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Abstract

We pursue the problem of counting the imbeddings of a graph in
each of the orientable surfaces. We demonstrate how to achieve this
for an iterated amalgamation of arbitrarily many copies of any graph
whose genus distribution is known and further analyzed into a parti-
tioned genus distribution. We introduce the concept of recombinant
strands of face-boundary walks, and we develop the use of multiple pro-
duction rules for deriving simultaneous recurrences. These two ideas
are central to a broadbased approach to calculating genus distributions
for graphs synthesized from smaller graphs.

1 Introduction

Counting the imbeddings in orientable and non-orientable surfaces of the
graphs from interesting families is a well-established endeavor with consider-
able recent activity. Past investigations have yielded various kinds of results
for specific families of graphs, including formulas with exact numbers, re-
cursions that are useful in constructing tables, and asymptotic formulas for
lower bounds. In this paper, we give a method applicable to the sequence of
open chains of copies of any graph whose genus distribution is known.

By focusing on amalgamations at 2-valent vertices, this paper and a com-
panion paper ([Gr09a]) on self-amalgamations especially facilitate calculating
genus distributions for families of Eulerian graphs, since any Eulerian graph
can be obtained from a set of cycle graphs by a sequence of amalgamations
and self-amalgamations at 2-valent vertices. Specific calculations generally
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require careful attention to the order of the amalgamations, as illustrated by
[Gr09b], which uses the post-order of a plane tree.

Prior work on counting imbeddings of a graph in a minimum-genus sur-
face includes [BGGS00], [GoRiSi07], [GrGr08], and [KoVo02]. Prior work
on counting imbeddings in all orientable surfaces or in all surfaces includes
[ChGrRi94], [ChLiWa06], [FGS89], [GrFu87], [GRT89], [KwLe93], [KwLe94],
[KwSh02], [McG87], [Mu99], [St90], [St91a], [St91b], [Tesa00], [ViWi07],
[WaLi06], and [WaLi08]. Complementary work on counting maps on a given
surface is given by [CoDo01], [Ja87], [JaVi90], [JaVi01], and many others.

Terminology A graph is connected and an imbedding is cellular and
orientable, unless it is evident from context that something else is intended.
A graph may have self-loops and multiple adjacencies between two vertices.
The words degree and valence are used interchangeably. Each edge, even
a self-loop, has two topological edge-ends. The terminology used here is
consistent with [GrTu87] and [BWGT09]. For additional background (with
some terminological differences), see [BoLi95], [MoTh01], or [Wh01].

Notation The degree of a vertex y is denoted deg(y). The genus of a
surface S is denoted γ(S). The number of imbeddings of a graph G in
the surface Si of genus i is denoted gi.

Abbreviation We abbreviate face-boundary walk as fb-walk.

The vertex-amalgamation of a pair of rooted graphs (G, t) and (H, u)
is the graph obtained from their disjoint union by merging the roots t and u.
An asterisk denotes the operation:

(G, t) ∗ (H, u) = (X,w)

where w is the merged root. The sequence {gi(G) | i ≥ 0} is called the
genus distribution of the graph G.

Counting Consistent Rotation Systems

Each imbedding of an amalgamation X = G∗H induces a unique imbed-
ding of G and a unique imbedding of H, by which we mean the imbeddings
of G and H whose rotation systems are consistent (as cyclic permutations)
with the rotation system of X. We also say that the pair of imbeddings
ιG : G→ SG and ιH : H → SH induce the set of imbeddings of X = G ∗H,
and that this set of imbeddings of X is the result of amalgamating the
two imbeddings ιG : G→ SG and ιH : H → SH .
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Proposition 1.1 For any two imbeddings ιG : G→ SG and ιH : H → SH of
graphs into surfaces, the cardinality of the set of imbeddings of the amalga-
mated graph (X,w) = (G, t) ∗ (H, u) whose rotation systems are consistent
with the imbeddings ιG : G→ SG and ιH : H → SH is

deg(u) ·
(
deg(t) + deg(u)− 1

deg(u)

)
(1.1)

Proof Let y be an edge-end at vertex u that we single out for this counting
problem. Each imbedding ofX whose rotation is consistent with ιG : G→ SG

and ιH : H → SH can be obtained by inserting the deg(u) edge-ends incident
at u within the deg(t) corners formed at vertex t (a corner is the “gap”
between two consecutive end-ends in a rotation) in the imbedding of G. We
make deg(u) choices-with-repetition-allowed from the set of deg(t) corners,
as locations where edge-ends at u will be inserted, which accounts for the
binomial coefficient in Formula (1.1). There are deg(u) choices of locations
for the edge-end y, and the rest of the edge-ends at u must be inserted in
rotational order. ♦

