
Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

1

MC: Meta-level Compilation
Extending the Process of Code

Compilation with Application-Specific
Information – for the layman developer

(code monkey)

Gaurav S. Kc
8th October, 2003

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

2

Outline

• Dawson Engler
• Overview of the Compilation Process
• Meta-level Compilation

– early days with MAGIK
– current incarnation: MC
– good for detecting bugs:

» NULL pointer misuse
» memory leak (failure to deallocate memory)
» memory corruption (illegal use of deallocated memory)
» security holes (buffer overflow, formatstring vulnerabilities)

• Conclusions

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

3

Dawson Engler

• The man behind MAGIK and MC
• PhD from MIT '98
• Stanford Faculty (Metalevel Compilation Group)

– http://metacomp.stanford.edu
“The goal of the Meta-level Compilation (MC)

project is to allow system implementors to easily build
simple domain- and application-specific compiler
extensions to check, optimize, and transform code.”

– Publications on MC at OSDI, PLDI, SOSP, Oakland
Symposium, ACM CCS

• Coverity.com: commercialised MC

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

4

Compilers

• S/W lifecycle phases
– Requirements engineering
– Design, and implementation
– Repeat, and maintain

• Compilation phases
– Pre-process (cpp) : macro processing
– Compiler proper (cc1)

– front end synthesis: source à IR, symbol table, control-flow, data-flow
– middle end optimisation: IR àIR
– back end generation: IR à optimised machine assembly

– Assembler (as): assembler macro processing, translate ASCII
instructions into binary machine code

– Linkage editor (ld): combine several object modules (and library
files) to produce static or dynamically-linked executables

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

5

Meta-level Compilation

• Static information generated by the front-end
synthesis phase is lost after compilation

• Application-specific compiler extensions &
optimisations can benefit from this information
– Compiler developer cannot anticipate all possible

domain-specific extensions
– Application writer doesn't want to learn compiler

internals
• Need: Simpler mechanism for coding application-

specific extensions for integration into compiler

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

6

MC Paper:
Incorporating Application Semantics and Control into Compilation

Dawson R. Engler, First Conference on Domain Specific Languages, 1997

• Programmers can be active users of compilers
• Incorporate domain-specific extensions into the

compilation process
• Facilitate previously impossible “application-level”

optimisations and semantic-checking (dereference NULL)
• Leave application source code unmodified

– Source-level (IR) modifications for portable user extensions
– Full compiler optimisations on modified IR

• Leave compiler source code unmodified
– Extensions will be exhibit "built-in" behaviour in compiler

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

7

magik: An ANSI-C api to LCC IR

• Dynamically linked into modified LCC compiler
• User extensions:

– Code: invoked at every function definition
– Data: invoked at every struct definition

• Examples:
– Automatically replace a poly-typed function (output) with printf

and appropriate format-string
output("i = ", i, ", j = ", j)
printf("%s%d%s%d", "i = ", i, ", j = ", j)

– Mandatory checking of return codes for system calls
read(fd, buffer, size)
if (0 > read(fd, buffer, size))

error("failed system call <read>\n")

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

8

foreach function-call ("output")
foreach function-argument (= arg)

switch argument-type (arg) {

case Integer:
strcat (typestring, "%d"); break;

case Pointer:
if rawPointerType (arg) == CHAR

strcat (typestring, "%s");
else strcat (typestring, "0x%p");
break;

}

replace-call (function-call, "printf")
insert-argument (function-call, typestring)

magik: illustration
Replace poly-typed function with printf equivalent

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

9

MC Paper:
Checking System Rules Using System-Specific, Programmer-Written

Compiler Extensions
Operating Systems Design and Implementation, 2000

• System rules for Operating System Kernel
– Kernel sanitises user-space data before accessing it (do X before Y)
– A lock must have a corresponding unlock on every code path (when X, do Y)

• Peer reviews for manual inspection of source code: not rigorous, human error.
• Automated enforcing of system rules

– Testing: time-consuming, not exhaustive since complexity/size scale with system
size. Impractical to test all device drivers for Linux

– Formal Verification: model checkers, theorem provers/checkers to validate
consistency of abstract specification of system. Hard to accurately represent system
in specifications: over-simplification, omission of features, unless generating code
from specs

• Compiler-based static analysis tools are useful
– No scalability problem. Works directly on source code
– System rules have straightforward mapping to source code
– Rules are enforced as new phases in the compilation

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

10

• yacc-like specification for SM: matched patterns
in source code causes transitions between different
states

• Linkable object code compiled from metal
specifications using mcc.

• Dynamically linked into compiler, xg++ (based on
GNU g++, working on gcc version)

• SM is applied down all possible control-flow
paths for each function

metal:
A high-level, state machine language

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

11

sm check_interrupts {

// Patterns
pattern enable = { sti(); };
pattern disable = { cli(); };

// States and transitions / actions
is_enabled : disable ==> is_disabled

| enable ==> { error("double enable"); }
;

is_disabled: enable ==> is_enabled
| disable ==> { error("double disable"); }
| $end-of-path$ ==> { error("exit w/ intr" }
;

}

MC / metal: illustration
Ensure corresponding sti (re-enable interrupts) for every cli

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

12

• Make the kernel check user-space pointers before
de-referencing (applicable to library interfaces)

• For states {unknown, null, not_null, freed}, find when
pointers are used:

• before being checked
• on NULL paths
• after being free’d

• Find double-free errors
• Find error paths (returning a negative value) that

don’t free allocated memory
• Cannot handle multi-threaded applications

Other MC / metal checks

Gaurav S. Kc,
http://www.cs.columbia.edu/~gskc/

13

Conclusions

• Meta-level compilation
• New phases for user-extensible compiler
• Domain-specific checks for

– locating application bugs
– enforcing system rules
– …

• Compiler experience required

