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Abstract. The 25-year old LCGD Conjecture is that the genus
distribution of every graph is log-concave. We present herein a
new topological conjecture, called the Local Log-Concavity Con-
jecture. We also present a purely combinatorial conjecture, which
we prove to be equivalent to the Local Log-Concavity Conjecture.
We use the equivalence to prove the Local Log-Concavity Conjec-
ture for graphs of maximum degree four. We then show how a
formula of David Jackson could be used to prove log-concavity for
the genus distributions of various partial rotation systems, with
straight-forward application to proving the local log-concavity of
additional classes of graphs. We close with an additional conjec-
ture, whose proof, along with proof of the Local Log-Concavity
Conjecture, would affirm the LCGD Conjecture.

1. Introduction

This paper presents several conjectures related to the phenomenon
of local log-concavity. All of the imbedding surfaces of concern here are
oriented.

The number of imbeddings of a graph G in the oriented surface Si is
denoted by gi(G) or gi. Then the genus distribution polynomial
(or, simply, graph genus polynomial) of G is

ΓG(z) =

γmax(G)∑
i=γmin(G)

giz
i,

where γmin(G) and γmax(G) are the minimum genus and maximum
genus of G, respectively. All graphs are taken to be connected, all
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surfaces are taken to be closed and oriented, and all imbeddings are
taken to be cellular.

In our graphs, vertices in figures and commentary are labeled by
lower case letters and edges are labeled by integers. Each edge is con-
strued to have two edge-ends. Using the arrow convention on the edges
in our figures enables us to distinguish the edge-ends. The end at the
tail of the arrow on edge j is called j+, and the end at the head is
called j−.

It is presumed that the reader is fully familiar (e.g., see [GrTu87])
with the representation of the rotation at a vertex v as a cyclic ordering
of the edge-ends incident at v. This convention enables us to represent
a walk as a sequence of edge-ends, which are the edge-ends at which
the respective oriented edges in the trail terminate. We sometimes
also write the vertices encountered along the walk. We refer to a face-
boundary walk of a graph imbedding as an fb-walk. It is further
presumed that the reader is familiar with the construction of a graph
imbedding from a rotation system, by which we mean the assignment
of a rotation at every vertex.

Section 2 introduces the concepts of the local genus polynomial and
local log-concavity. We formulate Conjecture 2.2, a topological conjec-
ture, called the Local Log-Concavity Conjecture. This conjecture has
a purely combinatorial equivalent form, given in Section 3 as Conjec-
ture 3.1. Section 4 gives an elementary proof of local log-concavity for
vertices of degree four or less. Section 5 examines how to use Jackson’s
formula [Ja87] in explorations of the log-concavity of local genus distri-
butions. Section 6 shows how the concept of synchronicity, introduced
previously by the present authors [GMTW15], provides a plausible path
to a predominantly combinatorial proof of the LCGD Conjecture.

This study evolved partially from the general idea of seeking a sim-
plifying effect when one vertex of a graph is removed or added.

2. Local Log-Concavity

A partial rotation at a vertex v is a cyclic sequence, each of
whose elements is either

(1) an edge-end that is incident at v, or
(2) an ellipsis (· · · ).

Although there may be more than one ellipsis, none of the edge-ends
may occur more than once. A partial rotation whose only element is
an ellipsis is said to be empty. A partial rotation with no ellipsis is
said to be full.
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A partial rotation system for a graph is an assignment of a par-
tial rotation to every vertex. We observe that a partial rotation at a
vertex v can be extended to a full rotation at v by filling the edge-ends
not already used into the gaps indicated by the ellipses. Moreover, a
partial rotation system can be extended to a complete rotation sys-
tem by extending every partial rotation (including any empty partial
rotations) to a full rotation.

An imbedding h : G → Sj of a graph G into a surface is said to be
consistent with a partial rotation system σ for G if the complete
rotation system induced by the imbedding h is an extension of σ, in
the sense that each row of that complete rotation system is obtainable
from the corresponding row of σ by substituting a sequence of missing
edge-ends incident at the corresponding vertex for an ellipsis.

The partial genus distribution of a graph G with respect to
a partial rotation system σ is an assignment to each non-negative
integer i of the number gσ,i(G) (or gσ,i) of imbeddings G→ Si that are
consistent with σ. A partial genus distribution is commonly represented
by a sequence

gσ,0, gσ,1, gσ,2, . . .

or by a polynomial gσ,0 + gσ,1z + gσ,2z
2 + . . . .

The minimum genus (maximum genus) with respect to a
partial rotation system σ is the least (greatest) integer i such that
there exists an imbedding of G consistent with σ in the surface Si; we
use the notations γσ,min(G) and γσ,max(G), respectively. Thus, we may
now define the partial genus distribution polynomial by

(2.1) ΓG,σ(z) =

γσ,max∑
i=γσ,min

gσ,iz
i.

The partial genus distribution with respect to the empty partial ro-
tation system is called the genus distribution of G.

We recall that a finite sequence of real numbers a0, a1, . . . , an, with
no internal zeros, is log-concave if for i = 1, 2, . . . , n− 1, we have

ai−1ai+1 ≤ a2i .

We observe that a sequence is log-concave if and only if the reverse
sequence is log-concave.

The following conjecture was first formulated in [GRT89]:

Conjecture 2.1 (LCGD Conjecture). The genus distribution of
every graph is log-concave.
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We employ these notations:
RG: the set of all rotation systems on the graph G.
RS: the set of partial rotation systems that specify a full rotation

at every vertex of any subset S ⊂ VG.

