Autonomic Systems

= Autonomic: adaptive
e Self-healing:
m cluster systems via node restart
e Self-optimizing:

= variable encoding schemes for web audio streaming
services

e Self-requlating :
m apache web server periodically kills child processes

= Maintenance:

e expensive, time-consuming
| want my availability, but | won’t do it myself

= Automated maintenance:
e Cheaper
e Quicker response than human
e 24/7 watch, can afford to “forget and leave running”

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

ltems for discussion

= Can large-scale, distributed applications be self-
healing, self- regulatlng self-optimizing?

= Important issues with respect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components

e Specify maintenance operations during development
e Considering maintenance as runtime adaptations

e Gracefully handle unfamiliar, exceptional conditions

m Proposal: design methodology

e Separation of concerns:

m Application code vs.
adaptation mechanisms {decision logic, implementation}

e |ntrospection:
m Communicate runtime data to decision logic

e Intercession:
m Transport reconfiguration code from decision logic

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 2

Build large-scale systems
with reusable components

= Inherent problem with the development of large-
scale systems

e Hugely complex, unwise for one group of developers
to create the whole thing from scratch

e Qutsource sub-projects to experts vs. license their
technology

e Integrate with COTS components:
m Cheaper than to re-implement them

m Software engineering and practicality reasons
e component has already been implemented
e available immediately
e no duplication of effort
e 3 types of software components:
m COTS
= In-house
m One-use, specific-purpose component

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

Component-based
Software Engineering

m Software component:
e unit of software that conforms to a component model
m e.g. COM+, JavaBeans
e Defines standards:

m Composition: how components are composed together
m Interaction: IDL description of interface elements

= Two stages of CBSE

1. Component development
e No feedback from customer
e No waterfall model with iterations
e Exhibit openness, adaptability,
2. Integrating component into applications
e Requirements analysis
e Choose component with required functionality

Take it or leave it ...
but then go on looking for another implementation

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

Component-based
Software Engineering — i

= Imperfect match in functionality and requirements
e “Fixed” contract
= No means for component evolution

e Active Interfaces [12]

m Adaptation interface. Open policies

m Static adaptation of component functionality
e Interface Incompatibilities

= Granularity of operations and data-types, interaction
mechanisms, implementation languages

= Component wrappers
m Connectors [14]
m SWIG, JNI, popen(..),systen(..)

m Considerations

e Application builder is not going to re-implement the
component

e Want to maintain encapsulation, information hiding

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 5

ltems for discussion

= Can large-scale, distributed applications be self-
healing, self- regulatlng self-optimizing?

= Important issues with respect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components
== o Specify maintenance operations during development
e Considering maintenance as runtime adaptations

e Gracefully handle unfamiliar, exceptional conditions

m Proposal: design methodology

e Separation of concerns:

m Application code vs.
adaptation mechanisms {decision logic, implementation}

e |ntrospection:
m Communicate runtime data to decision logic
e Intercession:
m Transport reconfiguration code from decision logic

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 6

Static modeling of possible
runtime reconfigurations

= Runtime adaptation of software
e Ever-changing resource availability
e Dynamic execution environment

m Separation of concerns:
e application logic vs. adaptation

m Granularity of adaptation

e Micro-level:
m component developer-enabled mechanism, setting
switches via Active Interfaces [12, 13, 16]
e Medium-level:
m change how components interact with the system,
modify the interface [13, 14]
e Macro-level:

m phase in/out (groups of) components as part of the
dynamic adaptation [13, 14]

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

Static modeling of possible
runtime reconfigurations — Ii

m Self-contained adaptation within component

e Automatic generation of adaptation code

m Compiler and language support for high-level
specification of adaptation mechanism [13]

e Pre-packaged adaptation mechanism [16]

= Automatic integration of new component
versions

e Configuration management [15]
= Installations, updates, un-installations

e Tentative use of new versions [14]
m Transparent testing in deployed environment

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

ltems for discussion

= Can large-scale, distributed applications be self-
healing, self- regulatlng self-optimizing?

| Important Issues with respect to automated

maintenance of large-scale, software systems
e Harder to build. Focus on reusable components
e Specify maintenance operations during development
e Considering maintenance as runtime adaptations
e Gracefully handle unfamiliar, exceptional conditions

m Proposal: design methodology

e Separation of concerns:

m Application code vs.
adaptation mechanisms {decision logic, implementation}

e |ntrospection:
m Communicate runtime data to decision logic

e Intercession:
m Transport reconfiguration code from decision logic

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 9

Writing code to
Implement dynamic adaptations

= Hard to dynamically adapt components
e Lack proper understanding of the internals

e Execute (un) trusted, unfamiliar code, with no idea
how to fix if things falil

m Recoqgnize the need to adapt

m Utilize the available runtime mechanisms

e Pre-existing reconfiguration mechanisms
m Dispatch directives to carry out local micro-adaptations

e Use adaptability of middleware to effectively carry out
medium- and macro-scale adaptations

e Architectural design-driven adapted, guided by
component-interaction specifications

The inability to reconfigure when required, is a form of failure

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 10

ltems for discussion

Can large-scale, distributed applications be self-
healing, self- regulatlng self-optimizing?

