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Abstract. In 1994, J. Chen, J. Gross, and R. Rieper demonstrated how
to use the rank of Mohar’s overlap matrix to calculate the crosscap-number
distribution, that is, the distribution of the embeddings of a graph in the
non-orientable surfaces. That has ever since been by far the most frequent
way that these distributions have been calculated. This paper introduces
a way to calculate the Euler-genus polynomial of a graph, which combines
the orientable and the non-orientable embeddings, without using the over-
lap matrix. The crosscap-number polynomial for the non-orientable em-
beddings is then easily calculated from the Euler-genus polynomial and the
genus polynomial.

A surface with Euler characteristic c is said to have Euler genus 2 − c.
Thus, the Euler genus is the crosscap number of any non-orientable surface
and twice the genus of any orientable surface. For the most part, the Euler
genus has previously been something to be calculated from the genus and the
crosscap number.

Heretofore, the usual way to calculate the crosscap-number distribution for
a graph has been, as initiated by [3], by means of the overlap matrix [33].
In this paper, we provide a new three-step way to calculate crosscap-number
distribution. The Euler-genus polynomial of a graph is the generating
function for the numbers of embeddings of that graph, according to the Euler
genera of surfaces. If the genus polynomial is known, then from it and the
Euler-genus polynomial, we readily obtain the crosscap-number polynomial,
as per Theorem 2.1. A key ingredient to our three-step method is directly
calculating the Euler-genus polynomial, by solving a recursion

Calculating embedding distributions is an enumerative branch of topological
graph theory. For the connections of calculating embedding distributions with
physics and other areas of mathematics, we refer the reader to [29, 30, 34] etc.
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1. Basic Terminology and Background

In this section, we provide some of the basic concepts and notations of
topological graph theory. We also cite some of the prior results relevant to this
paper.

A graph G = (V (G), E(G)) is permitted to have loops and multiple edges.
We use S to denote a surface without regard to orientability. In this paper,
all graph embeddings are cellular embeddings.

A rotation at a vertex v of a graph G is a cyclic ordering of the edge-ends
incident at v. A (pure) rotation system ρ of a graph G is an assignment
of a rotation at every vertex of G. It is well-known that there is an one-to-one
correspondence between the rotation systems and orientable embeddings.

A general rotation system for a graph G is a pair (ρ, λ), where ρ is a
rotation system and λ is a map on E(G) with values in {0, 1}. If λ(e) = 1, then
the edge e is said to be twisted ; otherwise λ(e) = 0, and we call the edge e
untwisted. It is obvious that if λ(e) = 0, for all e ∈ E(G), then the general
rotation system (ρ, λ) is equivalent to a pure rotation system. Recall that any
embedding of G into a surface S can be described by a general rotation system
[38]. We call λ a twist-indicator.

For further background in topological graph theory consistent with this pa-
per, we recommend [22] and [46].

1.1. Polynomials that enumerate embeddings. As usual in topological
graph theory, we denote the closed orientable surface of genus g by Sg and the
closed non-orientable surface of crosscap number k by Nk. We recall that the
Euler characteristic of the surface Sg is 2−2g and that the Euler characteristic
of the surface Nk is 2− k.

We observe that the Klein bottle N2 and the torus S1 both have 0 as their
Euler characteristic. In general, we observe that the operation of adding a
single handle to a surface has the same effect on the Euler characteristic as the
operation of adding two crosscaps, namely, subtracting 2. Accordingly, these
two operations have the same effect on Euler-genus. (Indeed, if the initial
surface is non-orientable, then these two operations have the same effect on
isomorphism type.)

For g ≥ 0, we use γG(g) to denote the number of embeddings of G in the
surface Sg. The genus distribution of a graph G is the sequence

γG(0), γG(1), γG(2), . . . .
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The genus polynomial of G is defined as the generating function for the
genus distribution sequence γG(n) :

ΓG(x) =
∞∑
i=0

γG(i)xi.