The genus distribution of a graph G is said to be locally log-
concave at a vertex v if for every partial rotation system σ ∈ RVG−{v},
the partial genus distribution with respect to the set of (complete)
rotation systems for G that are consistent with σ is log-concave.

Proposition 2.1. Let v be an n-valent vertex of a graph G, and let
σ ∈ RVG−{v}. Then the number of complete rotation systems for G that
are consistent with the partial rotation system σ is (n− 1)!.

Proof. For each possible rotation at v, i.e., for each cyclic ordering of
the n edge-ends incident at v, there is exactly one complete rotation
system for G that is consistent with σ. �

Example 2.1. We consider the 5-wheel W5, which is illustrated in
Figure 2.1, and a partial rotation system σ that assigns a fixed rotation
at every vertex except the hub vertex t. In the figure, the rotation at
vertex t is (5+6+7+8+9+).
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partial rot. sys. σ
u. 0- 1+ 5- 
v. 1- 2+ 6-

w. 2- 3+ 7- 
x. 3- 4+ 8-

y. 0+ 9- 4-

Figure 2.1. The wheel W5.

For each of the 24 possible rotations at the 5-valent vertex t, we use
face-tracing to calculate the number of fb-walks. Then we use the Euler
polyhedral equation to calculate the genus:

(0) For only one of these rotations, namely (5+6+7+8+9+) — as in
Figure 2.1, the genus of the imbedding surface is 0.

(1) For exactly 15 other rotations, the genus of the imbedding sur-
face is 1.

(2) Each of the remaining 8 rotations at vertex t yields genus 2.
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Thus, with respect to the partial rotation system σ, the partial genus
distribution of W5 at vertex t is

1 15 8

which is a log-concave sequence. We may represent that sequence by
the polynomial

(2.2) Γ(W5,t),σ(z) = 1 + 15z + 8z2,

which we call the local genus polynomial with respect to σ. In
accordance with notation given just before Equation (2.1)

Γ(G,t),σ(z) =

γσ,max∑
i=γσ,min

gσ,iz
i

we have gσ,0 = 1, gσ,1 = 15, and gσ,2 = 8.

To prove local log-concavity of the 5-wheel W5 at the vertex t, we
would need to prove additionally that, with respect to all 31 = 25 − 1
other possible partial rotation systems in the set RVW5

−{t}, the partial
genus distribution is log-concave.

Comment 2.1. We observe that the genus polynomial and the local
genus polynomial of a graph are invariant under subdivision. To avoid
cumbersome notation, we can trisect self-loops wherever doing so allows
a proof for simple graphs or multi-graphs to be extended to all graphs,
i.e., including those with self-loops.

Theorem 2.2. Let v be a vertex of a graph G. Then the sum of the
local genus polynomials at vertex v equals the genus polynomial of G.

Proof. The set of all imbeddings of G is partitioned into the subsets
of imbeddings that are consistent with each possible partial rotation
system σ ∈ RVG−{v}. It follows that

ΓG(z) =
∑

σ∈RVW5
−{v}

Γ(G,v),σ(z) �

We now formulate the following new conjecture:

Conjecture 2.2 (Local Log-Concavity Conjecture, abbreviated
as the LLC Conjecture). The genus distribution of any graph G is
locally log-concave at every vertex of G.
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Inner and Outer Strands

Relative to a given vertex v and to a given rotation system ρ, or to
the corresponding imbedding, we call the faces and fb-walks that are
incident at v inner faces and inner fb-walks, and we call the other
faces and fb-walks outer faces and outer fb-walks. For instance,
the imbedding of the wheel W5 in Figure 2.1 has five inner faces, all
3-sided, and one outer face, which is 5-sided.

A semi-trail in a graph is an oriented walk in which no oriented
edge appears more than once.

For any imbedding of a graph G, each inner fb-walk at a vertex v
can be visualized as having been formed by the union of two kinds of
oriented semi-trails:

• a corner strand at v is a semi-trail (of length 2) consisting of
an oriented edge ein ending at v and the oriented edge eout that
follows ein immediately after the vertex v on whatever inner
fb-walk contains ein;
• an outer strand at v is any semi-trail of an inner fb-walk

that remains after deleting all the corner strands from all the
fb-walks.

Example 2.2. Figure 2.2 illustrates the configuration of inner and
outer strands induced at vertex u = 0 of some graph by some imbed-
ding.

u

1

2

w

vx

y

3

4

Figure 2.2. Local configuration of corner strands and outer
strands.

We observe that there are three fb-walks incident at vertex 0, one in
red, another in blue, and another in green. The corner strands

(2.3) v1−u4+y w2−u1+v x3−u2+w y4−u3+x
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are represented by solid lines, while the outer strands

(2.4) v • y w • x x • w y • v
are represented by dashed lines. A bullet (•) stands for an unspeci-
fied sequence of edges and vertices lying between the two designated
extreme vertices of an outer strand.

We observe the following in Figure 2.2:

(1) The green fb-walk is the union of the corner strand v1−u4+y
and the outer strand y • v.

(2) The blue fb-walk is the union of the corner strand x3−u2+w
and the outer strand w • x.

(3) The red fb-walk is the union of the corner strands w2−u1+v and
y4−u3+x and the outer strands v • y and x • w.

