Autonomic Systems

= Autonomic: adaptive
e Self-healing:
m cluster systems via node restart
e Self-optimizing:

= variable encoding schemes for web audio streaming
services

e Self-requlating :
m apache web server periodically kills child processes

= Maintenance:

e expensive, time-consuming
| want my availability, but | won’t do it myself

= Automated maintenance:
e Cheaper
e Quicker response than human
e 24/7 watch, can afford to “forget and leave running”
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ltems for discussion

= Can large-scale, distributed applications be self-
healing, self- regulatlng self-optimizing?

= Important issues with respect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components

e Specify maintenance operations during development
e Considering maintenance as runtime adaptations

e Gracefully handle unfamiliar, exceptional conditions

m Proposal: design methodology

e Separation of concerns:

m Application code vs.
adaptation mechanisms {decision logic, implementation}

e |ntrospection:
m Communicate runtime data to decision logic

e Intercession:
m Transport reconfiguration code from decision logic
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Build large-scale systems
with reusable components

= Inherent problem with the development of large-
scale systems

e Hugely complex, unwise for one group of developers
to create the whole thing from scratch

e Qutsource sub-projects to experts vs. license their
technology

e Integrate with COTS components:
m Cheaper than to re-implement them

m Software engineering and practicality reasons
e component has already been implemented
e available immediately
e no duplication of effort
e 3 types of software components:
m COTS
= In-house
m One-use, specific-purpose component
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Component-based
Software Engineering

m Software component:
e unit of software that conforms to a component model
m e.g. COM+, JavaBeans
e Defines standards:

m Composition: how components are composed together
m Interaction: IDL description of interface elements

= Two stages of CBSE

1. Component development
e No feedback from customer
e No waterfall model with iterations
e Exhibit openness, adaptability,
2. Integrating component into applications
e Requirements analysis
e Choose component with required functionality

Take it or leave it ...
but then go on looking for another implementation
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Component-based
Software Engineering — i

= Imperfect match in functionality and requirements
e “Fixed” contract
= No means for component evolution

e Active Interfaces [12]

m Adaptation interface. Open policies

m Static adaptation of component functionality
e Interface Incompatibilities

= Granularity of operations and data-types, interaction
mechanisms, implementation languages

= Component wrappers
m Connectors [14]
m SWIG, JNI, popen(..),systen(..)

m Considerations

e Application builder is not going to re-implement the
component

e Want to maintain encapsulation, information hiding
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ltems for discussion

= Can large-scale, distributed applications be self-
healing, self- regulatlng self-optimizing?

= Important issues with respect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components
== o Specify maintenance operations during development
e Considering maintenance as runtime adaptations

e Gracefully handle unfamiliar, exceptional conditions

m Proposal: design methodology
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m Application code vs.
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Static modeling of possible
runtime reconfigurations

= Runtime adaptation of software
e Ever-changing resource availability
e Dynamic execution environment

m Separation of concerns:
e application logic vs. adaptation

m Granularity of adaptation

e Micro-level:
m component developer-enabled mechanism, setting
switches via Active Interfaces [12, 13, 16]
e Medium-level:
m change how components interact with the system,
modify the interface [13, 14]
e Macro-level:

m phase in/out (groups of) components as part of the
dynamic adaptation [13, 14]
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Static modeling of possible
runtime reconfigurations — Ii

m Self-contained adaptation within component

e Automatic generation of adaptation code

m Compiler and language support for high-level
specification of adaptation mechanism [13]

e Pre-packaged adaptation mechanism [16]

= Automatic integration of new component
versions

e Configuration management [15]
= Installations, updates, un-installations

e Tentative use of new versions [14]
m Transparent testing in deployed environment
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ltems for discussion

= Can large-scale, distributed applications be self-
healing, self- regulatlng self-optimizing?

| Important Issues with respect to automated

maintenance of large-scale, software systems
e Harder to build. Focus on reusable components
e Specify maintenance operations during development
e Considering maintenance as runtime adaptations
e Gracefully handle unfamiliar, exceptional conditions

m Proposal: design methodology

e Separation of concerns:

m Application code vs.
adaptation mechanisms {decision logic, implementation}

e |ntrospection:
m Communicate runtime data to decision logic

e Intercession:
m Transport reconfiguration code from decision logic
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Writing code to
Implement dynamic adaptations

= Hard to dynamically adapt components
e Lack proper understanding of the internals

e Execute (un) trusted, unfamiliar code, with no idea
how to fix if things falil

m Recoqgnize the need to adapt

m Utilize the available runtime mechanisms

e Pre-existing reconfiguration mechanisms
m Dispatch directives to carry out local micro-adaptations

e Use adaptability of middleware to effectively carry out
medium- and macro-scale adaptations

e Architectural design-driven adapted, guided by
component-interaction specifications

The inability to reconfigure when required, is a form of failure
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ltems for discussion

Can large-scale, distributed applications be self-
healing, self- regulatlng self-optimizing?