Important issues with respect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components

e Specify maintenance operations during development
e Considering maintenance as runtime adaptations
== o Gracefully handle unfamiliar, exceptional conditions

m Proposal: design methodology

e Separation of concerns:

m Application code vs.
adaptation mechanisms {decision logic, implementation}

e |ntrospection:
m Communicate runtime data to decision logic
e Intercession:
m Transport reconfiguration code from decision logic

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 11

Self-healing systems

m Failureis inevitable: [20]

e human error:

m stress level proportional to probability of making a
mistake [22]

m can shield from user error, systems lack protection from
administrator's errors [22]

e unanticipated problem:
m beyond careful and thorough testing
m directed security attack
m lack of handling mechanism

e software aging: transient bugs
m recovery requires a restart
= build-up of transient bugs
m failure-prone state during execution

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 12

Self-healing systems — i

= Availability of system
e Highly resilient
m Programmed to handle every expected problem
m Self-heals: manages to survive unexpected situations
e Availability ratio: MTTF / (MTTF+MTTR)
m increase base longevity period (BLP)
m decrease recovery time

= Problem-handling mechanism:

e reactive, failure-driven:

m detect occurred failure, follow with restart of affected
subsystems from a stable state

e preventive/proactive, failure-avoidance:

= detect increased likelihood of failure, and gradual
degradation of performance, avert imminent failure

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 13

Technique:
Software Rejuvenation [18, 19]

m Graceful termination, Immediate restart
e Restart at a clean, internal state
e Build-up of transient bugs

e Numerical accumulation errors, unreleased system
resources, memory leak, data corruption

m Levels of rejuvenation

e Total rejuvenation
m Scheduled downtime can be fairly cheap
= Minimal interruption during low usage periods
e Partial rejuvenation
m Transparently rejuvenate selected subcomponents
= Decoupling between subcomponents
m Reduced recovery time only for subsystem restart
e Recursive rejuvenation [21]
m Rejuvenate progressively larger subsystems recursively

m Functional or data dependencies between
subcomponents

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 14

Other self-healing techniques

= Program check-pointing
e Periodically save program state to persistent storage
e Can rewind to previous states
= auditing, logs
m recovery to a valid state
m install corrective patch, resume [22]

e The power of hindsight to enable retroactive repair
e Demonstrates “what if” semantics

e Database systems:
m rollback to consistent state if cannot commit safely

m Zero-tolerance of system compromise
e Pre-emptive defense against security attacks
m Randomized, but valid binary code sequence
m Sanity checking of control structures

= Choose immediate shutdown rather than have system
get compromised

e Immediate restart, with new randomized code

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

15

ltems for discussion

m Can large-scale, distributed applications be self-
healing, self-regulating, self-optimizing?

= Important issues with res,:)ect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components

e Specify maintenance operations during development
e Considering maintenance as runtime adaptations

e Gracefully handle unfamiliar, exceptional conditions

= Proposal: design methodology

e Separation of concerns:

= Application code vs.
adaptation mechanisms {decision logic, implementation}

== o |ntrospection:

= Communicate runtime data to decision logic

e Intercession:
m Transport reconfiguration code from decision logic

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 16

Dynamic profiling,
generation of runtime data

= Adaptation subsystem:
e Monitoring logic and decision-making
e Execution of adaptation mechanism

= Automated decision and implementation

e Adaptation for recovery or otherwise, without human
intervention

® Runtime model of the system architecture

e Decision based on evolving model

e Runtime data generated by each component
= Embedded probes: PSL
m Static-adaptable Active Interfaces [12]

e Context-dependent data format and content

= E-mail management system: size, frequency,
sender/recipient addresses, types of attachments,
encryption strength

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

17

Communication of
runtime data to decision logic

m Extended RPC-style communication
e Client communicates with server at unknown location

e RPC clients (execution logic) should be unaware of
the presence of RPC servers (decision logic)

Need to multiplex emitted data

e Asynchronous callback
| can't wait, let me know when you're done!

e Basic Message Passing to unknown recipients

= Event notification system
Subscribe to published events-of-interest

e Item of interest
m Something that happened somewhere, runtime data

e Generators of items of interest
m Core system execution, reporting runtime data

e Consumers of items of interest
= Monitoring subsystem, interested in runtime data

