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Abstract

We show that for every surface of positive genus, there exist many quadrilateral manifold meshes that can be texture-
mapped with locally translated copies of a single square-texture pattern. This implies, for instance, that every positive-
genus surface can be covered seamlessly with any of the 17 plane symmetric wallpaper patterns. We identify suffi-
cient conditions for meshes to be classified as “quad-pattern-coverable”, and we present several methods to construct
such meshes. Moreover, we identify some mesh operations that preserve the quad-pattern-coverability property. For
instance, since vertex insertion remeshing, which is the remeshing operation behind Catmull-Clark subdivision, pre-
serves quad-pattern-coverability, it is possible to cover any surface of positive genus with iteratively finer versions of
the same texture.

Keywords: Modeling

(a) Escher-like pattern (b) twill-weave pattern

Figure 1: Examples of anisotropic/periodic pattern mapping with
quad-pattern-coverable meshes, where surfaces are covered by a sin-
gle anisotropic, periodic wallpaper pattern from Figure 2.

1. Introduction

Texture mapping [1] is very popular in computer
graphics applications, since it allows the creation
of complicated-looking images without increasing the
complexity of the surface geometry. Texturing arbitrary
surfaces with repetitive patterns (i.e, pattern mapping
[2]) is particularly useful, since repeating a pattern re-
duces the memory cost, by mapping the same texture
image to all faces. Moreover, pattern mapping does not
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require painting a texture image for each surface or gen-
erating a global texture map on each surface. Pattern
mapping can potentially provide natural-looking mate-
rials, such as stone, wood, or marble, as well as human-
made materials, such as wallpapers or repeating tiles.

One of the main challenges arising when mapping pat-
terns to arbitrary polyhedral meshes is to avoid texture
discontinuities caused by singularities in the mesh struc-
ture. Texture discontinuities differ from shape disconti-
nuities, although the source of both kinds of disconti-
nuities is the same. In quad-meshes, non-4-valent ver-
tices correspond to mesh singularities. For instance, in
Catmull-Clark subdivision, non-4-valent vertices cause
C2 discontinuities, but only at points that correspond to
non-4-valent vertices [3]. However, discontinuities can
also appear at seams along the edges, which can be vi-
sually distracting. Unfortunately, it is not always possi-
ble to avoid non-4-valent vertices, since 4-regular quad-
meshes exist only for genus-1 surfaces.

Figure 2: Wallpaper patterns that are used in
Figures 1(a) and 1(b).

In this paper, we
show that for
any surface of
positive genus,
there exist
quad-meshes
that do not
cause texture
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discontinuities. Using such quad-meshes, which we
call quad-pattern-coverable meshes (abbr. QPC), it
is possible to seamlessly cover a surface of positive
genus periodically with any plane symmetric wallpaper
pattern. Figures 1(a) and 1(b) are examples of a QPC
mesh covered periodically by one of the two wallpaper
patterns shown in Figure 2.

QPC meshes can also be covered aperiodically, by us-
ing more than one quad pattern. Periodic and aperiodic
patterns are contrasted in §2. After introducing some
definitions, we establish sufficient conditions in §3 for a
mesh to be classified as QPC.

Our results imply that a quad-mesh is not QPC if the
valence of at least one vertex is not divisible by 4. This
observation implies, in turn, that there exists no genus-
0 QPC mesh, since a genus-0 quad-mesh always has
some vertices with valences smaller than 4. For pos-
itive genus surfaces, by way of contrast, there exist a
wide variety of mesh structures that can satisfy the suffi-
ciency conditions. Theoretical and practical algorithms
for construction of QPC meshes are provided in §6 and
§5.

One obvious problem with vertex valences that are large
multiples of 4 is that it is hard to avoid texture distor-
tions near such a vertex. It is preferable, therefore, to re-
duce the large multiples to valence 8, the smallest non-
trivial multiple of 4. We introduce an operation in §6
that can transform the 4k-valent vertices in a mesh into
8-valent vertices, while preserving the QPC property,
regardless of surface genus. Note that 8 valence vertices
in saddle regions do not produce significant texture dis-
tortions as it can be seen in our examples such is the
ones shown in Figures 1 and 4.

Vertex insertion remeshing that replaces each quad by
four smaller ones, as the Catmull-Clark subdivision
algorithm being the prime example, preserve quad-
pattern-coverability (see §3). It is possible, therefore,
to cover any surface of positive genus with iteratively
finer versions of a given texture. Catmull-Clark subdi-
vision is also useful in creating smooth models. In our
examples such as Figure 1, starting with very coarse
QPC meshes, we obtain smooth versions by Catmull-
Clark subdivision. Instead of re-texturing the mesh, we
bi-linearly interpolate texture coordinates. The result is
equivalent to using curved quads, as shown in Figure 3.

We also show in §2 that any wallpaper pattern can be
created by translations of one rectangular image, and
that such a rectangular pattern can be directly mapped
to a toroidal surface, using a (4, 4) mesh. Thus, wallpa-

(a) (b) (c)

Figure 3: (a) a quad-pattern-coverable mesh; (b) the same mesh after
Catmull-Clark subdivision; (c) the pattern superimposed on the quad-
mesh.

per patterns can seamlessly cover any toroidal surface.
However, other surfaces do not have such a toroidal
parameterization and cannot be unfolded onto the Eu-
clidean plane. QPC meshes provide an alternative pa-
rameterization that allow mapping of such patterns to
any positive-genus surface.

A significant advantage of using wallpaper patterns is
that the seamless texturing does not require any unique
solution. Cyclic translations of wallpaper patterns are
also wallpaper patterns. Therefore, one can control the
results, by cyclic translations of the wallpaper pattern in
each quadrilateral. Using this property, it is also possi-
ble to create seamless texture animations.

(a) wood pattern (b) cracked-wall pattern

Figure 4: Examples of anisotropic and aperiodic pattern mapping with
quad-pattern-coverable meshes, where surfaces are covered aperiod-
ically by more than one quad pattern, with shared boundaries from
Figure 5.

Quad-pattern-coverability does not require using a sin-
gle pattern. We also show that if the boundaries of the
patterns match [4], then it is possible to obtain aperi-
odic covering. For example, the aperiodic covering in
Figures 4(a) and(b) use the four quad patterns in Fig-
ures 5(a) and 5(b) respectively.
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(a) wood (b) cracked wall

Figure 5: Four quad patterns that are used to texture the object in
Figures 1.(c) and (d).

