@��@) ;<:
A@%� FBPS@ � ��
A@%� @ ! �) 	�
A@��F&
��
A@%� +�@

Let

.�
��� =
M ;<:
���

�) ;<:
��� FBPS� � ��
���-#
+�
��� = C � ! �);	�
���F&

��
��� # and

7�
��� = 5N#
where +�
A@%� is an increasing function because � is an increasing
function and

����� ������������ is also increasing for DHR distributions. By
applying Lemma 2.3 again we have

I �� � ;<:
���
� ��
���K+ � L

I �� . ; :
��� FBPS� ��
���K+ ��X
Hence we have; M :
���

� � =
I �� . :
���

� +�	�
���
0 ; M ;<:
���

� �
L ; M ;<:
��� FBPS� �
0 ; M :
��� FBPS� � X

Remark 2.7. For job size distributions such that ��������
	 ����� ������� is de-
creasing, FBPS will be optimal for mean slowdown ratio. This
relaxed condition has many other distributions included, besides
DHR distributions. One example is the 2nd-order Erlang distribu-
tion

�����
���>0 C��-��� ��� � X
Its distribution function is

	 ��
���>0 �)�
 � G C ����� ��� �N#
therefore

�����
���
� ! �);	���N
���F& 0 C � ��� ��� �

�
 � G C ����� ��� � 0 C �� G C �
is monotonically decreasing, so FBPS has the optimal mean slow-
down ratio for the 2nd-order Erlang distribution.

3. THE FLIPS SCHEDULER
We can observe two problems in the FBPS scheduling discipline.

The first problem is that FBPS must obey the Kleinrock’s conser-
vative law, therefore when it gives quick responses for small jobs,
it might starve large jobs, although the situation is not very bad
for heavy-tailed service time distributions. Figure 1 shows that the
slowdown ratio of large jobs under FBPS when the load is high.
The second problem is that the FBPS does not provide smooth ser-
vice, as mentioned in the introduction. To avoid these two prob-
lems, we present the FLIPS scheduler.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

E
(T

(x
))

/x

Service Time

PS ANALYTIC
FBPS ANALYTIC
SRPT ANALYTIC

Figure 1: Analytic results of mean slowdown ratios of an��� ��� �
queue (� 0 � X 5) at load 0 5NX ��� , as functions of ser-

vice time, under various scheduling disciplines.

The FLIPS scheduler basically involves two levels with a thresh-
old of service times. Unlike ML-PS being both processor shar-
ing, this scheduling discipline is a mixture of FBPS and proces-
sor sharing (PS): given a threshold, namely � , if some jobs in the
system have not yet received an amount service time that is more
than � , the job that have so far received the least service time takes
the whole processor. If all jobs in the system have received more
than � amount of service time, each of these jobs would get an
equal share of the processor. Intuitively we see that, if the thresh-
old is very large, the FLIPS scheduler behaves just like an FBPS
scheduler whereas, if the threshold is very small, it would be ba-
sically processor sharing. The sojourn time for jobs whose size is
smaller than � are the same as under FBPS discipline, since they
both ignore jobs having more attained service time – how they get
scheduled is irrelevant. For jobs whose size is greater than � , the
sojourn times will go beyond those under the processor sharing dis-
cipline, in which FLIPS and ML-PS behave the same, because jobs
that have received no more than � time would always get sched-
uled first: how they get scheduled is irrelevant. Figure 2 shows the
slowdown ratio as a function of service time, for various scheduling
disciplines including PS, FBPS, ML-PRIO and FLIPS with same
thresholds, in an

������� �
queue.

Simulation results showed that at the threshold point the slow-
down ratio function is not continuous for ML-PRIO, which means,
if the attained service time is near the threshold, users would ex-
perience a sudden slowdown. With FLIPS, although the slowdown
ratio increases sharply after the threshold point, but it is basically
continuous at the threshold point.

Acknowledgements: We thank Urtzi Ayesta, Sem Borst and
Rudesindo Núñez-Queija for discussions of the problems in the
previous version of this paper.

4. REFERENCES
[1] N. Bansal and M. Harchol-Balter, Analysis of SRPT

scheduling: Investigating unfairness, ACM SIGMETRICS
2001, Cambridge, MA

[2] L. Guo and I. Matta, Scheduling flows with unknown sizes:
approximate analysis, ACM SIGMETRICS 2002.

[3] L. Kleinrock and R.R. Muntz, Processor-sharing queueing
models of mixed scheduling disciplines for time-shared
systems, Journal of the ACM, 19, 464-482, 1972

0

2

4

6

8

10

12

0.1 1 10 100 1000 10000

E
(T

(x
))

/x

Service Time

SRPT
PS

0
2
4
6
8

10
12
14
16

0.1 1 10 100 1000 10000

E
(T

(x
))

/x

Service Time

FBPS
PS

0

2

4

6

8

10

12

14

0.1 1 10 100 1000 10000

E
(T

(x
))

/x
Service Time

MLPS 100.0
PS

0

2

4

6

8

10

12

14

0.1 1 10 100 1000 10000

E
(T

(x
))

/x

Service Time

FLIPS 100.0
PS

Figure 2: Simulation result of mean slowdown ratios of an���������
queue at load 0 5�X � , with bounded-Pareto distributed

service time (index 0 � X �), as functions of service time, under
various scheduling disciplines.

[4] L. Kleinrock, R.R. Muntz and J. Hsu, Tight bounds on average
response time for processor-sharing models of time-shared
computer systems, Information Processing 71, TA-2, 50-58,
August 1971.

[5] R. Righter and J.G. Shanthikumar, Scheduling multiclass
single server queueing systems to stochastically maximize the
number of successful departures. Prob. Eng. Inf. Science, 3,
323-334.

[6] R. Righter, J.G. Shanthikumar, and G. Yamazaki, On extremal
service disciplines in single-stage queueing systems, Journal
of Applied Probability, 27, 409-416.

[7] A. Wierman, N. Bansal and M. Harchol-Balter, A note on
comparing response times in the

�������N����� 	�� and�������N���3�
	��
queues, technique report CMU-CS-02-177,

School of Computer Science, Carnegie Mellon University
(Pittsburgh, PA 15213), September 2002.