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

18

Event systems

m Centralized event systems
e event-driven GUI programming
e Event Delegation Model: AWT, SWING, JavaBeans
m Tightly-coupled client-server model: JINI
= Indirection, anonymity of servers via mediator object
e Stable execution environment
m Well-ordered delivery mechanisms
m Fast, reliable, predictable

= Distributed event systems

e Supercharged mediator between decoupled entities
m Filtering
= Aggregating
m Store-and-forward, Store-and-retrieve
= Mutual anonymity
e Unreliable execution environment
m Delayed delivery
m Data loss

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

19

Distributed event systems

= Channel-based routing:

e Single channel per event type [9]
birds of a feather flock together

e faster turnaround time; simple, efficient delivery
e not scalable to large classes of events

m Subject-based routing:
e NNTP: events on a common theme / interest
e Mailing lists, CVS notifications

m Content-based (semantic) routing:

Interested in a subset of a class of events

selective delivery via specifying acceptability criteria
Event-data determines propagation

Data replication only if necessary [10, 11]

Event composition [8]

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 20

Content-based
event routing topologies

m Centralized routing node
e Approximation of localized event system

m Hierarchical collection of nodes
e Subscriptions only go up, notifications cascade down

e Disadvantages
m Overloading of higher-level routing nodes
m Network partitioning via single node failure

e Advantages
m Simple routing algorithms

m Simple client-server relationships amongst routing
nodes

= (A)cyclic peer-to-peer network

e Sophisticated routing algorithms
e Improved fault-tolerance

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

21

ltems for discussion

m Can large-scale, distributed applications be self-
healing, self-regulating, self-optimizing?

= Important issues with res,:)ect to automated
maintenance of large-scale, software systems

e Harder to build. Focus on reusable components

e Specify maintenance operations during development
e Considering maintenance as runtime adaptations

e Gracefully handle unfamiliar, exceptional conditions

= Proposal: design methodology

e Separation of concerns:

= Application code vs.
adaptation mechanisms {decision logic, implementation}

e Introspection:
= Communicate runtime data to decision logic

=g ¢ |ntercession:

m Transport reconfiguration code from decision logic

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 22

Activation of reconfiguration code

m Re-use events

o the source (client/decision logic) determines who gets
reconfigured, so cannot have the server (execution
logic) subscribe to these

e event systems not designed to carry large amount of
binary code, if needed for component installation, etc

= Mobile agents [5]

autonomous program that executes on someone’s behalf

e decision logic instructs agents to carry out runtime
reconfiguration tasks

m Late-binding of reconfiguration mechanism at target
m Asynchronous

m primary advantage of agents: reconfiguration might
consist of significant amount of computing, ideally
performed locally at execution logic rather than a long
series of RPC invocations

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 23

Mobile code infrastructures

m Constituents
e Server: hosting, execution, transportation
m Place [6]
m Agent Server [1, 3, 7]
m Worklet Virtual Machine: PSL
e Agents

m Incorporate dynamic interfaces

e Agent installs specific-purpose interfaces to
components for customized access

e “Wrapper while you wait”, but can configure as
needed

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

24

Automatic mobility of programs

= Strong mobility
e OS support for process relocation [5]

= Weak mobility
e State- and code-transfer at application level
e Programming-language, runtime support [6]
m Special-purpose language [6]
m Scripting languages [6]
e Agent code is in textual form
m General purpose language [23]

e Late-binding of class definitions by dynamic code loading
e Serialization of objects

e Simulated strong mobility

m Local function continuations [2]
= Modified JVM [4]

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

25

Security Issues: mobile code

m A greater vulnerability: unknown code
e Protect agent from server, and vice versa [1, 3, 7]

= Language support

e Bytecode verification in JVM
m Type-system protection from malicious classes
m Integrity-checking of bytecode instructions

e Cannot define / load core system classes

m Application-level security considerations:
e Authentication, authorization
m Permissions model based on certification, credentials
e Data encryption during transit
e Tampering detection via digital signatures

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

26

Conclusions, future directions

m Autonomic large-scale, distributed systems
e Ciriteria for construction and automated maintenance

o State of the art research
m Autonomic systems exist for specific domains

m Technologies / tools available for building general
framework for adaptation

= Dynamic architectural modeling
e Accurate modeling of the system during execution
e Decision made on evolving model

e Adaptation heuristics based on:
m Historical patterns
= Temporal data

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

27

Bibliography — Mobile agents

=

N

w

»

o

o

~

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

Design of the Ajanta System for Mobile Agent Programming

Anand R. Tripathi, Neeran M. Karnik, Tanvir Ahmed, Ram D. Singh, Arvind Prakash, Vineet Kakani,
Manish K. Vora, Mukta Pathak

Journal of Systems and Software, May 2002

How to Migrate Agents

Matthew Hohlfeld, Bennet Yee

Technical Report CS98-588, Computer Science and Engineering Department, University of
California at San Diego, La Jolla, CA, June 1998