Whereas the set of corner strands at a vertex u is completely deter-
mined by the rotation at u, the set of outer strands at u is determined
by the rotations at all the vertices except for u. Importantly, we observe
that there is a bijective correspondence between the set of possible sets
of corner strands and the set of rotations at u. At an n-valent vertex u,
there are (n− 1)! inner permutations.

For any fixed partial rotation system σ ∈ RVG−{u}, all the outer fb-
walks are the same, regardless of the rotation at u. It is clear that the
number of inner fb-walks incident at an n-valent vertex u is at least 1
and at most n. It follows, from consideration of the Euler polyhedral
equation, that the different possible numbers of fb-walks incident at
vertex u in these (n − 1)! imbeddings all have the same parity. Thus,
these (n− 1)! imbeddings are distributed over at most bn−1

2
c values of

the genus.

Inner and Outer Permutations

The set of corner strands at a vertex u of an imbedded graph can
be represented by what is called the inner permutation, in which
the undirected edge at the tail of each corner strand is regarded as
being permuted to the undirected edge incident at the head of that
strand. In Example 2.2, the inner permutation is ζ = (1432). It
follows immediately from the definition of an inner permutation that
the inner permutation for a vertex u of a given imbedding corresponds
to the rotation at u.

Similarly, the set of outer strands can be represented by the outer
permutation, in which the edge at the tail of each outer strand is
permuted to the edge at the head of that strand. In Example 2.2, the
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outer permutation is π = (14)(23). At an n-valent vertex, there may
be as many as n! possible outer permutations. We observe that an
outer permutation at a vertex u might conceivably be any permutation
whatever of the edges incident at u. A given graph might not realize
all these possibilities. However, given any permutation π ∈ Σn, it is
easy enough to draw an imbedding in which some vertex has π as an
outer permutation.

Example 2.3. The rooted wheel graph (W4, ◦) appears in Figure 2.3.
Since the root-vertex is 4-valent, the set I of inner permutations
has cardinality (4− 1)! = 6. We observe that

(2.5) I = {(0 1 2 3), (0 1 3 2), (0 2 1 3), (0 2 3 1), (0 3 1 2), (0 3 2 1)}

2

1
3

0

Figure 2.3. The rooted wheel graph (W4, ◦).

Since there are four other vertices, each 3-valent, the set O of outer
permutations has cardinality ((3 − 1)!)4 = 16. Using symmetries, the
five rotation projection diagrams in Figure 2.4 are sufficient to derive
the multi-set of outer permutations.

2

1

3

0

(b)

2

1

3

0

2

1

3

0

(c)

2
3

0

(d)(a)

Figure 2.4. Outer permutations of the wheel graph W4.

Since the value of a local genus polynomial Γ(G,v),σ(z) depends only
on the outer permutation π at the root-vertex v of a graph G, rather
than on the entire partial rotation system σ, we can sometimes, de-
pending on context, denote the local genus polynomial by Γ(G,v),π(z).

The outer permutation corresponding to Figure 2.4(a) is π = (0 3 2 1).
Using the Euler polyhedral equation, we easily calculate that the local
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genus polynomial is Γ(W4,◦),π(z) = 1+5z. When the rotations at all the
vertices on the rim of the wheel are reversed, the outer permutation is
(0 1 2 3), and the same local genus polynomial Γ(W4,◦),π(z) = 1 + 5z is
obtained.

The outer permutation corresponding to the rotation system projec-
tion in Figure 2.4(b) is π = (0)(1 3 2). It should be clear that each of
the eight outer permutations with one 3-cycle and one 1-cycle leads to
the same local genus polynomial Γ(W4,◦),π(z) = 3z + 3z2.

Figure 2.4(c) corresponds to the outer permutation π = (0 2)(1 3).
It leads to the local genus polynomial Γ(W4,◦),π(z) = 4z + 2z2. If the
rotations at all four rim vertices are reversed, relative to Figure 2.4(c),
then the same outer permutation π = (0 2)(1 3) is obtained.

In the imbedding depicted by Figure 2.4(d), the outer permutation
is π = (0 1)(2 3). The resulting local genus polynomial is Γ(W4,◦),π(z) =
4z + 2z2. Reversing rotations at all the rim vertices yields the same
outer permutation and, thus, the same local genus polynomial. If the
rotations at the rim vertices at the heads of edges 1 and 2 are reversed,
relative to Figure 2.4(a), and other two rim vertex rotations are as
shown in that rotation projection, then the outer permutation is π =
(0 3)(1 2), in which case the local genus polynomial is Γ(W4,◦),π(z) =
4z + 2z2. Moreover, if the rotations at the rim vertices at the heads
of edges 0 and 3 are reversed, relative to Figure 2.4(a), and other two
rim vertex rotations are as shown in that rotation projection, then the
outer permutation is also π = (0 3)(1 2).

Summing the local genus distributions at the root of (W4, ◦) yields
the genus distribution of the wheel W4.

(a) 2(1 + 5z) = 2 + 10z
(b) 8(3z + 3z2) = 24z + 24z2

(c) 2(4z + 2z2) = 8z + 4z2

(d) 4(4z + 2z2) = 16z + 8z2

ΓW4(z) = 2 + 58z + 36z2

Outer Permutation and Local Genus Polynomial

In Example 2.3, we see that the outer permutations π = (0 2)(1 3)
and π = (0 1)(2 3) for Figures 2.4(c) and 2.4(d), respectively, are
conjugates in Σ4, even though the topology of the two figures differs.
We observe that both topological configurations lead to the same local
genus polynomial 4z+2z2. This phenomenon is generalized in the next
section, via Corollary 3.3.
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The construction of a graph imbedding a la Figure 3.1 enables us to
realize an arbitrary permutation as an outer permutation. In particu-
lar, we can realize the permutations (12)(3)(4) and (1)(2)(3)(4) as outer
permutations. These two outer permutations would have the same local
face-count polynomial, as defined in Section 3. Accordingly, it would
be possible for two different conjugacy classes of outer permutation to
correspond to the same local genus polynomial.