For k ≥ 1, we use γ̃G(k) to denote the number of embeddings of G in the
surface Nk. Analogous to genus distribution, the crosscap-number distri-
bution of a graph G is the sequence

γ̃G(1), γ̃G(2), γ̃G(3), . . . ,

and the crosscap-number polynomial of G is defined as

XG(y) =
∞∑
j=1

γ̃G(j)yj.

For any graph G = (V (G), E(G)), the number of embeddings of G in a
surface of Euler-genus i is denoted by εG(i). If i is odd, then εG(i) equals the
number of embeddings of G in the surface Ni. If i is even, then εG(i) equals the
sum of the number of embeddings of G in Ni plus the number of embeddings
in Si/2.

The Euler-genus distribution of the graph G is the sequence

εG(0), εG(1), εG(2), . . . .

The Euler-genus polynomial is the generating function

EG(y) =
∞∑
i=0

εG(i)yi .

We let F (ι) denote the number of faces of an embedding ι : G → S, and we
let γE(S) denote the Euler-genus of S. Then, in terms of Euler-genus, the
classical Euler polyhedral equation is

|V (G)| − |E(G)|+ |F (ι)| = 2− γE(S).

1.2. Some relevant background. After Gross and Furst [15] introduced the
genus distribution of a graph, many authors have calculated the genus distri-
butions for various classes of graphs. For example, Gross et al. [12, 21] com-
puted them for bouquets of circles, closed-end ladders and cobblestone path;
Rieper [37], and Kwak and Lee [27] computed them independently for dipoles;
McGeoch [31] for circular ladders and Möbius ladders; Tesar [43] for Ringel
ladders; Stahl [40, 41] for H-linear families and some small diameter graph-
s; Wan and Liu [45] for some ladder-type graphs; and Mohar [34] for doubly
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hexagonal chains. For the recent advances on this topic, we refer the reader
to [17, 19, 20, 34, 7, 5].

The theoretical foundations of crosscap-number distribution were estab-
lished in [3] by J. Chen, Gross, and Rieper. Compared with the genus dis-
tribution, it is known for relatively few classes of graphs, see [3, 4, 11, 9, 10, 6]
for more details. It seems that the calculation of crosscap-number distribu-
tion is more difficult than the calculation of genus distribution; the techniques
used to derive crosscap-number distributions of graphs seem comparatively
cumbersome [3], as illustrated by such a calculation for the crosscap-number
distributions of necklaces, which can be found in Chapter 6 of J. Chen’s the-
sis [2].

J. Chen, Gross and Rieper [3] subsequently discovered that rearranging the
set of embeddings according to the rank of Mohar’s algebraic invariant [33],
called the overlap matrix, sometimes facilitates the calculation of the total
embedding distribution of a graph, and then calculated the total embedding
distributions for necklaces, closed-end ladders, and cobblestone paths.

For a fixed spanning tree T , a T -rotation system (ρ, λ) of G is a general
rotation system (ρ, λ) such that λ(e) = 0, for every edge e ∈ E(T ). It is known
[22] that there is a sequence of vertex-flips that transforms a general rotation
system into a T -rotation system. Two embeddings of G are considered to be
equivalent if their T -rotation systems are combinatorially equivalent.

Using the overlap matrix and Chebyshev polynomials of the second
kind, Chen and verious co-authors later extended the calculation of crosscap
number distribution to other types of graphs, for example, to Ringel ladders
[11] and circular ladders [6]. In such calculations, a key step is to find the
correspondence between some T -rotation system and its overlap matrix. For
example, the present authors and Mansour [6] used the Gustin representation
of a 3-regular graph G to obtain a correspondence between a fixed overlap
matrix of G and the T -rotation systems of G. When the degree of a vertex of
G is larger than 3, it is not easy to find such a correspondence.