2. Pattern Mapping

Pattern mapping has been used by artists in cultures all
around the world to cover planar surfaces. The most
popular patterns are wallpaper patterns that provide pe-
riodic covering of the plane.

2.1. Periodic Patterns
The periodic patterns in the Alhambra in Granada are
probably the best-known historical examples of pattern
mapping. Such periodic patterns have appeared in ar-
chitectural design throughout history, and they are fre-
quently used by almost every civilization in their wall-
papers and wall decorations, and also in their ceilings,
floor tiles, street pavements, and facades of buildings.
Despite their widespread occurrence in art and architec-
ture, the theoretical classification of periodic symmetric
patterns did not began until the early twentieth century.
Fedorov in 1891 established that there are only 17 math-
ematically distinct types of patterns with which to cover
the plane. These pattern types today are also known as
wallpaper groups, periodic groups, or (plane) crystal-
lographic groups.

Each of these groups is a collection of symmetry oper-
ations: translation, rotation, reflection, and glide reflec-
tion. A rotation can be of period 2, 3, 4 or 6. These oper-
ations are called isometries, since they preserve the dis-
tance between any two points. In group-theoretic liter-
ature, the periodic symmetry wallpaper groups are usu-
ally denoted p1, p2, p4, pm, pmm, p4m, p4m, cm, cmm,
pg, pmg, pgg, p4g, p3, p6, p3m1, p31m and p6m. These
groups can be partitioned into rectangular symmetries
and hexagonal symmetries. The last five of them (p3,
p6, p3m1, p31m, p6m) have hexagonal symmetries, and
the first 12 have rectangular symmetries. (See [5] for
detailed discussion.)

From a graphic designer’s perspective, the most impor-
tant implication of the symmetry wallpaper groups is

their identification of symmetry operations. This iden-
tification encouraged artists such as Escher, Briss and
Mehmedov to discover new and interesting patterns.
Knowledge of the 17 symmetry wallpaper groups facil-
itates the design of symmetric patterns, even with only
paper and pen as tools. It is now very easy to find and
create wallpaper patterns since there exist many interac-
tive open-source and commercial systems.

One of the key ideas in this paper is to encapsulate all 17
symmetries within a single p1 rectangular pattern. This
is not unexpected, in view of the fact that every sym-
metric tiling is a topological covering space of a torus,
which is representable by a unit rectangle with identified
opposite sides (see [6]). As shown in Figure 6, such a
unit rectangle can be drawn with its sides labeled North
(N), East (E), South (S), and West (W), which we call a
rectangle with NESW-boundary. By pasting N to S and
E to W, we construct a torus.

(a) (b)
Figure 6: (a) the unit cell; and (b) the
embedding the unit cell to a torus.

It is also possible to
create larger units,
with m unit cells in
the North-South di-
rection and n unit
cells East-West, as
in Figure 7. These
m × n-unit cells can
also cover a torodial

surface. The structure of a toroidal mesh that corre-
sponds to such a quad-pattern-covering is called (4, 4),
which indicates each face is a quadrilateral and that 4
quadrilaterals meet at each vertex. This single rectan-
gle corresponds to p1 symmetries since it only requires
translation in North-South and East-West directions to
obtain the wallpaper.

Figure 7: Unit cells can combine
to form a larger unit cell.

Using the idea of a single
p1 rectangle to represent
all symmetries, the rect-
angular unit will consist
of subunits that are cre-
ated by rotation, reflec-
tion, and glide reflection
operations. Perhaps sur-
prisingly, even a hexago-
nal symmetry can be represented by repeating a p1 rect-
angular unit [7], as illustrated in Figure 8. In other
words, regardless of its symmetry wallpaper group, any
wallpaper pattern can be represented by a rectangular
texture image mapped on a toroidal surface. Note that
our QPC meshes is only necessary and sufficient for
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p1. However, as mentioned above, we can create all
17 symmetric wallpaper patterns based on QPC meshes
by carefully designing the texture patterns, as shown
in Figure 9. Moreover, with the similar idea for QPC
meshes (presented later), it is not hard to obtain the nec-
essary and sufficient conditions for specified wallpaper
groups.

(a) (b)

Figure 8: Obtaining hexagonal symmetries using one rectangular unit
cell by using subunits.

(a) p3 (b) p6 (c) pg

Figure 9: Single p1 rectangles can create any 17 symmetries. These
three examples show patterns that provide p3, p6 and pg symmetries.

Representation of any wallpaper pattern by a rectan-
gular texture image allows us to ignore the underlying
symmetry pattern. Mapping the same texture image to
every quadrilateral simplifies texture mapping. Care is
needed only for matching the North-South and the East-
West boundaries. With QPC meshes, a unique solution
follows after a single edge of the mesh is labeled as ei-
ther the N-S or the E-W boundary, by consistently la-
beling the other edges. This can be implemented with
a few lines of code. The anisotropic periodic texture-
mapped surfaces in Figures 1(a) and 1(b) are obtained
in this way, each by using one of the two texture im-
ages from Figure 2. Although periodic tiling is useful,
if the tile sizes are very small, the repetitiveness of the
patterns becomes visually less interesting. Accordingly,
we include aperiodic patterns in our study.

2.2. Aperiodic Patterns

Wang tiles [8], which are one of the best-known sources
of aperiodic patterns to cover the infinite plane, are re-
lated to our work. They consist of a set of square tiles
that cannot be rotated, i.e., they have fixed North-South

and East-West orientations with color-coded edges.
Berger [9] constructed aperiodic sets of 20426 and 104
Wang tiles, thereby demonstrating the existence of such
sets. There now exists sets with 13 and 6 tiles. Wang
tiles were introduced to computer graphics by Stam [10]
and later again by Cohen et al.[11], for aperiodically
texturing planes and toroids.

For extending our work to include Wang tiles, we as-
sign colors to NESW-boundaries such as NESW, where
blue North must be matched to blue South. Although
this approach is feasible, it is preferable from a prac-
tical perspective if aperiodicity can be achieved with a
set of tiles, each of which has exactly the same NESW-
boundaries, in which case the designer can focus exclu-
sively on internal parts of the tiles. Neyret and Cani [4]
used a continuous-boundary approach to create such a
set of tiles. Figure 10 shows a Wang tile constructed
from a set of four rectangles with the same NESW-
boundaries.