2 Induced Imbeddings and Production Rules

In the amalgamation (G, t)∗(H, u) = (X,w), when one of the roots t and u is
1-valent, the genus distribution of the resulting graph is easily derivable via
bar-amalgamations (see [GrFu87]). In the case where deg(t) = deg(u) = 2,
a pair of imbeddings

ιG : G→ SG and ιH : H → SH

induce, in accordance with Formula (1.1), six imbeddings of the amalgamated
graph X. We observe that for each such imbedding ιX : X → SX , we have

γ(SX) =

{
γ(SG) + γ(SH) or

γ(SG) + γ(SH) + 1

Terminology The difference γ(SX)− (γ(SG)+γ(SH)) is called the genus
increment of the amalgamation, or more briefly, the genus increment
or increment.
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Proposition 2.1 In any vertex-amalgamation (G, t) ∗ (H, u) = (X,w) of
two graphs, the increment of genus lies within these bounds:⌈

1− deg(t)− deg(u)

2

⌉
≤ γ(SX)− (γ(SG)+γ(SH)) ≤

⌊
deg(t) + deg(u)− 2

2

⌋
Proof In the respective imbeddings of G and H, the maximum number of
faces incident on t and u are deg(t) and deg(u). This asserted upper bound
corresponds to the case in which these deg(t) + deg(u) faces are merged
into a single face. The asserted (non-positive) general lower bound would
be realized by amalgamands in which only one face is incident at vertex
t and only one at vertex u, and a resulting imbedding in which there are
deg(t) + deg(u) faces incident at vertex w. ♦

Example 2.1 To see a negative increment, suppose that graphs G and
H are both isomorphic to the bouquet B2, and that they have respective
rotation systems

t. a b a− b− and

u. c d c− d−

which both correspond to toroidal imbeddings. Then the rotation system

w. a c d b c− a− b− d−

for X = G ∗H is also toroidal. It is consistent with the rotation systems of
G and H, and the increment is −1. Figure 2.1 illustrates this example.

t t

t t
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b

b u u

c c

d

u ud

G
w w

c
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b

w w

da

b

S1 H S1 G*H S1
Figure 2.1: A genus increment of −1.
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Partial Genus Distributions

In what follows, we shall suppose that the roots t and u are both 2-valent.
The genus distribution of the six imbeddings of (X,w) = (G, t) ∗ (H, u) that
are consistent with prescribed rotation systems for (G, t) and (H, u) depends
only on γ(SG), γ(SH), and the respective numbers of faces in which the
two vertices of amalgamations t and u lie. Accordingly, we partition the
imbeddings of a single-rooted graph (G, t) with deg(t) = 2 in a surface of
genus i into the subset of type-di imbeddings, in which root t lies on two
distinct fb-walks, and the subset of type-si imbeddings, in which root t
occurs twice on the same fb-walk. Moreover, we define

di(G, t) = the number of imbeddings of type-di, and

si(G, t) = the number of imbeddings of type-si.

Thus,
gi(G, t) = di(G, t) + si(G, t)

The numbers di(G, t) and si(G, t) are called single-root partials. The
sequences {di(G, t) | i ≥ 0} and {si(G, t) | i ≥ 0} are called partial genus
distributions.

Notation We may simply write di and si, when it is clear from context to
which graph they apply.

Remark More generally, with a root of higher valence, there would be
more partials, corresponding to a larger number of possible configurations of
fb-walks at the root.

Remark An incipient use of partials (but not by that name) appeared in
[FGS89]. The present paper expands this approach considerably.

Verifying Productions by Recombinant Strands

A production rule for an amalgamation

(G, t) ∗ (H, u) = (X,w)

of single-rooted graphs is an expression of the form

pi(G, t) ∗ qj(H, u) −→ ci+j gi+j(G ∗H) + ci+j+1 gi+j+1(G ∗H)
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where, pi and qj are partials, and where ci+j and ci+j+1 are integers. It
means that amalgamation of a type-pi imbedding of graph G and a type-qj
imbedding of graph H induces a set of ci+j genus-(i+ j) imbeddings of G∗H
and ci+j+1 genus-(i+ j+ 1) imbeddings of the graph X. We often write such
a rule in the form

pi ∗ qj −→ ci+j gi+j + ci+j+1 gi+j+1

When an imbedding of graph (G, t) and an imbedding of graph (H, u) are
amalgamated, the edge-ends of root vertex u break some or all of the fb-walks
incident at root vertex t in the imbedding of G into strands ; conversely,
the edge-ends at t break some or all of the face-walks incident at u in the
imbedding of H into strands. This phenomenon holds for roots of arbitrary
degree, but for the sake of simplicity, we confine our attention here to 2-valent
roots. There are two cases. It is sufficient to describe the strands in the
imbedding of G.