3. Combinatorial View of Local Log-Concavity

In this section, we show that the LLC Conjecture 2.2 can be proved
by affirming a purely combinatorial conjecture, given here as Conjec-
ture 3.1. It will also be shown, conversely, that the LLC Conjecture 2.2
implies Conjecture 3.1.

Remark. In a written composition of permutations, our convention is
that the leftmost permutation is taken to be applied first.

Proposition 3.1. Let ζ and π be the inner and outer permutations at
a vertex v of an imbedded graph G. Then each cycle of the composition
ζπ is the list of the edges incident at v that occur on an inner fb-walk,
that is, on an fb-walk incident at v.

Proof. In effect, the composition of the permutations ζ and π corre-
sponds to the topological operation of pasting corner strands and outer
strands together at their extreme vertices, that is, at the neighbors of
the vertex v. �

In Example 2.2, we see that ζπ = (1432) · (14)(23) = (1)(24)(3). In
Figure 2.2, we observe:

• Edge 1 is the only edge at the tail vertex of a corner strand in
the green fb-walk.
• Edge 3 is the only edge at the tail vertex of a corner strand in

the blue fb-walk.
• Edges 2 and 4 are incident at the tail vertices of the corner

strands of the red fb-walk.

Let Σn be the symmetric group on n objects. For α ∈ Σn, let c(α)
denote the number of cycles of α, and let

c′(α) =

⌊
c(α)− 1

2

⌋
.
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Of course, the effect of the transformation c(π) → c′(π) is to remove
the zeros from the sequence of values of c(ζπ) as ζ ranges through the
inner permutations. We define

Qn = {ζ ∈ Σn | c(ζ) = 1}

to be the set of permutations in Σn having exactly one cycle. More-
over, for any permutation π ∈ Σn, regarding π as a possible outer
permutation, we define the local face-count polynomial

(3.1) Fπ(y) =
∑
ζ∈Qn

yc
′(ζπ).

By defining f ′i to be the coefficient of yi in the local face-count poly-
nomial, and by letting d be the degree of the polynomial (3.1), we can
write the local face-count polynomial (3.1) in the alternative form

(3.2) Fπ(y) =
d∑
i=0

f ′i y
i.

When π is the outer permutation of a graph (G, t), we can use the form

(3.3) F(G,t),π(y) =
d∑
i=0

f ′i y
i.

Returning to the wheel graph W5 of Example 2.1, we have

(3.4) F(W5,t),(12345)(y) = 8 + 15y + y2.

We recall from Equation (2.2) that

(3.5) Γ(W5,t),(12345)(z) = 1 + 15z + 8z2.

We will now examine the general rule under which a local genus poly-
nomial corresponds to a reversed and transposed local face-count poly-
nomial.

By the reverse of the local face-count polynomial (3.3), we
mean the polynomial

(3.6) F←(G,t),π(z) =
d∑
i=0

f ′d−i z
i.

In Example 2.1 regarding the 5-wheel, the graph is planar, and we
observe that

Γ←(W5,t),(12345)
(z) = F(W5,t),(12345)(z).
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For a non-planar graph G, there is a right shift of the coefficients of
F←(W5,t),(12345)

(z) by the number of indices equal to the minimum genus
of G. That is,

(3.7) Γ(G,t),σ(z) = zγmin(G)F←(G,t),π(z).

Invariance of Fπ(y) over Conjugacy Class

Let λ = (λ1, . . . , λs) be a partition of n, where λ1 ≥ . . . ≥ λs. We say
that a permutation π ∈ Σn is of type λ if {λ1, . . . , λs} is the multi-set
of the lengths of cycles of π, in which case we may write

τ(π) = λ = (λ1, . . . , λs).

We now introduce the notation Tπ to represent the multi-set of types
of ζπ as ζ ranges over all inner permutations. That is,

Tπ = {τ(ζπ) | ζ ∈ Qn}.
In Example 2.2, where π = (14)(23), we can hand-calculate that

(3.8) Tπ = {(2, 1, 1), (2, 1, 1), (2, 1, 1), (2, 1, 1), (4), (4)}.
This corresponds to the fact that, given the fixed partial rotation sys-
tem represented by the outer permutation π,

• there are four rotations at vertex v such that, in the resulting
complete rotation system for the graph G, one fb-walk is twice
incident at v and two fb-walks are once incident at v;
• there are two rotations at vertex v such that, in the resulting

complete rotation system for the graph G, a single fb-walk in
incident four times at v.

Theorem 3.2. Let π, σ ∈ Σn, with τ(π) = τ(σ). Then Tπ = Tσ.

Proof. It is easy enough to verify that the effect of conjugating the
outer permutation π by the permutation α amounts to permuting the
symbols of π, while preserving the type. Accordingly, since the inner
permutation ζ ranges over all possible cyclic orderings of [n], we have
Tπ = Tσ. �

Corollary 3.3. Let π, σ ∈ Σn, with τ(π) = τ(σ). Then Fπ(y) = Fσ(y).