Figure 10: How to create Wang
tiles from a set of rectangles with
the same NESW boundaries.

In practice, we do not
need Wang tiles for ape-
riodicity. Having just a
few tiles with matching
boundaries is sufficient to
create visual aperiodic-
ity. Such tiles can effec-
tively be designed using a
method similar to image quilting [12]. In this case, the
only difference from periodic pattern creation is that we
apply a randomly chosen texture image to each quadri-
lateral. With QPC meshes, the orientation of each tex-
ture images is always uniquely defined, after fixing only
one edge of the mesh. The anisotropic aperiodic texture-
mapped surfaces in Figures 1(c) and 1(d) are obtained
in this way using texture images shown in Figures 5(a)
and 5(b).

In what follows, we show that for every surface of pos-
itive genus, there exist mesh-structures that can be cov-
ered with a pattern similar to a (4, 4) covering. Using
such mesh-structures, any surface of positive genus can
be covered seamlessly with periodic and aperiodic pat-
terns. In the next section, we introduce the conditions
that a mesh must satisfy, in order to allow such a quad-
pattern-covering.

3. Quad-Pattern-Coverability of a Mesh

Graphs in our discussion can have multiple edges and
self-loops. For an oriented edge e = 〈v,w〉, (where v and
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w are the head and tail, respectively, of e), we denote
by e the reversed oriented edge 〈w, v〉 (oriented edges
correspond half-edges in Computer Graphics [13]). A
graph is n-regular if every vertex in the graph has va-
lence n. A surface is a closed orientable 2-manifold.
A mesh is a graph embedded on a surface, and a quad-
mesh is a mesh in which all faces are 4-sided. In an n-
regular mesh, every vertex has valence n, but the faces
need not be all the same size.

Let P be a rectangle pattern (i.e., an image that fills a
rectangle). We name its four sides East (E-), South (S -),
West (W-), and North (N-), so that a clockwise traver-
sal of its boundary encounters the sides in that order.
The pattern P is periodic if its mapping to a torus, as
in Figure 6(b), is seamless. We are most interested in
covering a quad-mesh by a periodic rectangle pattern so
that the covering is “seamless”. The QPC property is a
formalization of “seamless” covering.

Definition A quad-mesh M is quad-pattern coverable
if its faces can be covered by a periodic rectangle pat-
tern P, such that for any two adjacent faces of M, the
common edge between them is either the E-side of one
of the two faces and the W-side of the other, or else the
S -side of one of the two faces and the N-side of the
other.

Note that the quad-pattern coverability of a quad-mesh
M depends only on the mesh M and is independent of
any particular periodic rectangle pattern. Here is the
central theoretical problem of this section and of the
next:

Given a quad-mesh M, is M a QPC mesh?

Recall that for a mesh M on a surface S , the dual mesh
M′ is a graph embedded on the same surface S , such
that

• there is a bijective correspondence between the
faces of M and the vertices of M′ and a bijective
correspondence between the edges of M and the
edges of M′;

• if faces f1 and f2 have edge e in common, then the
dual edge e′ joins the vertices f ′1 and f ′2 of M′ that
are dual to f1 and f2, respectively.

The four oriented edges incident to each vertex f ′ of M′

can be labeled (E-), (S -), (W-), and (N-), in a cyclic or-
dering consistent with the rotation at f ′. A collection of
such labelings, one for each vertex of M′, is called an
oriented-edge labeling of M′. The four labels around
each vertex f ′ induce labels of the face f to which f ′ is

dual. Based on this observation, we introduce the fol-
lowing definition.

Definition Let M′ be a 4-regular mesh embedded on a
surface S . An oriented-edge labeling of M′ is consistent
if for every oriented edge labeled (E-), (S -), (W-), or
(N-), the oppositely oriented edge is labeled (W-), (N-),
(E-), or (S -), respectively.

We immediately infer the following theorem.

Theorem 3.1. A quad-mesh M is quad-pattern cover-
able if and only if its dual mesh M′ can be labeled con-
sistently.

The rest of this section is to characterize meshes that
have consistent labelings. Toward that goal, let M be a
mesh on a surface S , with β = {e1, e2, . . . , ek} a closed
walk in M, and ei = 〈vi, vi+1〉 an oriented edge, for i =

1, . . . , k, (with vk+1 = v1). The corner-cost of the walk
β at the vertex vi is defined to be the number of face
corners around vi from the oriented edge ei−1 = 〈vi, vi−1〉

to the oriented edge ei = 〈vi, vi+1〉 (proceeding around
vi according to the orientation). Figure 11 shows the
corner-cost of a walk when it passes through a vertex of
degree 4.

1 2 3 4

Figure 11: Each number indicates the corner-costs of the correspond-
ing walk as it passes through a vertex.

The corner-cost of a walk β is defined to be the sum of
corner costs at all vertices traversed by β. In comput-
ing the corner-cost, we start along an oriented edge e1,
we traverse the complete walk β, and we complete the
traversal by returning back to the starting oriented edge
e1.

We also define, naturally, the length of the walk β to
be the number of traversals of oriented edges along the
walk β.

Theorem 3.2. Let M be a 4-regular mesh embedded on
a surface S . Then mesh M can be labeled consistently if
and only if for every closed walk in M, the corner-cost
of that walk plus twice its length is divisible by 4.

Proof. Let β be a closed walk in the mesh M with
corner-cost q and length k such that q + 2k is divisible
by 4. Quite simply, this means

if k is even, then q ≡ 0 mod 4, and
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if k is odd, then q ≡ 2 mod 4.

Figure 12: The corner-graph D.

To help to analyze the
corner-cost of a walk β
in the mesh M, we in-
troduce a special directed
graph, the corner-graph
D, which is depicted in
Figure 12. The horizon-
tal edges and the vertical
edges in D are called c-
edges (i.e., corner-edges)
and the edges between the
two rectangles are called t-edges (i.e., transition-edges).

(⇒) Suppose first that mesh M has a consistent labeling
L, and that we have a walk

β = {e1, e2, . . . , ek}

in M, where ei = 〈vi, vi+1〉 is an oriented edge for each
i (with vk+1 = v1). We now construct a longer walk β′

in the corner-graph D, which has some “corner-steps”
between consecutive β-steps that we denote by e′i .