Terminology In the absence of standard names for the various graphics
that represent fb-walks in the figures, we assign names of colors to them, and
we provide a legend.

Case d. Suppose that two different fb-walks of the imbedding of G are
incident at t. Let’s call them the red fb-walk and the purple face boundary
walk. If the two edge-ends at u are both placed on the red side (as on the left
of Figure 2.2 below), which can be done in two ways, then the red fb-walk is
broken into a single strand, and the purple walk remains closed. Similarly, if
both edge-ends at u are placed on the purple side (as in the center of Figure
2.2), which can also be done in two ways, then the purple walk is broken into
a single strand, and the red walk remains closed. If one edge-end at u is on
the red side of t and the other edge-end on the purple side (as on the right
of Figure 2.2), then both the red walk and the purple walk are broken into
single strands. We assign colors blue and brown to the fb-walks at u, if there
are two different fb-walks in the imbedding of H.

Case s. Suppose that one fb-walk of the imbedding of G is twice incident
at t. Let’s color it red. If both edge-ends at u are inserted at t so that they
are contiguous, then the red walk is broken into a single strand (as on the
left of Figure 2.3 below). However, if the edge-ends at u are placed so that
they alternate with the edge-ends at t (as on the right of Figure 2.3), then
the red walk is broken into two red strands. If there is only one fb-walk at u
in the imbedding of H, it is colored blue.
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In each of the six imbeddings resulting from the amalgamation, the
strands from G and H recombine into fb-walks in G ∗H. Each end of each
strand from one graph attaches to an end of a strand from the other graph.

Theorem 2.2 Let (G, t) and (H, u) be single-rooted graphs with 2-valent
roots. Then the following production rules, which cover all four possible cases,
all hold.

di ∗ dj −→ 4gi+j + 2gi+j+1 (2.1)

si ∗ dj −→ 6gi+j (2.2)

di ∗ sj −→ 6gi+j (2.3)

si ∗ sj −→ 6gi+j (2.4)

Proof This theorem is not difficult. Nonetheless, we develop our method
of proof for production rules carefully, so that in our proofs of some more
difficult production rules later, our method is well understood.

Although it is possible to derive production rules entirely with prose ex-
position, it is more concise and convenient to do face-tracing on rotation
projections (see §3.2.5 and §3.2.6 of Gross and Tucker [GrTu87]). Figure 2.2
illustrates three of the six possible outcomes corresponding to Production
Rule (2.1).

red

purple

blue
brown

Figure 2.2: di ∗ dj −→ 4gi+j + 2gi+j+1.

Case di ∗ dj. The leftmost drawing illustrates a placement of the imbedding
of H so that both edge-ends of u are on the red side of vertex t and that it
breaks the blue boundary walk at u. We see that the purple walk and the
brown walk remain closed, and the single red strand and the single blue strand
are recombined into a closed walk in the imbedding of G ∗H. Observe that
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the recombination preserves the direction on the strands. Euler characteristic
considerations imply that the genus of the surface of resulting imbedding is
the sum i + j of the genera i and j of the respective imbedding surfaces of
the amalgamand imbeddings.

The middle drawing illustrates the other way of placing both edge-ends
of u on the red side of t. In this case the purple walk and the blue walk
remain closed, while the red strand and the brown strand recombine into a
single closed walk. Once again the genus of the resulting imbedding is i+ j.

Similarly, there are two ways to paste both edge-ends of u on the purple
side of t. Both ways lead to genus i+ j.

The rightmost drawing illustrates one of the two ways to place the edge-
ends of u on different sides of t. Either way breaks the face boundary-walks
into four strands, red, purple, blue, and brown. In either way, the four
strands are recombined into a single closed walk, and the resulting genus is
i+ j + 1.

Case si ∗ dj. Figure 2.3 illustrates what can happen when the same fb-
walk (in red) is twice incident on vertex t and there are two different face-
boundaries incident at u.

red

blue
brown

Figure 2.3: si ∗ dj −→ 6gi+j.

In any of the four different ways in which both edge-ends at u can be inserted
on the same side of t, there is a single red strand in G. It is recombined with
a strand (in blue on the left) from H. The other fb-walk (brown) remains
intact. The result is gi+j. When the edge-ends of u are inserted on different
sides of t (shown on the right), which can happen in two ways, they break
the red fb-walk of G into two red strands, and in H, both the blue fb-walk
and the brown fb-walk are broken into single strands. As illustrated, the blue
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strand joins with one red strand to form a fb-walk in G ∗H, and the brown
strand joins with the other red strand to form another fb-walk in G ∗ H.
Thus, the total number of faces incident at the merged vertex of G ∗H is 3
in all six imbeddings of G ∗H. They all have genus gi+j.