2. A Three-Step Procedure for the Crosscap Polynomial

We now introduce the Three-Step Procedure to calculate the crosscap-
number distribution of a graph:

Step 1: Calculate the genus polynomial ΓG(x) for the graph G.
Step 2: Calculate the Euler-genus polynomial EG(y) for the graph G.
Step 3: Calculate XG(y) = EG(y)− ΓG(y2), using Equation (2.1).
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Methods for achieving Step 1 have been developed over the past 30 years.
We presently offer no new ideas for that step. Step 3 involves the application
of the following simple observation:

Theorem 2.1. The crosscap-number polynomial of a graph G satisfies the
equality

(2.1) XG(y) = EG(y)− ΓG(y2). �

Remark The 3-step procedure given here explicitly was introduced implicitly
in [7, 5] by the present authors, with Mansour and Tucker, in order to calculate
genus polynomials for some linear families and some ring-like families.

Step 2 is the main concern of the subsequent sections of this paper. We know
that the number of non-orientable embeddings of a graph G grows faster than
the number of orientable embeddings, by the exponential factor 2β(G), where
β(G) is the Betti number, and that determination by pre-existing methods of
the crosscap-number polynomial XG(y) has typically involved more complicat-
ed detail than the genus polynomial ΓG(y). Nonetheless, we shall see that the
Euler-genus polynomial EG(y) can be calculated from a simultaneous recur-
sion of partial Euler-genus polynomials. From [16], we know that the number
of embeddings types can be quite large. We illustrate in some examples the
surprising discovery that the number of embedding types for the Euler-genus
polynomial simultaneous recursion need not exceed the number of types for
the genus polynomial recursion.

3. Revisiting Ladder Graphs with Euler-Genus Polynomials

In this section, we demonstrate our Three-Step Procedure to calculate the
crosscap-number polynomial of a graph via its Euler-genus. As a first exam-
ple, we have chosen the classical ladder graph Ln = Pn+22K2, the carte-
sian product of the complete graph K2 with the path graph that has n + 2
vertices and n + 1 edges, with n ≥ 1. The subscript n for Ln reflects the
graphic representation in Figure 3.1, in which there are n vertical rungs with
two 3-valent endpoints. The leftmost and rightmost edges (v1, u1)(v1, u2) and
(vn+2, u1)(vn+2, u2) of Ln are called end-rungs [12].

This sequence of ladders was the first non-trivial sequence of graphs whose
genus polynomial was known [12]. It has been recalculated by different meth-
ods in [9, 40, 45]. Using the overlap matrix, Chen, Gross and Rieper [3]
obtained an explicit formula for the crosscap-number polynomial of the ladder
graph.
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(v1, u1) (v2, u1) (v3, u1) (vn, u1) (vn+1, u1) (vn+2, u1)

(v1, u2) (v2, u2) (v3, u2) (vn, u2) (vn+1, u2) (vn+2, u2)

Figure 3.1. The ladder graph Ln

Step 1. The genus polynomial. The genus polynomial of Ln, adapted from
[12], is given by

ΓLn(x) =

b(n+1)/2c∑
j=0

(
n+ 1− j

j

)
2n+ 2− 3j

n+ 1− j
2n+j−1xj,(3.1)

where it was calculated by partitioning the embeddings.

Step 2. The Euler-genus polynomial. As when calculating the genus
distribution of the ladder graph Ln in [12], we partition the embeddings on
a surface of Euler-genus i into two partial Euler-genus distributions, as
follows:

εdLn
(i): the number of embeddings of Ln on the surface of Euler-genus i

such that the end-rung (vn+2, u1)(vn+2, u2) lies on the boundaries of
two different faces.

εsLn
(i): the number of embeddings of Ln on the surface of Euler-genus i

such that the end-rung (vn+2, u1)(vn+2, u2) lies twice on the boundary
of the same face.

The two partial Euler-genus polynomials of Ln are

EdLn
(y) =

∑
i≥0

edLn
(i)yi, and

EsLn
(y) =

∑
i≥0

esLn
(i)yi, with

ELn(y) = EdLn
(y) + EsLn

(y).

We shall now find a closed formula for ELn(y).

Theorem 3.1. The Euler-genus polynomials of Ln satisfy the following second-
order recurrence relation

ELn(y) = (2 + 4y)ELn−1(y) + 16y2ELn−2(y)(3.2)

with initial conditions EL0(y) = 1 + y and EL1(y) = 2 + 6y + 8y2.
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Proof. We fix a spanning tree T of Ln, as indicated in Figure 3.1 by the thicker
lines, i.e. the co-tree edges are

(v1, u2)(v2, u2), (v2, u2)(v3, u2), . . . , (vn+1, u2)(vn+2, u2).