We can assume, without loss of generality, that the ori-
ented edge e1 is the E-edge of vertex v1. Then we
take vertex E as the starting vertex of the walk β′ in
D. Since the labeling L is consistent, the oriented edge
e1 = 〈v2, v1〉 must be the W-edge of vertex v2. We take
the directed edge e′1 of walk β′ in corner-graph D to be
the t-edge from vertex E to vertex W ′, which signifies
that after walk β traverses the E-edge e1 = 〈v1, v2〉 out
of v1, it next takes the W-edge e1 = 〈v2, v1〉 into v2.
Now suppose that the walk β has corner-cost h at the
vertex v2. Then we let walk β′ traverse h directed c-
edges on the inner rectangle in the corner-graph, after
which we observe that the walk β′ must be at a vertex
of D whose name matches the label of the oriented edge
e2 = 〈v2, v2〉 of mesh M. In general, each maximal sub-
sequence of consecutive c-edges in β′ corresponds to the
corner-cost of the walk β as it passes through a vertex in
M.

If the walk β is closed, then it returns to the origin of the
oriented edge e1. As a consequence, the directed walk
β′ in D ends up either at the vertex E or at the vertex E′

(recall that we assumed that e1 is the E-edge of v1).

If the length k of walk β is even, then the walk β′ con-
tains an even number of t-edges, so it ends up at the
vertex E, and it is closed. The structure of the corner-
graph D implies that the number of c-edges in a closed
directed walk is divisible by 4. Thus, q + 2k is divisi-
ble by 4. Alternatively, if the length k is odd, then the

walk β′ contains an odd number of t-edges, and thus it
ends up at the vertex E′. In this case, the structure of
the corner-graph D implies that the number of c-edges
in a closed directed walk is congruent to 2 mod 4. Thus,
once again, the number q + 2k is divisible by 4. This
completes the proof for this direction.

(⇐) For the other direction, suppose that every closed
walk in M satisfies the condition given in the theorem.
We show how to construct a consistent labeling on the
oriented edges of the mesh M.

Pick a root vertex v of mesh M, and assign the labels
E-, S -, W-, and N- to the oriented edges originating at
v, in a manner consistent with the orientation of surface
S . Proceeding inductively, suppose that a labeling at
the vertex w1 has been assigned and that the labeling for
the neighboring vertex w2 has not been assigned. Then
assign to the edges originating at vertex w2 the unique
four labels that are consistent with those at w1. Continue
until all oriented edges of mesh M are labeled. We must
verify that this labeling process L is consistent. For this,
it is sufficient to show that the labeling at a vertex w does
not depend on the choice of a labeled neighbor vertex.

Suppose, as an inductive hypothesis, that so far, the la-
belings for a set of vertices are consistent. Let w be an
as yet unlabeled vertex, with neighbors w1 and w2 of w
that have been assigned the labelings l(w1) and l(w2),
respectively. We will show that the labeling l(w1) and
the labeling l(w2) would induce the same labeling for
the vertex w.

For this, we let β1 = {v0 = v, v1, . . . , vr = w} be a walk
of corner-cost p from the root vertex v to w1 and β2 =

{us = w, us−1, . . . , u0 = v} a walk of corner cost q, such
that all vertices in β1 and β2 are already labeled. Then

β3 = {v0 = v, v1, . . . , vr = w = us, us−1, . . . , u0 = v}(1)

is a closed walk in M. By the premise for this direction
of the theorem, if the length r + s of β3 is even, then the
corner-cost p + q of β3 is divisible by 4; and if r + s is
odd, then p + q is divisible by 2, but not by 4.

Case 1. We first suppose that the length r + s of walk β3
is even and that p+q ≡ 0 mod 4. Since p+q ≡ 0 mod 4,
it follows that the walk β−1

2 has corner cost 4− p mod 4,
and in turn, that the walk β2 has corner cost p mod 4.
Since, furthermore, the lengths r and q are of the same
parity, it follows that the induced walks β′1 and (β−1

2 )′

terminate at the same vertex of the corner graph, and
accordingly, that they induce the same labelings at w.

Case 2. Now suppose that the length r + s of walk β3
is odd and that p + q ≡ 2 mod 4. Since r + s is odd, it
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follows that r and s are of different parity, which implies
that one of the induced walks β′1 and (β−1

2 )′ in the corner
graph terminates on the inner 4-cycle and the other on
the outer 4-cycle. Since p + q ≡ 2 mod 4, it follows
that the locations of these termination vertices are di-
agonally opposite. Thus, the these termination vertices
have the same label, except that one of them is marked
prime. It follows that the induced walks β′1 and (β−1

2 )′

induce the same labelings at w.

This completes the proof of the theorem. �

Theorem 3.2 immediately implies our main result re-
garding the quad-pattern coverability of a mesh.

Corollary 3.3. A quad-mesh M is quad-pattern cover-
able if and only if for every closed walk β in the dual
mesh M′, the corner-cost of β plus twice its length is
divisible by 4.

Note that the labeling process L in the proof of Theo-
rem 3.2 can be used to test whether a mesh has a consis-
tent labeling: if the mesh has a consistent labeling, then
the labeling process L will successfully construct such
a labeling, while if the mesh has no consistent label-
ing, then the labeling process L will be blocked at some
stage by an inconsistent structure. Combining this with
Theorem 3.1 gives the following corollary.

Corollary 3.4. There is a linear-time algorithm that
tests whether a quad-mesh M is quad-pattern cover-
able, and when M is quad-pattern coverable, constructs
a quad-pattern covering for the mesh.

Another useful result is that vertex insertion remeshing,
Catmull-Clark subdivision being most widely used ex-
ample, preserves quad-pattern coverability.

Lemma 3.5. If a mesh M is quad-pattern coverable,
then the mesh Mc after vertex insertion operation on M
is also quad-pattern coverable.

We will not provide a complete proof for this lemma.
Vertex insertion operation turns each quad into 2 × 2.
Therefore, applying vertex insertion operation is the
same as using 2×2 version of a given quad-pattern. It is,
therefore, the boundaries will still match. The lemma is
useful since it shows that any surface of positive genus
can iteratively be covered by finer versions of a given
texture using Catmull-Clark subdivision.