Case di ∗ sj. By symmetry with Case si ∗ dj, the result of amalgamation is
six imbeddings of genus gi+j.

Case si ∗ sj. There are four ways in which both edge-ends of u are inserted
on the same side of t. In each of them, the red boundary-walk twice incident
on t is broken into a single strand, and the blue boundary-walk twice incident
on u is also broken into a single strand. The blue and red strands are merged,
as shown on the left in Figure 2.4, into a single fb-walk of G ∗H.

red

blue

Figure 2.4: si ∗ sj −→ 6gi+j.

When the end-ends of u alternate with the edge-ends of t, as shown on the
right of Figure 2.4, the red fb-walk of G and the blue face-boundary-walk of
H are both broken into two strands. These four strands are recombined, as
shown, into a single face boundary-walk in G ∗H. Thus, all six imbeddings
induced in G ∗H have genus gi+j. ♦

Deriving a General Recursion

The four production rules of Theorem 2.2 lead to an equation involving five
summations, one for each of the terms on the right of those production rules.
The equation can be used to derive the genus distribution of an amalgamated
graph from the genus distributions of the amalgamands.
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Corollary 2.3 Let (G, t) and (H, u) be single-rooted graphs with 2-valent
roots, and let (X,w) = (G, t) ∗ (H, u). Then

gk(X) = 4
k∑

i=0

di(G)dk−i(H) + 2
k−1∑
i=0

di(G)dk−i−1(H) + 6
k∑

i=0

di(G)sk−i(H)

+6
k∑

i=0

si(G)dk−i(H) + 6
k∑

i=0

si(G)sk−i(H) (2.5)

Proof We observe, for instance, that the pair of partials di(G, t) and
dk−i(H, u) contribute 4 to gk(X,w) and the pair di(G, t) and dk−i−1(H, u)
contribute 2 to gk(X,w). Eq (2.5) is simply the summation of these contri-
butions. ♦

Example 2.2 Let X be the graph illustrated in Figure 2.5, which is ob-
tained by subdividing an edge of the complete graph K4 and amalgamating
it to another copy of itself at the 2-valent vertices. The non-zero partials for
the genus distribution of K4 are

d0 = 2 d1 = 8 s1 = 6

Figure 2.5: The graph X of Example 2.2.

By Corollary 2.3, after eliminating 0-valued summands, we have

g0(X) = 4d0(K4)d0(K4) = 4 · 2 · 2 = 16

g1(X) = 4[d0d1 + d1d0] + 2d0d0 + 6d0s1 + 6s1d0

= 4[2 · 8 + 8 · 2] + 2[2 · 2] + 6[2 · 6] + 6[6 · 2] = 280

g2(X) = 4[d1d1] + 2[d0d1 + d1d0] + 6d1s1 + 6s1d1 + 6s1s1

= 4[8 · 8] + 2[2 · 8 + 8 · 2] + 6[8 · 6] + 6[6 · 8] + 6[6 · 6] = 1112

g3(X) = 2d1d1 = 2 · [8 · 8] = 128
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3 Double-Root Partials

We have seen that the system of production rules of Theorem 2.2 can pro-
duce a genus distribution for the amalgamated graph from the partials for
the amalgamands. However, Theorem 2.2 provides insufficient information
for calculating the genus distributions for a sequence of graphs obtained by
iterated amalgamation, because it produces no partials that could be used to
continue the iteration. We now overcome this deficiency by amalgamating a
single-rooted graph (G, t) to a doubly-rooted graph H(u, v) and calculating
the single-root partials for the result (G ∗H, v). We choose v as the root for
this amalgamated graph in anticipation of the next step of the iteration.

Toward this objective, we may need to know also whether one or both of
the fb-walks incident on one co-root of H are incident on the other co-root of
H. Whereas we partitioned gi(G, t) into the two parts di(G, t) and si(G, t),
we now partition gi(H, u, v) into four double-root ith partials. Four basic
double-root partials are given in Table 3.1 below.