Proof. Clearly, the polynomial Fπ(y) depends only on the multi-set Tπ.
For instance, from (3.8), we easily calculate for Example 2.2 that
F(14)(23)(y) = 2 + 4y. �
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The Combinatorial Local Log-Concavity Conjecture

Conjecture 3.1 (Combinatorial Local LC Conjecture, some-
times abbreviated as the CLLC Conjecture). Let π ∈ Σn, for any
n ≥ 1. Then the polynomial Fπ(y) is log-concave.

In experimental computer calculations, the authors have verified
Conjecture 3.1 for all n ≤ 12.

Theorem 3.4. For a permutation π ∈ Σn, let the local face-count
polynomial Fπ(y) be log-concave. Then the partial genus distribution
for a partial rotation system σ ∈ RVG−{v}, for a graph G, with outer
permutation π is log-concave.

Proof. Of course, the set of outer fb-walks is fixed. The inner permuta-
tion ζ varies over all cyclic permutations of the neighbors of v, and the
number of fb-walks incident at v corresponds to the number of cycles
in the composition of the inner and outer permutations.

The number of faces of an imbedding equals the sum of the number
of outer fb-walks and the number of inner fb-walks. Since the number
of vertices and the number of faces are constant, it follows from the
Euler polyhedral equation that the partial genus distribution taken over
all imbeddings that are consistent with the partial rotation system σ
corresponds to reversal as per Equation (3.6) and a translation as per
Equation (3.7) of the local face-count polynomial. Since the local face-
count polynomial Fπ(y) is log-concave, it now follows that the local
genus distribution polynomial corresponding to σ is log-concave. �

Corollary 3.5. If the CLLC Conjecture 3.1 is true, then so is the LLC
Conjecture 2.2. �

Equivalence of the LLC and CLLC Conjectures.

To prove that the LLC Conjecture 2.2 and the CLLC Conjecture 3.1
are equivalent, it is sufficient, in consideration of Corollary 3.5, to prove
that Conjecture 2.2 implies Conjecture 3.1.

Theorem 3.6. The LLC Conjecture 2.2 implies the CLLC Conjec-
ture 3.1.

Proof. Assume that the LLC Conjecture 2.2 is true. Let π ∈ Σn. We
describe how to construct a graph G with a vertex 0 and an imbedding
G → S0 such that a permutation of the same type as π is the outer
permutation for v. In view of Corollary 3.3, that is sufficient.
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We shall suppose that π has k cycles, of lengths c1, c2, . . . , ck. For
j = 1, . . . , k, let sj =

∑j
i=1 cj. Thus, the permutation π is of the form

π = (1, 2, . . . , s1)(s1+1, s1+2, . . . , s2) · · · (sk−1+1, sk−1+2, . . . , sk).

We begin the construction of the graph imbedding G→ S0 by draw-
ing a sequence of k cycle graphs in the sphere S0 so that none of the cy-
cle graphs separates two other cycle graphs from each other. The jth cy-
cle graph is a cj-cycle, whose arcs are labeled sj−1 + 1, sj−1+2, . . . , sj,
consecutively in clockwise order around the cycle. To complete the
imbedding G → S0, we then place a vertex v into the region of which
every one of the cycles is a boundary component, and we join the
vertex v to each vertex on every cycle. Such a graph imbedding is
illustrated in Figure 3.1, for the permutation π = (123)(45)(6)(789).
Let σ be the partial rotation system for G comprising the rotation at
every vertex except v, for the imbedding G→ S0.

v

1

2

3

4
5 6

7
8 9

Figure 3.1. Realizing (123)(45)(6)(789) as an outer permutation.

Taking the LLC Conjecture 2.2 to be true, it follows that the par-
tial genus distribution with respect to the partial rotation system σ is
log-concave. Of course, the corresponding partial genus distribution
polynomial is a reversal and translation of the local face-count polyno-
mial Fπ(y). �

Real-Rootedness

Stahl [Stah97] conjectured that the genus polynomial was real-rooted.
However, Chen and Liu [ChLi10] published a counterexample. We ex-
plored the local face-count polynomials Fπ(y) for π ∈ Σn with n ≤ 12,
and we discovered that they are all real-rooted. Nonetheless, in view of
[ChLi10], we see insufficient cause to expect the local face-polynomials
to be real-rooted.
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4. Permutations for Which Fπ(y) is Log-Concave

In this section, we identify some conjugacy classes of permutations
π ∈ Σn for which the local face-count polynomial Fπ(y) is log-concave.
To simplify the notations involved in discussing the compositions ζπ,
we take (1 2 . . . n) as the generic n-cycle, rather than (i1 i2 . . . in),
and we allow ζ to range over all n-cycles in Σn. Since our context is the
pursuit of information about graph imbeddings, we continue to refer
to Fπ(y) as a local face-count polynomial, even though it is calculable
purely in the abstract.

We recall that the bouquet Bn is the graph with one vertex and
n self-loops. In the course of proving that the genus distributions of
bouquets are log-concave, Gross, Robbins, and Tucker [GRT89] used
a formula of Jackson [Ja87], upon which we elaborate in Section 5, to
prove the following:

Theorem 4.1 (Theorem 4.1 of [GRT89]). Let π be a full involution,
that is, with no fixed points. Then Fπ(y) is log-concave. In other words,
the CLLC Conjecture holds for a full involution. �

To apply Theorem 4.1 to the bouquet Bn, we trisect each of the n
self-loops. That is, we subdivide it into three edges. Then the outer
permutation π is the involution that interchanges the two 2-valent ver-
tices on each subdivided self-loop.