By Theorem 3.1, the quad-pattern coverability of a
quad-mesh M on a surface can be characterized by the
consistent labelability of its dual mesh M′, which is a
4-regular graph embedded on the same surface. More-
over, each vertex of degree d in the mesh M corresponds

to a face of size d in the dual mesh M′. Therefore, in-
stead of working on the original quad-pattern coverable
mesh M, we can work on the dual mesh M′ that has
a consistent labeling and reduce the face size for large
faces in M′, while keeping the consistent labelability.
When we take the dual of the resulting mesh, which has
consistent labelings and smaller face sizes, we will get
a quad-pattern coverable mesh with reduced vertex de-
grees.

Lemma 3.6. Let M be a 4-regular mesh embedded on a
surface, with consistent labelings. Then the size of each
face is divisible by 4.

Proof. Let F be an s-sided face in the mesh M. Take a
closed walk β that follows the boundary of the face F in
counterclockwise order (i.e., when one traverses along
the walk β, the face F is always on the left). The walk β
has corner-cost 1 at each vertex of F. Thus, the corner-
cost c of the walk β is s. The length l of the walk β is
also s. Since M has consistent labelings, it follows from
Theorem 3.2 that the sum c + 2l = 3s is divisible by 4.
This implies immediately that the size s of the face F is
divisible by 4. �

Most surfaces cannot have a 4-regular M with all faces
4-sided: by the Euler polyhedral equation [6], such a
mesh can be embedded only on the torus. On a surface
with genus g ≥ 1, the sum of the valences of all irregu-
lar vertices is 8(g − 1) + 4n, where 1 ≤ n ≤ 2(g − 1) is
the number of irregular vertices. The number of irreg-
ular vertices can be at most 2(g − 1) when all of them
are 8-valent. Therefore, we necessarily allow meshes in
which some vertex valences are various multiples of 4.
Since it is hard to avoid texture distortions near high-
valence vertices, it is preferable to reduce the larger
multiples of 4 to valence 8, the smallest non-trivial mul-
tiple of 4.

4. QPC-Preserving Valence Reduction

Unlike the general quadrilateral mesh editing operations
[14, 15], we use dual meshes to reduce vertex valences
in a QPC mesh, while keeping the QPC property. Let F
be a 4k-sided face in a 4-regular mesh M on a surface
S , where k ≥ 2 is a positive integer. Let

βF = {v1, v2, . . . , v4h−1, v4h, v4h+1, v4h+2, . . . , v4k−1, v4k}

be the boundary walk of face F, in counterclockwise
order, where 1 ≤ h ≤ k − 1. The (F, k, h)-operation
on the mesh M, illustrated in Figure 13, is defined as
follows:
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• insert two non-crossing edges [v1, v4h] and
[v4h+1, v4k] into the face F so as to split face F into
three faces F1, F2, and F3, where the “middle face”
F2 has size 4; and

• delete the edges [v4h, v4h+1] and [v4k, v1] so as to
merge the new middle face F2 with two other faces
F′ and F′′.

Note that if the mesh M is 4-regular, then the resulting
mesh is also 4-regular.

v4k v1

v4h+1 v4h

v4h+2

v4k−1

v4h−1

v2

F

F ′

F ′′

v4k v1

v4h+1 v4h

v4h+2

v4k−1

v4h−1

v2

F1 F2 F3

F ′

F ′′

(a) (b)

Figure 13: Reducing face-size: (a) before; (b) after.

The (F, k, h)-operation eliminates the face F of large
size. However, merging the new middle face F2 with
faces F′ and F′′ may create another large face with
n′ + n′′ − 2 + 2 faces, where n′, n′′ are the face-sizes
of F′ and F′′. Nonetheless, if F is an “isolated” large
face (i.e., if the faces adjacent to face F are all small),
or if there is even a single appropriately located pair F′

and F′′ with small n′, n′′, then the (F, k, h)-operation ef-
fectively reduces the large-face problem. For example,
suppose that the face F is 16-sided (i.e., k = 4) and
that for h = 2, faces F′ and F′ are both 4-sided. Then
the (F, k, h)-operation replaces F, F′, and F′′ by three
8-sided faces (see Figure 14).

Lemma 4.1. Let M be a 4-regular mesh embedded on
a surface S with consistent labelings, and let F be a
4k-sided face of M, where k ≥ 2. Then for any h with
1 ≤ h ≤ k − 1, the (F, k, h)-operation on M will result in
a 4-regular mesh with consistent labelings.

Proof. Let LM be a consistent labeling for the mesh
M. Consider the boundary walk (in counterclockwise
order)

βF = {v1, v2, . . . , v4h−1, v4h, v4h+1, v4h+2, . . . , v4k−1, v4k}

as in Figure 13(a). Suppose that the oriented edge
〈v1, v4k〉 is the E-edge for the vertex v1 under the la-
beling LM . (The other three cases have the same proof.)
Then the oriented edge 〈v4k, v1〉 is the W-edge at vertex

v4k. From this we know that 〈v1, v2〉 is the S -edge at
vertex v1, so 〈v2, v1〉 is the N-edge for the vertex v2, and
so on. In general, we have for any integer i:

〈v4i, v4i+1〉 is the W-edge for the vertex v4i;

〈v4i+1, v4i+2〉 is the S -edge for the vertex v4i+1;

〈v4i+2, v4i+3〉 is the E-edge for the vertex v4i+2; and

〈v4i+3, v4i+4〉 is the N-edge for the vertex v4i+3.

This implies immediately that the oriented edge
〈v4h, v4h+1〉 is the W-edge at vertex v4h, so the oriented
edge 〈v4h+1, v4h〉 is the E-edge at vertex v4h+1 under the
labeling LM .

(a) (b)

Figure 14: Reduction of a 16-valent vertex into three 8-valent ver-
tices, while preserving QPC property. In this example, we have lo-
cated high-valence vertices in relatively planar regions to demonstrate
the effect of valence reduction better. The positions of such high va-
lence vertices can be moved to saddle regions to reduce distortion.

Now let MF be the mesh obtained from mesh M by the
(F, k, h)-operation, that is, by inserting edges [v1, v4h]
and [v4h+1, v4k] and deleting the edges [v4h, v4h+1] and
[v4k, v1]. As we discussed above, the mesh MF is a 4-
regular graph. Let the mesh MF retain the labels as-
signed by LM to all the other oriented edges, and let
〈v1, v4h〉 be the E-edge of vertex v1, 〈v4h, v1〉 the W-edge
of vertex v4h, 〈v4h+1, v4k〉 the E-edge of vertex v4h+1, and
〈v4k, v4h+1〉 be the W-edge of vertex v4k. Clearly, this is
a consistent labeling for the mesh MF . �

This provides an effective way to eliminate faces of
large size, particularly for a mesh with relatively iso-
lated large faces. In QPC meshes, these operations can
reduce vertex valences to release the distortion even at
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non-saddle points. Here, we do not provide the op-
eration, however It is also possible to move irregular
vertices into saddle regions to further reduce the distor-
tions.