Table 3.1: Defining some double-root partials of (H, u, v).

partial counts these imbeddings in Si

ddi(H, u, v) u and v both on two fb-walks

dsi(H, u, v) u on two fb-walk’s and v on one fb-walk

sdi(H, u, v) u on one fb-walk and v on two fb-walk’s

ssi(H, u, v) u on one fb-walk and v on one fb-walk

Sub-partials of ddi(H,u,v)

In the course of developing production rules for amalgamating a single-rooted
graph (G, t) to a doubly-rooted graph (H, u, v), we shall discover that we
sometimes need to refine a doubly-rooted partial into sub-partials. The fol-
lowing three numbers are the sub-partials of ddi(H, u, v):

dd0
i (H, u, v) = the number of imbeddings of type-ddi such that

neither fb-walk at u is incident on v;

dd′i(H, u, v) = the number of imbeddings of type-ddi such that
only one fb-walk at u is incident on v;
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dd′′i (H, u, v) = the number of imbeddings of type-ddi such that
both fb-walks at u are incident on v.

Theorem 3.1 When an imbedding of type di of a single-rooted graph (G, t)
is amalgamated to an imbedding of type ddj of a doubly-rooted graph (H, u, v),
with all roots 2-valent, the following production rules hold:

di ∗ dd0
j −→ 4di+j + 2di+j+1 (3.1)

di ∗ dd′j −→ 4di+j + 2di+j+1 (3.2)

di ∗ dd′′j −→ 4di+j + 2si+j+1 (3.3)

Proof When both edge ends of u are inserted on the same side of vertex
t, which can happen in four ways, it is clear (as in the leftmost rotation
projection of Figure 2.2) that one of the fb-walks (e.g., red) at t and one of
the fb-walks at u (e.g., blue) become single strands and are recombined into
a single fb-walk of G ∗ H. Clearly, at least one of the fb-walks at v (which
becomes the root of G ∗H) is unaffected. This accounts for the term 4di+j

in the results of all three production rules.

Figure 3.1 illustrates the rotation projection, in all three cases, of one of the
two amalgamations in which the edge-ends of u alternate with the edge-ends
of t. A heavier blue or brown fb-walk is taken to be a different walk from a
lighter blue or brown walk. From left to right, the drawings correspond to
dd0, dd′, and dd′′. In all three drawings, four strands recombine into a single
fb-walk of G ∗H, so the resulting genus is i+ j + 1.

red

purple

blue
brown

Figure 3.1: Alternating edge-ends in three subcases of d ∗ dd.

In the drawing for dd0 (leftmost), the heavy blue fb-walk and the heavy
brown walk at vertex v remain unaffected, implying that the result is di+j+1.
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In the drawing for dd′ (center), the light blue walk at v is part of the fb-walk
through merged vertex w, while the heavy brown walk at v is unaffected;
again, the result is di+j+1. In the drawing for dd′′, the two fb-walks at v are
both part of the strands that are merged into the single walk at w; this time,
the result is si+j+1. ♦

Theorem 3.2 When an imbedding of type si of a single-rooted graph (G, t)
is amalgamated to an imbedding of type ddj of a doubly-rooted graph (H, u, v),
with all roots 2-valent, the following production rule holds:

si ∗ ddj −→ 6di+j (3.4)

Proof When both edge-ends of u are inserted on the same side of vertex
t, as in the left-hand drawing of Figure 2.3, the fb-walk (red) at t and one
of the fb-walks at u become single strands and are recombined into a single
fb-walk of G ∗H. At least one of the fb-walks at v is unaffected. This yields
a contribution of 4di+j to the result of the production rule.

When the respective edge-ends of t and u alternate, the red fb-walk at t is
broken into two red strands, as in the right-hand drawing of Figure 2.3; the
single strand from one of the two fb-walks at u recombines with one of the red
strands, and the single strand from the other fb-walk at u recombines with
the other red strand. Thus, whether or not either or both of the fb-walks
at u coincide with the walks at v, the resulting fb-walks at v in G ∗ H are
distinct. This yields a contribution of 2di+j to the result of the production
rule, raising the total to 6di+j. ♦

Theorem 3.3 When an imbedding of type di of a single-rooted graph (G, t)
is amalgamated to an imbedding of type dsj of a doubly-rooted graph (H, u, v),
with all roots 2-valent, the following production rule holds:

di ∗ dsj −→ 4si+j + 2si+j+1 (3.5)

Proof It follows from Production Rule (2.1) that four of the resulting imbed-
dings are of genus i + j and two of genus i + j + 1. Since neither of the
fb-walks at u is broken into more than one strand, it follows that both oc-
currences of v are on the same fb-walk or single strand. Thus, the net result
is 4si+j + 2si+j+1. ♦
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Theorem 3.4 When an imbedding of type si of a single-rooted graph (G, t)
is amalgamated to an imbedding of type dsj of a doubly-rooted graph (H, u, v),
with all roots 2-valent, the following production rule holds:

si ∗ dsj −→ 6si+j (3.6)