Important issues with respect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components

e Specify maintenance operations during development
e Considering maintenance as runtime adaptations
== o Gracefully handle unfamiliar, exceptional conditions

m Proposal: design methodology

e Separation of concerns:

m Application code vs.
adaptation mechanisms {decision logic, implementation}

e |ntrospection:
m Communicate runtime data to decision logic
e Intercession:
m Transport reconfiguration code from decision logic
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Self-healing systems

m Failureis inevitable: [20]

e human error:

m stress level proportional to probability of making a
mistake [22]

m can shield from user error, systems lack protection from
administrator's errors [22]

e unanticipated problem:
m beyond careful and thorough testing
m directed security attack
m lack of handling mechanism

e software aging: transient bugs
m recovery requires a restart
= build-up of transient bugs
m failure-prone state during execution
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Self-healing systems — i

= Availability of system
e Highly resilient
m Programmed to handle every expected problem
m Self-heals: manages to survive unexpected situations
e Availability ratio: MTTF / (MTTF+MTTR)
m increase base longevity period (BLP)
m decrease recovery time

= Problem-handling mechanism:

e reactive, failure-driven:

m detect occurred failure, follow with restart of affected
subsystems from a stable state

e preventive/proactive, failure-avoidance:

= detect increased likelihood of failure, and gradual
degradation of performance, avert imminent failure
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Technique:
Software Rejuvenation [18, 19]

m Graceful termination, Immediate restart
e Restart at a clean, internal state
e Build-up of transient bugs

e Numerical accumulation errors, unreleased system
resources, memory leak, data corruption

m Levels of rejuvenation

e Total rejuvenation
m Scheduled downtime can be fairly cheap
= Minimal interruption during low usage periods
e Partial rejuvenation
m Transparently rejuvenate selected subcomponents
= Decoupling between subcomponents
m Reduced recovery time only for subsystem restart
e Recursive rejuvenation [21]
m Rejuvenate progressively larger subsystems recursively

m Functional or data dependencies between
subcomponents

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 14



Other self-healing techniques

= Program check-pointing
e Periodically save program state to persistent storage
e Can rewind to previous states
= auditing, logs
m recovery to a valid state
m install corrective patch, resume [22]

e The power of hindsight to enable retroactive repair
e Demonstrates “what if” semantics

e Database systems:
m rollback to consistent state if cannot commit safely

m Zero-tolerance of system compromise
e Pre-emptive defense against security attacks
m Randomized, but valid binary code sequence
m Sanity checking of control structures

= Choose immediate shutdown rather than have system
get compromised

e Immediate restart, with new randomized code
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ltems for discussion

m Can large-scale, distributed applications be self-
healing, self-regulating, self-optimizing?

= Important issues with res,:)ect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components

e Specify maintenance operations during development
e Considering maintenance as runtime adaptations

e Gracefully handle unfamiliar, exceptional conditions

= Proposal: design methodology

e Separation of concerns:

= Application code vs.
adaptation mechanisms {decision logic, implementation}

== o |ntrospection:

= Communicate runtime data to decision logic

e Intercession:
m Transport reconfiguration code from decision logic
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Dynamic profiling,
generation of runtime data

= Adaptation subsystem:
e Monitoring logic and decision-making
e Execution of adaptation mechanism

= Automated decision and implementation

e Adaptation for recovery or otherwise, without human
intervention

® Runtime model of the system architecture

e Decision based on evolving model

e Runtime data generated by each component
= Embedded probes: PSL
m Static-adaptable Active Interfaces [12]

e Context-dependent data format and content

= E-mail management system: size, frequency,
sender/recipient addresses, types of attachments,
encryption strength
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Communication of
runtime data to decision logic

m Extended RPC-style communication
e Client communicates with server at unknown location

e RPC clients (execution logic) should be unaware of
the presence of RPC servers (decision logic)

Need to multiplex emitted data

e Asynchronous callback
| can't wait, let me know when you're done!