We now proceed to prove that several additional types of permuta-
tions beyond full involutions have log-concave local face-count polyno-
mials.

Theorem 4.2. For any of the following four types of permutations
π ∈ Σn, the local face-count polynomial Fπ(y) is log-concave.

(a). a transposition (along with some 1-cycles);
(b). a 3-cycle (along with some 1-cycles);
(c). the composition of two transpositions (along with some 1-cycles);
(d). a 4-cycle (along with some 1-cycles).

Proof of (a). Suppose that π = (i j). We observe that

(1 2 . . . n) · (i j) = (1 . . . i−1 j j+1 . . . n)(i i+1 . . . j−1).

Similarly, for any full cycle ζ, the composition ζπ has two cycles. It
follows that the local face-count polynomial Fπ(y) is the constant poly-
nomial (n− 1)!, which is log-concave.

Proof of (b). Let π = (i j k), where i < j and i < k. We standardize
the representation of n-cycles, so that the first symbol is always 1. In
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half of those n-cycles, the symbol j precedes k, and we have

(1 2 . . . n)·(i j k) = (1 . . . i−1 j j+1 . . . k−1 i i+1 . . . j−1 k k+1 . . . n).

In the other half of the n-cycles, the symbol k precedes j, and we have

(1 2 . . . n) · (i j k) = (1 . . . i−1 j j+1 . . . n)

·(i i+1 . . . k−1)(k k+1 . . . j−1).

It follows that Fπ(y) = ((n−1)!/2)+((n−1)!/2)y, which is log-concave.

Proof of (c). Let π = (i j)(k l) ∈ Σn be the product of two transpo-
sitions. In view of Parts (a) and (b), we may assume that i, j, k, l are
distinct. We assume also that i is the least of the four. By symmetry
in k and l, we can group six cases into three pairs.

Case 1 : j < k < l (and, equivalently, j < l < k). We have

(1 2 . . . n) · (i j)(k l) = (1 . . . i−1 j j+1 . . . k−1 l . . . n)

·(i i+1 . . . j−1)(k k+1 . . . l−1).

Case 2 : k < j < l (and, equivalently, l < j < k). We have

(1 2 . . . n) · (i j)(k l) =

(1 . . . i−1 j j+1 . . . l−1 k . . . j−1 i i+1 . . . k−1 l l+1 . . . n) .

Case 3 : k < l < j (and, equivalently, l < k < j). We have

(1 2 . . . n) · (i j)(k l) = (1 . . . i−1 j j+1 . . . n)(k k+1 . . . l−1)

·(i i+1 . . . k−1 l l+1 . . . j−1).

It follows that Fπ(y) =
(n− 1)!

3
+

2(n− 1)!

3
y, which is log-concave.

Proof of (d). Let π = (i j k l) ∈ Σn be a 4-cycle. By the same
form of analysis as in the proofs of Parts (b) and (c), we calculate that

Fπ(y) =
5(n− 1)!

6
+

(n− 1)!

6
y, which is log-concave. �

Conjecture 4.1. Let π ∈ Σn be the composition of a q-cycle for q ≤ n
and some 1-cycles. Then Fπ(y) is log-concave.

Conjecture 4.2. Let π ∈ Σn be any involution. Then Fπ(y) is log-
concave.
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Conjecture 4.3. Let π ∈ Σn be any permutation such that Fπ(y) is
log-concave, and let τ be a transposition. Then Fπτ (y) is log-concave.
(This conjecture immediately implies the CLLC Conjecture 3.1, and
accordingly, the LLC Conjecture 2.2.)

An Immediate Application to Graphs

Theorem 4.3. Let v be a vertex of degree four or less in a graph G.
Then the genus distribution of G is locally log-concave at v.

Proof. For any partial rotation system σ ∈ RVG−{v}, let π be the outer
permutation. Since the degree of vertex v is four or less, we know that
the outer permutation has one of the following types:

(1), (2), (1, 1), (3), (2, 1), (1, 1, 1), (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

It follows from Theorem 4.2 that the local face-count polynomial Fπ(y)
is log-concave for any of these types of outer permutation. It then
follows from Theorem 3.4 that the genus distribution of graph G at
vertex v is locally log-concave. �

5. Transforming Jackson’s Formula

In this section, we derive a purely combinatorial theorem that enables
a formula of Jackson [Ja87] to be used in proving theorems about the
log-concavity of local genus distributions, as well as in solving other
problems on genus distributions.

Let k and N be non-negative integers, let ψ be a partition of N , and
let Cψ be the conjugacy class of ψ. Let ζ0 be an arbitrary (but fixed)
N -cycle in the symmetric group ΣN . For definiteness, we take

ζ0 =
(
1 2 · · · N

)
.

We define Tψk to be the subset of ΣN such that π ∈ Tψk if and only if

(1) (∃ξ ∈ Cψ) such that π = ζ0ξ;
(2) π has exactly k cycles (including 1-cycles).

Jackson defines

eψk =
∣∣∣Tψk ∣∣∣ .

Corollary 2.5 of [Ja87] expresses eψk (N) as a character sum. It is indi-
cated by [GRT89] how the sequence

(5.1) eψ1 , e
ψ
2 , . . . , e

ψ
N
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is related to problems regarding the genus distributions of the graphs
Bn known as bouquets. We are seeking to generalize the results there
regarding the relationship between the sequence (5.1) and genus distri-
butions.