Proof It follows from Production Rule (2.2) that all six resulting imbeddings
have genus i+ j. Since neither of the fb-walks at v is broken into more than
one strand, all are of type s. ♦

Theorem 3.5 When an imbedding of a single-rooted graph (G, t) is amalga-
mated to an imbedding of type sdj of a doubly-rooted graph (H, u, v), with all
roots 2-valent, the following two production rules hold:

di ∗ sdj −→ 6di+j (3.7)

si ∗ sdj −→ 6di+j (3.8)

Proof Production Rules (2.3) and (2.4) imply that all six resulting imbed-
dings, in either case, have genus i + j. Since one of the two fb-walks at v is
carried intact into G ∗H, all the resulting imbeddings are of type d. ♦

Sub-partials of ssi(H,u,v)

There are three sub-partials of ssi(H, u, v), based on incidence of the two
strands formed when the single fb-walk at w is split twice at w:

ss0
i (H, u, v) = the number of imbeddings of type-ssi such that

the fb-walk at u is not incident on v;

ss1
i (H, u, v) = the number of imbeddings of type-ssi such that

one strand of the fb-walk at u is twice incident on v;

ss2
i (H, u, v) = the number of imbeddings of type-ssi such that

both strands of the fb-walk at u are incident on v.

Theorem 3.6 When an imbedding of a single-rooted graph (G, t) is amalga-
mated to an imbedding of type ssj of a doubly-rooted graph (H, u, v), with all
roots 2-valent, the following three production rules hold:

di ∗ ss0
j −→ 6si+j (3.9)

di ∗ ss1
j −→ 6si+j (3.10)

di ∗ ss2
j −→ 4si+j + 2di+j (3.11)
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Proof Production Rule (2.3) implies for all three sub-partials, that all the
imbeddings have genus i+j; in the four ways with both edge-ends at u placed
on the same side of t, the result is of type s, yielding 4si+j for each sub-partial.
Figure 3.2 illustrates alternating edge-ends for all three sub-partials.

red

purple

blue
brown

Figure 3.2: Alternating edge-ends in the three subcases of d ∗ ss.

In case ss0, depicted by the leftmost drawing, whatever fb-walk is twice
incident at vertex v (and not incident on u) in the imbedding of H remains
twice incident on v in the imbedding of G ∗H, yielding an additional 2sj. In
case ss1, shown in the middle, whichever strand was twice incident on v in
the imbedding of H remains twice incident in the imbedding of G ∗H, also
yielding 2sj. However, in case ss2, shown at the right, both the strands that
were incident on v remain incident on v, but one is recombined with the red
strand and the other with the purple strand, yielding 2dj. ♦

Theorem 3.7 When an imbedding of a single-rooted graph (G, t) is amalga-
mated to an imbedding of type ssj of a doubly-rooted graph (H, u, v), with all
roots 2-valent, the following three production rules hold:

si ∗ ss0
j −→ 6si+j

si ∗ ss1
j −→ 6si+j

si ∗ ss2
j −→ 6si+j

Proof Production Rule (2.4) implies for all three cases, that all six imbed-
dings have genus i+ j and that in the four ways with both edge-ends at u on
the same side of t, the result is of type s, yielding 4si+j for each subpartial.
Figure 3.3 illustrates alternating edge-ends for all three sub-partials. As in
the analysis of d ∗ ss, all three sub-partials ss0 get an additional 2si+j. ♦
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red

blue

Figure 3.3: Alternating edge-ends in the three subcases of s ∗ ss.

Notation We sometimes use dd•j for the sum dd0
j + dd′j + dd′′j and ss•j for

ss0
j + ss1

j + ss2
j . This makes it easier to follow subsequent calculations here.

We observe that Theorem 3.7 implies that

si ∗ ss•j −→ 6si+j (3.12)

Corollary 3.8 Let (X, v) = (G, t)∗(H, u, v), where (G, t) and (H, u, v) have
2-valent roots. Then

dk(X) = 4
k∑

i=0

dk−idd
0
i + 2

k−1∑
i=0

dk−i−1dd
0
i + 4

k∑
i=0

dk−idd
′
i + 2

k−1∑
i=0

dk−i−1dd
′
i

+ 4
k∑

i=0

dk−idd
′′
i + 6

k∑
i=0

sk−idd
•
i + 6

k∑
i=0

dk−isdi + 6
k∑

i=0

sk−isdi

+ 2
k∑

i=0

dk−iss
2
i (3.13)

sk(X) = 2
k−1∑
i=0

dk−i−1dd
′′
i + 4

k∑
i=0

dk−idsi + 2
k−1∑
i=0

dk−i−1dsi + 6
k∑

i=0

sk−idsi

+ 6
k∑

i=0

dk−iss
0
i + 6

k∑
i=0

dk−iss
1
i + 4

k∑
i=0

dk−iss
2
i + 6

k∑
i=0

sk−iss
•
i (3.14)