Note that the ladder Ln can be obtained from Ln−1 by amalgamating the
two end-vertices of a 4-vertex path-graph with the two vertices (vn+1, u1) and
(vn+1, u2) of the end-rung in Ln−1. The proof has two cases.

Case 1: The end-rung (vn+1, u1)(vn+1, u2) of Ln−1 lies on the boundary
of two different faces on the surface of Euler-genus i.
(1) If the cotree edge (vn+1, u2)(vn+2, u2) is untwisted, then, via face-

tracing and Euler’s formula, we obtain 2 embeddings of Ln on
surfaces of Euler-genus i, such that the end-rung lies on two dif-
ferent faces, and 2 embeddings of Ln on a surface of Euler-genus
i+ 2 such that the end-rung lies on a boundary of the same face.

(2) If the cotree edge (vn+1, u2)(vn+2, u2) is twisted, then we obtain 2
embeddings of Ln on s surface of Euler-genus i + 1 such that the
end-rung lies on the boundary of the same face, and 2 embeddings
of Ln on a surface of Euler- genus i+ 2 such that the end-rung lies
on the boundary of the same face.

Case 2: The endrung (vn+1, u1)(vn+1, u2) of Ln−1 lies twice on the bound-
ary of the same face on the surface of Euler-genus i.
(1) If the cotree edge (vn+1, u2)(vn+2, u2) is untwisted, then we obtain

4 embeddings of Ln on a surface of Euler-genus i such that the
end-rung lies on two different faces.

(2) If the cotree edge (vn+1, u2) (vn+2, u2) is twisted, we obtain instead
4 embeddings of Ln on a surface of Euler-genus i+ 1 such that the
end-rung lies on the boundary of the same face.

Figures 3.2 and 3.3 illustrate Cases 1 and 2, respectively.

Figure 3.2. Case 1 of adding an end-rung to an embedding of Ln−1.
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Figure 3.3. Case 2 of adding an end-rung to an embedding of Ln−1.

We see from Figure 3.2 that among the eight possible outcomes of adding a
new end-rung two to a Case 1 embedding of Ln−1, exactly two (top row, 1st

and 4th) embeddings of Ln have one additional face and remain in Case 1, and
are therefore in a surface of the same Euler-genus. In Figure 3.3, exactly four
possible outcomes (entire top row) have one additional face and switch over
into Case 1. This is expressed algebraically by Recursion (3.3).

We see also from Figure 3.2 that exactly four of the embeddings of Ln that
switch to Case 2 have one fewer faces, and are therefore in a surface of with
Euler-genus increased by 2. Moreover, the two other consequent embeddings
of Ln that switch to Case 2 have the same number of faces, which implies an
Euler-genus increment of 1. In Figure 3.3, the four outcomes (entire bottom
row) that remain in Case 2 have no additional faces, which again implies an
Euler-genus increment of 1. This is expressed algebraically by Recursion (3.4).

edLn
(i) = 2edLn−1

(i) + 4esLn−1
(i),(3.3)

esLn
(i) = 2edLn−1

(i− 1) + 4edLn−1
(i− 2) + 4esLn−1

(i− 1).(3.4)

Multiplying Equations (3.3) and (3.4) by yi and then summing leads to the
following simultaneous recurrence system for partial Euler-genus polynomials
of the ladder graph Ln:

EdLn
(y) = 2EdLn−1

(y) + 4EsLn−1
(y)(3.5)

EsLn
(y) = (2y + 4y2)EdLn−1

(y) + 4yEsLn−1
(y)(3.6)
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with initial conditions EdL0
(y) = 1 and EsL0

(y) = y. From equations (3.5) and
(3.6), we obtain

ELn(y) = EdLn
(y) + Esn(y)

= (2 + 2y + 4y2)EdLn−1
(y) + (4 + 4y)EsLn−1

(y)

= (2 + 4y)
(
EdLn−1

(y) + EsLn−1
(y)
)

+ (4y2 − 2y)EdLn−1
(y) + 2EsLn−1

(y)

= (2 + 4y)
(
EdLn−1

(y) + EsLn−1
(y)
)

+ 16y2
(
EdLn−2

(y) + EsLn−2
(y)
)

= (2 + 4y)ELn−1(y) + 16y2ELn−2(y).