Our immediate concern is the special case in which the integer N is
partitioned into n parts of equal size p. We define C(p)(n) to be the
conjugacy class of permutations in Σnp with n p-cycles. We observe
that C(N)(1) is the conjugacy class of N -cycles in ΣN .

We define T
(p)
k (n) to be the subset of Σnp such that π ∈ T (p)

k (n) if
and only if

(1) ∃ξ ∈ C(p)(n) such that π = ζ0ξ;
(2) π has exactly k cycles (including 1-cycles).

That is,

(5.2) T
(p)
k (n) = {π = ζ0ξ | ξ ∈ C(p)(n)}

Jackson defines

(5.3) e
(p)
k (n) =

∣∣∣T (p)
k (n)

∣∣∣
Theorem 5.4 of [Ja87] gives an explicit expression for e

(p)
k (n) in terms

of Stirling numbers. Section 6 of [Ja87] shows that e
(2)
k (n) and e

(3)
k (n)

satisfy linear recurrences with polynomial coefficients.

Example 5.1. To calculate e
(2)
k (2) for k = 1, 2, 3, we start by listing

C(2)(2) = {(12)(34), (13)(24), (14)(23)}.

We then calculate

ζ0C
(2)(2) = { (1234)(12)(34) = (1)(24)(3),

(1234)(13)(24) = (1432),

(1234)(14)(23) = (13)(2)(4)}
from which it follows that

T
(2)
1 (2) = {(1432)}
T

(2)
2 (2) = ∅
T

(2)
3 (2) = {(1)(24)(3), (13)(2)(4)},

and, in turn, that
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e
(2)
1 (2) =

∣∣∣T (2)
1 (2)

∣∣∣ = 1

e
(2)
2 (2) =

∣∣∣T (2)
2 (2)

∣∣∣ = 0

e
(2)
3 (2) =

∣∣∣T (2)
2 (2)

∣∣∣ = 2.

Another Enumeration Problem

As earlier in this section, let k and N be non-negative integers, and
let ψ be a partition of N . Rather than fixing a cycle, here we let ξ0 be
an arbitrary (but fixed) permutation in the conjugacy class Cψ. We

define U
(p)
k (n) to be the subset of Σnp such that π ∈ U (p)

k (n) if and only
if

(1) ∃ζ ∈ C(np)(1) such that π = ζξ0;
(2) π has exactly k cycles (including 1-cycles).

That is,

(5.4) U
(p)
k (n) = {π = ζξ0 | ζ ∈ C(np)(1)}.

Analogous to Jackson’s e
(p)
k (n), we define

(5.5) f
(p)
k (n) =

∣∣∣U (p)
k (n)

∣∣∣ .
Example 5.1 (continued). Here we take ξ0 = (12)(34), and we now
hand-calculate that for the conjugacy class of ψ = 22, we have

C(4)(1) = {(1234), (1243), (1324), (1342), (1423), (1432)}.
We then calculate

C(4)(1)ξ0 = { (1234)(12)(34) = (1)(24)(3),

(1243)(12)(34) = (1)(23)(4),

(1324)(12)(34) = (1423),

(1342)(12)(34) = (14)(2)(3),

(1423)(12)(34) = (1324),

(1432)(12)(34) = (13)(2)(4) }
from which it follows that

U
(2)
1 (2) = {(1324), (1432)}

U
(2)
2 (2) = ∅

U
(2)
3 (2) = {(1)(24)(3), (1)(23)(4), (14)(2)(3), (13)(2)(4)}

and that
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f
(2)
1 (2) = 2

f
(2)
2 (2) = 0

f
(2)
3 (2) = 4.

We observe the following:

f
(2)
1 (2) = 2 = 2e

(2)
1 (2) = 2 · 1

f
(2)
2 (2) = 0 = 2e

(2)
2 (2) = 2 · 0

f
(2)
3 (2) = 4 = 2e

(2)
3 (2) = 2 · 2.

That is, for k = 1, 2, 3, we have f
(2)
k (2) = 2e

(2)
k (2).

A General Many-to-One Correspondence

We want to establish a general many-to-one correspondence between
the cardinalities of the sets of permutations when ξ0 is fixed, i.e., the
sets C(np)(1), and the cardinalities of the sets of permutations when ζ0
is fixed, i.e., the sets C(p)(n). Proofs of the following three propositions
are elementary.

Proposition 5.1. The cardinality of C(np)(1) is (np− 1)!.

Proposition 5.2. The cardinality of C(p)(n) is(
np

p · · · p

)
((p− 1)!)n

n!
=

(np)!

pnn!
.

Proposition 5.3. We have∣∣C(np)(1)
∣∣

|C(p)(n)|
= pn−1(n− 1)!.

This lemma follows from Proposition 1.3.2 of [Stan12].

Lemma 5.4. Let π ∈ Σn be a permutation with cycles of distinct
lengths n1, n2, . . . , nr, such that there are mi cycles of length ni. Then
the order of its centralizer is

(5.6) |CN(π)| =
r∏
i=1

nmii mi!. �

Theorem 5.5 reduces the Local Log-Concavity Conjecture for various
conjugacy classes of outer permutations to proving that Sequence (5.1)
(with alternating zeros omitted) is log-concave. Proof for p = 2 appears
in [GRT89].
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Theorem 5.5.

f
(p)
k (n)

e
(p)
k (n)

=

∣∣∣U (np)
k (1)

∣∣∣∣∣∣T (p)
k (n)

∣∣∣ = pn−1(n− 1)!.