Remark In writing Recursions (3.13) and (3.14), we have suppressed indi-
cation of graphs G and H as arguments, in order that they not occupy too
many lines. In the examples to follow, we see how restriction of these recur-
sions to particular genus distributions of interest greatly simplifies them. The
reason for placing the index variable i of each sum with the second factor,
rather than the first, also becomes clear in the applications.
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For convenience, we conclude by listing all the production rules derived
in this section together in Table 3.2.

Table 3.2: The productions for an amalgamation (G, t) ∗ (H, u, v).

production reference

di ∗ dd0
j −→ 4di+j + 2di+j+1 (3.1)

di ∗ dd′j −→ 4di+j + 2di+j+1 (3.2)

di ∗ dd′′j −→ 4di+j + 2si+j+1 (3.3)

si ∗ dd•j −→ 6di+j (3.4)

di ∗ dsj −→ 4si+j + 2si+j+1 (3.5)

si ∗ dsj −→ 6si+j (3.6)

di ∗ sdj −→ 6di+j (3.7)

si ∗ sdj −→ 6di+j (3.8)

di ∗ ss0
j −→ 6si+j (3.9)

di ∗ ss1
j −→ 6si+j (3.10)

di ∗ ss2
j −→ 4si+j + 2di+j (3.11)

si ∗ ss•j −→ 6si+j (3.12)

4 Open Chains of Copies of a Graph

We can specify a sequence of open chains of copies of a doubly-rooted
graph (G, u, v) recursively.

(X1, t1) = (G, v) (suppressing co-root u) (4.1)

(Xn, tn) = (Xn−1, tn−1) ∗ (G, u, v) for n ≥ 1 (4.2)

Theorem 4.1 Let (G, u, v) be a double-rooted graph of known genus distri-
bution and cycle rank β > 0. Then we can calculate the genus distribution
of an open chain of n copies of (G, u, v) within time proportional to β 2n2.

Proof For each amalgamation in the iteration, the number of applications
of each of the 12 productions of Table 3.2 equals the number of possibly non-
zero products of the respective partials for the left and right amalgamands.
For the ith amalgamation, each production has at most iβ possibly non-zero
partials for its left amalgamand and at most β possibly non-zero partials for
its right amalgamand. Summing iβ ∗ β over i yields the result. ♦
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Remark By way of contrast with Theorem 4.1, we recall that calculating
the minimum genus of a graph is NP-hard.

As an example, consider the graph K̈4, which is obtained by inserting a
midpoint on each of two non-adjacent edges of K4. Its first few open chains
are shown in Figure 4.1.

Y1 Y2 Y3
Figure 4.1: Yn is an open chain of n copies of K̈4.

The double-root and single-root partials of K̈4, all derived by face-tracing,
are given in Table 4.1.

Table 4.1: Double-root and single-root partials of K̈4.

k dd0
k dd′k dd′′k dsk sdk ss0

k ss1
k ss2

k dk sk gk

0 2 0 0 0 0 0 0 0 2 0 2
1 0 0 4 4 4 0 0 2 8 6 14

We define the sequence of graphs Yn inductively, using Recursions (4.1) and
(4.2). Using Recursions (3.13) and (3.14) and Table 4.1, we obtain the fol-
lowing recursions for the single-root partials of the graph Yn.

dk(Yn) = 4dk(Yn−1)dd
0
0(K̈4) + 2dk−1(Yn−1)dd

0
0(K̈4) + 4 · 0 + 2 · 0

+4dk−1(Yn−1)dd
′′
1(K̈4) + 6sk(Yn−1)dd

•
0(K̈4)

+6sk−1(Yn−1)dd
′′
1(K̈4)] + 6dk−1(Yn−1)sd1(K̈4)

+6sk−1(Yn−1)sd1(K̈4) + 2dk−1(Yn−1)ss
2
1(K̈4)

= 8dk(Yn−1) + 4dk−1(Yn−1) + 16dk−1(Yn−1) + 12sk(Yn−1)

+24sk−1(Yn−1) + 24dk−1(Yn−1) + 24sk−1(Yn−1) + 4dk−1(Yn−1)