5. Constructing QPC Meshes with Permutation
Voltage Graphs

In this section, we show that all QPC meshes can be
constructed from a simple permutation voltage graph.
QPC meshes enjoy the symmetric structure, such that
each face can be covered by locally translated copies
of periodic rectangle. This inspires us to present QPC
meshes with embedded permutation voltage graph[16,
6], which holds the similar property.

We present the definition of the permutation voltage
graph first.

Let G = (V, E) be a digraph, which is a graph with di-
rected edges, and X be a symmetric wallpaper group.
A permutation voltage assignment for G is a function
α : E → X that labels each edge with a permutation
in X. We say the pair 〈G, α〉 is a permutation voltage
graph, where G is called the base graph.

The permutation derived graph Gα = (Vα, Eα) is asso-
ciated with a permutation voltage graph 〈G = (V, E), α〉,
where Vα = V × {1, . . . , n},and Eα = E × {1, . . . , n}. If
the edge e is from vertex u to vertex v in G then the
edge e j = (e, j) is from the vertex u j = (u, j) to the
vertex vα( j) = (v, α( j)).

The permutation voltage graph provides powerful tech-
niques to construct large and complicated graphs with
simple ones. A natural extension is to embed the base
graph G on a surface.

Let G be a digraph. A permutation voltage graph (G, α)
is embedded on a surface, if the underlying undirected
graph of G is cellularly embedded on a surface. We
correspond a permutation voltage assignment α to the
directed edges. Then we consider the embedded per-
mutation derived graph Gα. The digraph Gα is derived
from the permutation voltage graph 〈G, α〉. We embed
the undirected Gα on a surface with the rotation sys-
tem [17, 6] inheriting from the embedded undirected
G. Assume there are k edges incident to v in undi-
rected G. Let the rotation at v be e1, e2, . . . , ek, where e j

(1 ≤ j ≤ k) is an oriented edge originating at v in undi-
rected G. It is easy to verify that there are k oriented
edges e′1, e

′
2, . . . , e

′
k originating at vi in the undirected

Gα, where e′i is corresponding to ei. We set the cyclic

order of the oriented edges e′1, e
′
2, . . . , e

′
k in the oration at

vi in the embedded undirected Gα is the same with the
cyclic order of their corresponding oriented edges at v
in embedded undirected G.

We construct an embedded base graph as follows. A
bouquet B2 is a undirected graph which consists of one
vertex v and two undirected edges, c1, c2, which are self-
loops . We embed B2 on a torus such that the two ori-
ented edges from c1 (resp. c2) originating at v are not
adjacent in the rotation at v (see Figure 15). Since we
have two undirected edges, the graph consists of four
oriented edges. These four oriented edges originate at
v and they are labeled with (E-), (S -), (W-) and (N-) in
clockwise order. The oriented edges (E-) and (W-) share
the same edge c1, while the oriented edges (S -) and (N-)
share the same as c2. We set the (E-) oriented edge and
(N-) oriented edge as the directed edges in directed B2.
We will use the directed B2 to construct the permutation
voltage graph. Let α = (π1, π2) be a n-elements permu-
tation voltage assignment to embedded B2, such that π1
is assigned to (E-) directed edge, and π2 is assigned to
(N-) directed edge. We want to show that the embedded
undirected permutation derived graph Bα2 is the dual of
a QPC mesh, as shown in an example in Figure 16. We
show these results in two theorems.

v

N
W

E
S

Figure 15: An embedded bouquet B2 with two self-circles

The edge set of a spanning subgraph for a graph G is
called an 2-factor for G if that spanning subgraph is reg-
ular of valence 2.

Lemma 5.1. If M′ is the dual of a QPC mesh, the edge
set in M′ can be divided into two 2-factors L1 and L2,
where the oriented edges in L1, L2 are labeled with
(E-), (W-) and (N-), (S -) respectively in a consistent
oriented-edge labeling.

Proof. According to Theorem 3.1, M′ can be labeled
consistently. Hence, the two oriented edges for each
edge in M′ are either labelled by (E-), (W-) or labelled
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N

E

N

E

N

E
v1 v2 v3

Figure 16: An example of graph rotation systems derived from per-
mutation voltage graph Bα2 , by assigning α = {(1 2 3), (1 3)(2)} to
(N-), (E-) directed edges of B2 respectively. This particular mesh has
genus 2.

by (N-), (S -). The edges in M′ can be separated into two
subsets. We collect all the edges whose oriented edges
are labelled by (E-), (W-) in set L′1, and the edges whose
oriented edges are labelled by the (N-), (S -) in set L′2.
Since the four oriented edges originating at any vertex v
in M′ are labelled with (E-), (S -), (W-) and (N-), two of
the four edges incident to v are in L′1 and the other two
are in L′2. Therefore, L′1, L′2 are 2-factors. �

To show the equivalence between two meshes, we need
the definition below.

Definition Two meshes M1 and M2 are embedding
isomorphic if there exists an isomorphism f , such that
for each vertex vi in M1, if the oriented edge 〈vi, v j〉

is immediately followed by oriented edge 〈vi, v′j〉 in
the rotation at vi, the oriented edges 〈 f (vi), f (v j)〉 and
〈 f (vi), f (v′j)〉 exist in M2, and 〈 f (vi), f (v j)〉 is immedi-
ately followed by the oriented edge 〈 f (vi), f (v′j)〉 in the
rotation at f (vi) in M2.

Theorem 5.2. There exists an embedded undirected de-
rived permutation graph Bα2 which is embedding iso-
morphic to the dual of any given QPC mesh M′.

Proof. We label the vertices in M′ as v1, v2, . . . , vn,
where n is the size of the vertex set in M′. According to
Lemma 5.1, the edges in M′ can be separated into two
2-factors L1, L2, where the oriented edges of L1, L2 are
labelled with (E-), (W-) and (N-), (S -) respectively.