Experiences and Future Challenges in Mobile Agent Programming
Anand R. Tripathi, Tanvir Ahmed, Neeran M. Karnik
Microprocessor and Microsystems 2001

Pickling threads state in the Java system
S. Bouchenak, D. Hagimont
In Proc. of the Technology of Object-Oriented Languages and Systems (TOOLS), 2000

Mobile Agents: Are they a good idea?
Colin G. Harrison, David M. Chess, Aaron Kershenbaum
IBM Research Report, T.J.Watson Research Center, NY, 1995

Programming languages for mobile code

Tommy Thorn

ACM Computing Surveys, 29(3):213-239, 1997. Also Technical Report 1083, University of Rennes
IRISA

Design Issues in Mobile Agent Programming Systems
Neeran M. Karnik, Anand R. Tripathi
IEEE Concurrency, July-Sep 1998

28

Bibliography — Event systems

©

©

N
(=]

=

Generic Support for Distributed Applications

Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, Andrew McNeil, Oliver Seidel,
Mark Spiteri

IEEE Computer, pages 68-77, March 2000

Host Groups: A Multicast Extension to the Internet Protocol

S. E. Deering, D. R. Cheriton

Network Working Group: RFC 0966

State of the Art Review of Distributed Event Models

René Meier

Dept. of Computer Science, Trinity College Dublin, Ireland, March 2000. Technical report TCD-CS-
2000-16

Achieving Expressiveness and Scalability in an Internet-Scale Event Notification Service
Antonio Carzaniga, David S. Rosenblum, Alexander L. Wolf

In Proceedings of the Nineteenth ACM Symposium on Principles of Distributed Computing (PODC
2000)

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 29

Bibliography — System adaptation

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002

A Model for Designing Adaptable Software Components

George Heineman

In 22nd Annual International Computer Software and Applications Conference, pages 121--127,
Vienna, Austria, August 1998. In 22nd Annual International Computer Software and Applications
Conference, pages 121--127, Vienna, Austria, August 1998

Language and Compiler Support for Adaptive Distributed Applications

Vikram Adve, Vinh Vi Lam, Brian Ensink

ACM SIGPLAN Workshop on Optimization of Middleware and Distributed Systems (OM 2001)
Snowbird, Utah, June 2001 (in conjunction with PLDI2001)

Increasing the Confidence in Off-the-Shelf Components: A Software Connector-Based
Approach

Marija Rakic, Nenad Medvidovic

Proceedings of SSR '01 on 2001 Symposium on Software Reusability : Putting Software Reuse in
Context

A Cooperative Approach to Support Software Deployment Using the Software Dock
Richard S. Hall, Dennis Heimbigner, Alexander L. Wolf
International Conference on Software Enginering, May 1999

The lllinois GRACE Project: Global Resource Adaptation through CoopEration

Sarita V. Adve, Albert F. Harris, Christopher J. Hughes, Douglas L. Jones, Robin H. Kravets, Klara
Nahrstedt, Daniel Grobe Sachs, Ruchira Sasanka, Jayanth Srinivisan, Wanghong Yuan

In proceedings of Workshop on SelfHealing, Adaptive and self-MANaged Systems (SHAMAN)
2002

30

Bibliography —
Dynamic healing, Miscellaneous

Autonomic Computing
Paul Horn, IBM Research

Software Rejuventation: Analysis, Module and Applications

Yennun Huang, Chandra Kintala, Nick Kolettis, N. Dudley Fulton

Proceedings of the 25th International Symposium on Fault-Tolerant Computing (FTCS-25),
Pasadena, CA, pp. June 1995, pp. 381-390

IBM director software rejuvenation.

White paper

Recovery Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies
David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen, James Cutler, Patricia
Enriquez, Armando Fox, Emre Kiciman, Matthew Merzbacher, David Oppenheimer, Naveen Sastry,
William Tetzlaff, Jonathan Traupmann, Noah Treuhaft

UC Berkeley Computer Science Technical Report UCB//CSD-02-1175, March 15, 2002

Reducing Recovery Time in a Small Recursively Restartable System

George Candea, James Cutler, Armando Fox, Rushabh Doshi, Priyank Garg, Rakesh Gowda
Appears in Proceedings of the International Conference on Dependable Systems and Networks
(DSN-2002), June 2002

Rewind, Repair, Replay: Three R's to Dependability

Aaron B. Brown, David A. Patterson

To appear in 10th ACM SIGOPS European Workshop, Saint-Emilion, France, September 2002
Dynamic Class Loading in the Java(TM) Virtual Machine

Sheng Liang, Gilad Bracha

Conference on Object-oriented programming, systems, languages, and applications (OOPSLA'98)

Autonomic Systems ... Gaurav S. Kc ... September 26th, 2002 31