= 8dk(Yn−1) + 48dk−1(Yn−1) + 12sk(Yn−1) + 48sk−1(Yn−1) (4.3)

and
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sk(Yn) = 2dk−2(Yn−1)dd
′′
1(K̈4) + 4dk−1(Yn−1)ds1(K̈4)

+2dk−2(Yn−1)ds1(K̈4) + 6sk−1(Yn−1)ds1(K̈4) + 6 · 0 + 6 · 0
+4dk−1(Yn−1)ss

2
1(K̈4) + 6sk−1(Yn−1)ss

•
1(K̈4)

= 8dk−2(Yn−1) + 16dk−1(Yn−1) + 8dk−2(Yn−1)

+24sk−1(Yn−1) + 8dk−1(Yn−1) + 12sk−1(Yn−1)

= 24dk−1(Yn−1) + 16dk−2(Yn−1) + 36sk−1(Yn−1) (4.4)

Recursions (4.3) and (4.4) and Table 4.1 give the respective dk- and sk-partials
of the genus distribution for graph Y2. They are summarized in Table 4.2.

d0(Y2) = 8d0(Y1) + 0 + 12s0(Y1) + 0 = 8 · 2 + 12 · 0 = 16

d1(Y2) = 8d1(Y1) + 48d0(Y1) + 12s1(Y1) + 48s0(Y1)

= 8 · 8 + 48 · 2 + 12 · 6 + 0 = 232

d2(Y2) = 8d2(Y1) + 48d1(Y1) + 12s2(Y1) + 48s1(Y1)

= 0 + 48 · 8 + 0 + 48 · 6 = 672

d3(Y2) = 8d3(Y1) + 48d2(Y1) + 12s3(Y1) + 48s2(Y1) = 0

s0(Y2) = 0 + 0 + 0 = 0

s1(Y2) = 24d0(Y1) + 0 + 36s0(Y1) = 24 · 2 + 0 = 48

s2(Y2) = 24d1(Y1) + 16d0(Y1) + 36s1(Y1)

= 24 · 8 + 16 · 2 + 36 · 6 = 440

s3(Y2) = 24d2(Y1) + 16d1(Y1) + 36s2(Y1) = 0 + 16 · 8 + 0 = 128

Table 4.2: Single-root partials of Y2.

k dk sk gk

0 16 0 16
1 232 48 280
2 672 440 1112
3 0 128 128



Genus Distribution of Graph Amalgamations 20

5 Conclusions

The methods presented in this paper are sufficient to calculate detailed
imbedding information, within quadratic time, for various graphs whose
genus distributions were previously unknown, including the following:

• the genus distribution of the vertex amalgamation (G, u) ∗ (H, v) of
any two graphs (G, u) and (H, v) with 2-valent roots whose single-
root partitioned genus distributions are known, with arbitrarily large
degrees at vertices of G and H other than at the roots;

• the single-root partitioned genus distributions for an open chain of
copies of a graph (G, u, v) with a known double-root partitioned genus
distribution, with arbitrarily large degrees at vertices of G other than
at the roots;

• the single-root partitioned genus distributions for a periodic chain of
copies of several different graphs of known genus distributions.

For instance, we could calculate the genus distribution of an open chain of
copies of a complete graph K8, a wheel graph W7, or any of a variety of ladder
graphs — whose double-rooted genus distribution is known (or calculable).

In combination with methods from [Gr09a], we can also calculate

• the double-root partitioned genus distribution of a graph K formed as
an iterated amalgamation of doubly-rooted graphs

K = (H1, u1, v1) ∗ (H2, u2, v2) ∗ . . . ∗ (Hn, un, vn)

whose double-root partitioned genera are known, with arbitrarily large
degrees in the amalgamands at vertices other than the roots;

• recurrences that specify the genus distributions for a sequence of graphs
Gn = Gn−1 ∗G1 formed as a chain or as a closed chain of copies of G1,
where G1 has arbitrarily large degrees anywhere except the roots;

Since any Eulerian graph can be synthesized by iterative amalgamations and
self-amalgamations at 2-valent vertices of cycle graphs, these methods have
the potential for calculating the genus distribution of any Eulerian graph,
when applied in conjunction with auxiliary techniques for determining the
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order of the amalgamations. For instance, [Gr09b] shows how to use tree-
traversal and root-splitting as auxiliary techniques, which are applied to de-
riving the genus distribution for any 3-regular outerplanar graph.

Research Problem 1. Develop methods for solving simultaneous recur-
sions of the form appearing in Corollary 3.8.

Research Problem 2. Develop methods for characterizing the genus dis-
tributions that result from iterated amalgamations. For instance, are they
unimodal? What are their asmyptotic properties?
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