Proof. We consider the equation π = ζξ, where ζ is from the conjugacy
class C(np)(1), where ξ is from the conjugacy class C(p)(n), and where
π has k cycles. We let ζ0 be a fixed np-cycle and ξ0 a fixed element of
C(p)(n). We recall from Equation (5.4) and Equation (5.2) that

U
(p)
k (n) = {π = ζξ0 | ζ ∈ C(np)(1)}

and that

T
(p)
k (n) = {π = ζ0ξ | ξ ∈ C(p)(n)}.

We observe here that

U
(p)
k (n) = {π = αζ0α

−1ξ0 | α ∈ Σnp}

and that the cardinality of U
(p)
k (n) equals the index of the centralizer

of ζ0 in Σnp. Similarly,

T
(p)
k (n) = {π = ζ0α

−1ξ0α | α ∈ Σnp}.

and the cardinality of T
(p)
k (n) equals the index of the centralizer of ξ0

in Σnp. We now have

f
(p)
k (n)

e
(p)
k (n)

=

∣∣∣U (np)
k (1)

∣∣∣∣∣∣T (p)
k (n)

∣∣∣
=

|Σnp : Cnp((1 2 3 4 · · · 2n–1 2n))|
|Σnp : Cnp((1 2)(3 4) · · · (2n–1 2n))|

∴
f
(p)
k (n)

e
(p)
k (n)

=
|Cnp((1 2)(3 4) · · · (2n–1 2n))|
|Cnp((1 2 3 4 · · · 2n–1 2n))|

.(5.7)

Applying Lemma 5.4 to Equation (5.7), we have

f
(p)
k (n)

e
(p)
k (n)

=
pnn!

pn
= pn−1(n− 1)!. �
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6. Synchronicity

The connection between the genus distribution of a graph and the
local genus distributions is not readily apparent. Theorem 2.2 estab-
lishes that the genus distribution polynomial of a graph is the sum of
the local genus distributions at an arbitrary vertex v with respect to
all of the partial rotation systems σ ∈ RVG−{v}. However, the sum
of log-concave polynomials need not be log-concave. Conversely, the
fact that the sum of a set of polynomials is log-concave does not imply
that the summands are log-concave. In this section we show how the
concept of synchronicity of [GMTW15] might be used toward a proof
of the LCGD Conjecture.

We say that two nonnegative sequences A and B are synchronized,
denoted as A ∼ B, if both are log-concave, and they satisfy

ak−1bk+1 ≤ akbk and ak+1bk−1 ≤ akbk for all k.

It is clear that the synchronicity relation ∼ is symmetric. We should
be aware of that it is not transitive. There is an easy direct proof of
the following theorem.

Theorem 6.1. Let the three sequences A, B, C be log-concave, non-
negative, and mutually synchronized. Then A + B is log-concave and
A+B ∼ C. �

The following conjecture has a topological component, since we don’t
know what multi-sets of permutations are realizable as a set of outer
permutations for a graph.

Conjecture 6.1. For any rooted graph (G, v), the multi-set of local
genus polynomials {

ΓG,π(σj)(z) | σj ∈ RVG−{v}
}

can be linearly ordered so that, for any n, the polynomials

n−1∑
j=1

ΓG,π(σj)(z) and ΓG,π(σn)(z)

are synchronized.

Theorem 6.2. The Local Log-Concavity Conjecture 2.2 and Conjec-
ture 6.1 together imply the LCGD Conjecture.

Proof. Let (G, v) be a rooted graph. First assume that Conjecture 2.2 is
true. Then all the local genus polynomials at vertex v are log-concave.
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Next assume that Conjecture 6.1 is true. Then the multi-set of local
genus polynomials {

ΓG,π(σj)(z) | σj ∈ RVG−{v}
}

can be linearly ordered so that, for any n, the polynomials

n−1∑
j=1

ΓG,π(σj)(z) and ΓG,π(σn)(z)

are synchronized. It follows, in turn, from Theorem 6.1 that the sum of
all the local genus polynomials is log-concave. We recall Theorem 2.2,
that the sum of the local genus polynomials at vertex v equals the genus
polynomial of v. Accordingly, the genus polynomial of the graph G is
log-concave. �

7. Possible Further Investigations

The results here suggest various additional avenues of research into
local log-concavity.

Planar Families and Sub-Families

Proving log-concavity of all planar graphs has been an elusive target.
However, there has been success for a collection of more specific fami-
lies, starting with ladders [FGS89] and bouquets [GRT89]. Most pla-
nar families known to have the LCGD property have bounded degree.
For instance, although the genus polynomial of fan graph has been
determined [CMZ13], the genus polynomial of wheel graphs remains
unknown. Of course, the LCGD question is not necessarily answered
by calculation of a genus polynomial, nor is calculation of a closed form
needed to prove its log-concavity. Exploratory local LC investigations
of some planar families, either with known or unknown genus polyno-
mials, might uncover further significant relationships between LCGD
and local LC.

Operations That Preserve Local LC

In general, and with special importance to the LCGD properties of
recursively specified families of graphs, it would be quite helpful to
know which of the most common graph operations preserve LCGD or
local LC. An operation that comes to mind immediately is joining a
vertex to a graph G. If the graph G is planar, then the resulting graph
is called an apex graph (e.g., see [Moh01]). A highly specific question
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is under what conditions on a planar graph with the LCGD property
or local LC property does forming an apex graph from it preserve those
properties.
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