(1) If Li (i = 1, 2) is a connected 2-factor, which is also a
hamiltonian cycle, we start from a vertex v and traverse
L1 (resp. L2) along (E-) (resp. (N-) ) oriented edge
to obtain a cyclic permutation πi corresponding to the
order of subscripts of the encountered vertices.

(2) If Li contains several disjoint cycles c1, c2, . . . , cm,
we traverse Li to obtain a permutation for each cycle.
The permutation πi is the product of the cycle permuta-
tions.

Therefore, we obtain a permutation voltage assignment
α = {π1, π2}. We assign the permutation π1, π2 to (E-)
and (N-) directed edges in B2. We show the permutation
derived graph Bα2 is embedding isomorphic to M′.

The vertices in Bα2 are labelled as v′1, v
′
2, . . . , v

′
n. The n

vertices are joined with directed edges in the order of
the permutations π1 and π2. If we have a bijection func-
tion mapping from vi in M′ to v′i in Bα2 , it is easy to re-
alize the undirected Bα2 is isomorphic to the underlying
graph of M′, since if v j is adjacent to vi in M′, v′j is also
adjacent to v′i in undirected Bα2 . We assign (E-) to the
directed edges derived from π1, and assign (N-) to the
directed edges derived from π2. In the corresponding
undirected Bα2 , we assign the opposite oriented edge of
(E-) as (W-), and opposite of (N-) as (S -). Since π1, π2
are the permutations of the vertex subscribes along (E-)
and (N-) oriented edges in M′, the oriented edge 〈vi, v j〉

has the same label with 〈v′i , v
′
j〉. According to the defi-

nition of embedded derived graph, the (E-), (S -), (W-)
and (N-) oriented edges are embedded in clockwise or-
der at each vertex v′i in Bα2 , which is the same with M′.
Therefore, the embedded undirected Bα2 is embedding
isomorphic to M′. �

Theorem 5.2 shows any QPC mesh can be represented
by the embedded B2 associated with a permutation volt-
age assignment. In the following, we further show any
given permutation voltage assignment to embedded B2
gives a QPC mesh.

Theorem 5.3. Given any permutation voltage assign-
ment α = (π1, π2) to (E-), (N-) oriented edges in the
embedded bouquet B2, the embedded undirected Bα2 is
the dual of QPC mesh.

Proof. We sequentially connect the n vertices {v1, v2,
. . . , vn} with oriented edges in the order of the permu-
tation π1 and π2, and assign the oriented edges from π1
with label (E-), the oriented edges from π2 with label
(N-). For each oriented edge along the permutation π1
(resp. π2), we draw an opposite oriented edges labeled
with (W-) (resp. (S -)). Therefore, in Bα2 , the oriented
edges labeled with (E-) and (N-) are shared edges with
oriented edges labeled with (W-) and (S -) respectively.
For each vertex v in embedded undirected Bα2 , there are
four oriented edges originating at v, which are labelled
as (E-), (S -), (W-) and (N-), where (E-), (S -), (W-) and
(N-) are embedded in clockwise order. Therefore, we
have a consistent labelling for the embedded undirected
graph Bα2 . According to Theorem 3.1, Bα2 is the dual of
a QPC mesh. �

Theorem 5.2 presents a method to compress the infor-
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mation for a given QPC mesh. It describes any QPC
mesh by a fixed embedded graph associated with a very
limited data, i.e., the two n-elements permutations. The-
orem 5.3 shows an algorithm to construct an arbitrary
QPC mesh with a theoretical view.

6. Construction of QPC Meshes from Regular
Meshes

This section provides an practical alternative for con-
structing QPC Meshes. Motivated by the result of
Lemma 3.6 - valences of all vertices of a QPC-mesh
must be divisible by 4 - we endeavor to construct QPC-
meshes by first constructing quad-meshes with all va-
lences divisible by 4, which we call 4k-valent quad-
meshes. In this section, we show how to construct 4k-
valent quad-meshes. After we construct them, we can
easily test them for the QPC property with the efficient
labeling algorithm used in the proof of Theorem 3.2.

Figure 17: (a) octahedron and prism; (b) adding the prismatic handle
increases the genus by one; (c) joining four pairs of faces with handles
yields a (4, 8, 4) regular mesh.

As a simple example of how to construct 4k-valent
quad-meshes, we describe how to transform an octa-
hedron into such a mesh. An octahedron O (see Fig-
ure 17(a)) has six 4-valent vertices, 12 edges, and eight
3-sided faces. We choose any pair of faces, and we con-
nect them by a deformed prism, as illustrated in Fig-
ure 17(b). The resulting mesh has 6 vertices, 15 edges,
and 9 faces, and is of genus one. The three “new faces”
in the deformed prism are quadrilaterals, and the two
chosen faces on O have disappeared.

If we partition the eight faces on the octahedron into
pairs, and if we connect each face pair by a prismatic
handle, then the resulting mesh O′ has six vertices, each
8-valent; it has 24 edges; it has 12 faces, each 4-sided;
and it is of genus 4. Thus, the new mesh O′ is a regular
mesh of type (4, 8, 4) [18].

Figure 17(c) shows a regular mesh that is constructed
this way. Since this regular mesh satisfy the conditions
in Theorem 3.2, it is a QPC mesh. We observe that ob-
taining a quad-mesh depends only on being able to pair
faces of like size; that it, it is not necessary that all faces
be of the same size.

We recall that regular meshes are categorized by triples
(n,m, g), where n is the face size, m is the vertex va-
lence, and g is the genus of the surface. For g = 0,
the regular meshes include the 1-skeletons of the pla-
tonic solids and also the two-sided polygon. Any prod-
uct graph of the form Cm × Cn, where Cs is the s-cycle,
is a (4, 4, 1)-mesh for the torus.

For our purposes, any (4n, 4m, g) mesh can be useful
for obtaining 4k-valent quad-meshes, since Catmull-
Clark subdivision of all the 4n-sided faces will result
in a quad-mesh in which the valence of every vertex re-
mains a multiple of 4. Importantly for the pursuit of
QPC meshes, there exist regular meshes in the form
of (4n, 4m, g), for every genus g, including the forms
(4, 8, g), (4, 12, g), (8, 8, g), and (4g, 4g, g). Moreover,
there exist construction algorithms for regular mesh
families in the forms (4, 4i, 4i−3), (4, 4i, 2i−1), (4, 4i, i),
(4, 8i − 4, i), (4i, 4i, i), (4i, 4i, 2i − 1), and (4i, 4i, 4i − 3),
where i is any positive real number [18]. Of course,
the regular meshes for any given triple (n,m, g) are not
unique. Moreover, by selecting different pairs of faces
to connect with the prismatic handles, we can obtain dif-
ferent regular meshes, usually more than one of which
provides the QPC property.