e Basic Message Passing to unknown recipients

= Event notification system
Subscribe to published events-of-interest

e Item of interest
m Something that happened somewhere, runtime data

e Generators of items of interest
m Core system execution, reporting runtime data

e Consumers of items of interest
= Monitoring subsystem, interested in runtime data
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Event systems

m Centralized event systems
e event-driven GUI programming
e Event Delegation Model: AWT, SWING, JavaBeans
m Tightly-coupled client-server model: JINI
= Indirection, anonymity of servers via mediator object
e Stable execution environment
m Well-ordered delivery mechanisms
m Fast, reliable, predictable

= Distributed event systems

e Supercharged mediator between decoupled entities
m Filtering
= Aggregating
m Store-and-forward, Store-and-retrieve
= Mutual anonymity
e Unreliable execution environment
m Delayed delivery
m Data loss
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Distributed event systems

= Channel-based routing:

e Single channel per event type [9]
birds of a feather flock together

e faster turnaround time; simple, efficient delivery
e not scalable to large classes of events

m Subject-based routing:
e NNTP: events on a common theme / interest
e Mailing lists, CVS notifications

m Content-based (semantic) routing:

Interested in a subset of a class of events

selective delivery via specifying acceptability criteria
Event-data determines propagation

Data replication only if necessary [10, 11]

Event composition [8]
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Content-based
event routing topologies

m Centralized routing node
e Approximation of localized event system

m Hierarchical collection of nodes
e Subscriptions only go up, notifications cascade down

e Disadvantages
m Overloading of higher-level routing nodes
m Network partitioning via single node failure

e Advantages
m Simple routing algorithms

m Simple client-server relationships amongst routing
nodes

= (A)cyclic peer-to-peer network

e Sophisticated routing algorithms
e Improved fault-tolerance
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ltems for discussion

m Can large-scale, distributed applications be self-
healing, self-regulating, self-optimizing?

= Important issues with res,:)ect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components

e Specify maintenance operations during development
e Considering maintenance as runtime adaptations

e Gracefully handle unfamiliar, exceptional conditions

= Proposal: design methodology

e Separation of concerns:

= Application code vs.
adaptation mechanisms {decision logic, implementation}

e Introspection:
= Communicate runtime data to decision logic

=g ¢ |ntercession:

m Transport reconfiguration code from decision logic
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Activation of reconfiguration code

m Re-use events

o the source (client/decision logic) determines who gets
reconfigured, so cannot have the server (execution
logic) subscribe to these

e event systems not designed to carry large amount of
binary code, if needed for component installation, etc

= Mobile agents [5]

autonomous program that executes on someone’s behalf

e decision logic instructs agents to carry out runtime
reconfiguration tasks

m Late-binding of reconfiguration mechanism at target
m Asynchronous

m primary advantage of agents: reconfiguration might
consist of significant amount of computing, ideally
performed locally at execution logic rather than a long
series of RPC invocations
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Mobile code infrastructures

m Constituents
e Server: hosting, execution, transportation
m Place [6]
m Agent Server [1, 3, 7]
m Worklet Virtual Machine: PSL
e Agents

m Incorporate dynamic interfaces

e Agent installs specific-purpose interfaces to
components for customized access

e “Wrapper while you wait”, but can configure as
needed
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Automatic mobility of programs

= Strong mobility
e OS support for process relocation [5]

= Weak mobility
e State- and code-transfer at application level
e Programming-language, runtime support [6]
m Special-purpose language [6]
m Scripting languages [6]
e Agent code is in textual form
m General purpose language [23]

e Late-binding of class definitions by dynamic code loading
e Serialization of objects

e Simulated strong mobility

m Local function continuations [2]
= Modified JVM [4]
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Security Issues: mobile code

m A greater vulnerability: unknown code
e Protect agent from server, and vice versa [1, 3, 7]

= Language support

e Bytecode verification in JVM
m Type-system protection from malicious classes
m Integrity-checking of bytecode instructions

e Cannot define / load core system classes

m Application-level security considerations:
e Authentication, authorization
m Permissions model based on certification, credentials
e Data encryption during transit
e Tampering detection via digital signatures
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Conclusions, future directions

m Autonomic large-scale, distributed systems
e Ciriteria for construction and automated maintenance

o State of the art research
m Autonomic systems exist for specific domains

m Technologies / tools available for building general
framework for adaptation

= Dynamic architectural modeling
e Accurate modeling of the system during execution
e Decision made on evolving model

e Adaptation heuristics based on:
m Historical patterns
= Temporal data
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