(a) QPC (b) Non-QPC

Figure 18: Subdivided versions of two other quad-meshes obtained by
the algorithm to produce (4, 8, 4) meshes.

For most regular mesh construction algorithms the ver-
tex valences rise with the genus, and we can reduce the
valences using the operation provided in Lemma 4.1.
Figure 14(a) shows a genus-4 QPC mesh that is con-
structed by a (4, 4i, i) algorithm and which includes two
16-valent vertices. Figure 14(b) shows the visual effect
of the reduction of a 16-valent vertex to three valence 8
vertices.
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We have developed additional algorithms to construct
4k-valent quad-meshes by adding prismatic handles that
connect two faces. A complete review of all these algo-
rithms is beyond the scope of this paper. Instead, we
focus here on one such construction algorithm, which
produces (4, 8, 3k+1)-regular meshes, that is, of valence
at most 8.

In practice, to construct 4k-valent quad meshes with
handles, we use multi-segment piecewise-approximate
versions of deformed prisms. The resulting QPC
meshes are not formally regular, since not all vertices
have the same valance, but they closely approximate the
shape of regular meshes. The QPC-mesh shown in Fig-
ure 3(a) is similar to the regular mesh in Figure 17(c).
Selecting different pairs of faces for connecting handles,
we obtain different (4, 8, 4) meshes for the surface of
genus 4, two of which are shown in Figure 18. Among
them, Figure 18(a) is QPC, but Figure 18(b) is not. Gen-
eralization of the (4, 8, 4) construction to (4, 8, 3k + 1) is
straightforward. Consider a set of k octahedra; simply
pairing the faces and then joining pairs with prismatic
handles yields a (4, 8, 3k + 1) mesh. Figures 20 and 20
show examples of higher genus QPC quad meshes with
vertex valences at most 8.

7. Implementation and Results

We have shown that for every surface of positive genus,
there exist quadrilateral meshes that permit seamless
texture-mapping. With such meshes, it is very easy
to seamlessly cover a surface with quad textures. All
images herein were created with an extremely simple
rendering program that does not provide complicated
shading, and they are all direct screen captures. For
any graduate student who is knowledgable in computer
graphics, the development of such software should not
take more than a day. Testing of the software is also
straightforward since there is always a solution if the
mesh is QPC.

The wallpaper patterns that cover QPC meshes can eas-
ily be animated, since cyclic translations of wallpa-
per patterns are also wallpaper patterns. Texture co-
ordinates can cyclically be translated, simply by using
u = u+δu−bu+δuc and v = v+δv−bv+δvcwhere δu and
δv are displacement, and where b.c is the floor function
(which guarantees cyclic translation). Since the texture
is already periodic, any cyclic translation of quad pat-
tern still provides a seamless texture. If quad-patterns
are continuously translated cyclicly, then the result be-
comes an animation of the texture sliding on the surface.

This property is also useful to control the texture map-
ping, i.e., the texture can be slid over the surface until
best results are obtained.

8. Conclusion and Discussion

In this paper we show that for every surface of positive
genus, there exist quadrilateral meshes that can seam-
lessly be texture-mapped over the surface. Using this
set of quad-meshes, called QPC meshes, surfaces can
also be covered aperiodically by using more than one
quad pattern. Quad-pattern coverability is an addition
to the repertoire of tools for texture mapping. It does
not conflict with any existing tools, and it provides new
power.

Figure 19: An example of QPC meshes obtained from a (4, 8, 13)
regular mesh, which is constructed from four octahedra. econd row
shows textured surface.

We have provided a theoretical construction algorithm
that is based on a very simple permutation voltage
graph. This algorithm always guarantees to construct
QPC meshes. Our results imply that a quad-mesh is
not QPC, unless the valence of every vertex is divisible
by 4. Based on this observation, we have provided prac-
tical construction algorithms for finding QPC meshes
based on regular meshes [18]. Using these algorithms
we have constructed a large set of QPC meshes. Simi-
larly, the regular map construction method introduced
by Van Wijk can also be used to construct 4k-valent
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quad meshes [19]. The regular maps that can be used to
find QPC meshes include (4, 8, g) and (4, 12, g). These
regular maps also does not necessarily have the QPC
property. Therefore, there is still a need to verify the
presence of the QPC property.

We also show that Catmull-Clark subdivision preserves
the QPC property, and therefore it is possible to cover
surfaces with iteratively finer versions of the same tex-
ture. We have applied Catmull-Clark subdivision to
create curved quads. In this paper, we did not partic-
ularly try to reduce distortions. Catmull-Clark subdi-
vision partially helps to reduce the distortions that are
caused by significant differences in the sizes and shapes
of quadrilaterals in the initial meshes, and optimization
algorithms can further reduce such distortions.

Another type of texture distortion caused by large va-
lence vertices needs special attention. We have devel-
oped an operation to reduce large valences to valence 8
while preserving the QPC property. In addition, for re-
ducing the distortions around high valence vertices, it is
helpful to move the position of such a vertex to a sad-
dle region. Although, we have not provided a formal
study in the paper, we want to point out that it is pos-
sible to move the position of a high valence vertex to
another place with local mesh operations, while keep-
ing the QPC property.

A direction to explore for future research can be meshes
for manifolds with boundaries, which may have QPC
parameterizations. QPC parameterizations also suggest
that QPC meshes may have properties that can be used
for shape modeling.

Current quadrangulation schemes, such as Quad-Cover
[20], Mixed-Integer quadrangulation [21] and wave-
based anisotropic quadrangulation [22], do not provide
control for global topological structures of the meshes
to convert any positive genus mesh into a QPC. Thus,
an important future research direction can be the devel-
opment of quadrangulation schemes that can produce
quad-coverable meshes directly from any positive genus
mesh.
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Figure 20: Examples of QPC meshes obtained from (4, 8, 7) regular meshes, which are constructed from two octahedra. Second row shows textured
surfaces.

Figure 21: Examples of QPC meshes textured with p3, p6 and pg patterns shown in Figure 9.
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