The result follows. �

We recall that the nth Chebyshev polynomial Un(x) of the second kind
is defined as follows:

Un(x) = 2xUn−1(x)− Un−2(x)

with the initial values U0(x) = 1 and U1(x) = 2x. Moreover, the explicit
formula for Un(x) is given by

Un(x) =

bn/2c∑
k=0

(
n− k
k

)
(−1)k(2x)n−2k.(3.7)

We now find an explicit formula for the Euler-genus polynomial of the ladder
graph.

Theorem 3.2. For all n ≥ 2,

ELn(y) = (4iy)n
[

1 + 3y + 4y2

1 + 2y
Un

(
1 + 2y

4iy

)
+

2y2

1 + 2y
Un−2

(
1 + 2y

4iy

)]
,

where Us(t) is the sth Chebyshev polynomial of the second kind and i2 = −1.

Proof. We define L(y, t) =
∑
i≥0

ELi
(y)ti. Then, by Equation (3.2), the gener-

ating function L(y, t) for the sequence of Euler-genus polynomials ELn(y) is
given by the formula

− 4 ty2 + y + 1

16 t2y2 + 4 ty + 2 t− 1
.

For n ≥ 2, the coefficient of tn in L(y, t) is given by

ELn(y) = [tn]L(y, t)

= (4iy)n
[

1 + 3y + 4y2

1 + 2y
Un

(
1 + 2y

4iy

)
+

2y2

1 + 2y
Un−2

(
1 + 2y

4iy

)]
,(3.8)

which completes the proof. �
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Step 3. The crosscap-number polynomial. From Theorem 2.1, Formula
(3.1), and Theorem 3.2, we have the following result.

Theorem 3.3. [3, 9] For n ≥ 2, the crosscap-number polynomial of the ladder
graph Ln is as follows:

XLn(y) = (4iy)n
[

1 + 3y + 4y2

1 + 2y
Un

(
1 + 2y

4iy

)
+

2y2

1 + 2y
Un−2

(
1 + 2y

4iy

)]
−
b(n+1)/2c∑

j=0

(
n+ 1− j

j

)
2n+ 2− 3j

n+ 1− j
2n+j−1y2j. �

Tables 3.1 and 3.2 contains some values of ELn(y) and XLn(y), for the small-
est few ladders.

Table 3.1. Euler-genus polynomials for the smallest few ladders.

n ELn(y)

n = 0 1 + y
n = 1 2(1 + 3y + 4y2)
n = 2 4(1 + 5y + 14y2 + 12y3)
n = 3 8(1 + 7y + 28y2 + 52y3 + 40y4)
n = 4 16(1 + 9y + 46y2 + 128y3 + 200y4 + 128y5)
n = 5 32(1 + 11y + 68y2 + 248y3 + 568y4 + 736y5 + 416y6)
n = 6 64(1 + 13y + 94y2 + 420y3 + 1248y4 + 2384y5 + 2688y6 + 1344y7)

Table 3.2. Crossing-number polynomials for the smallest few ladders.

n XLn(y)

n = 0 y
n = 1 2y(3 + 3y)
n = 2 4y(5 + 11y + 12y2)
n = 3 8y(7 + 23y + 52y2 + 38y3)
n = 4 16y(9 + 39y + 128y2 + 192y3 + 128y4)
n = 5 32y(11 + 59y + 248y2 + 550y3 + 736y4 + 412y5)
n = 6 64y(13 + 83y + 420y2 + 1216y3 + 2384y4 + 2668y5 + 1344y6)

Remark Similarly, we can also find Euler-genus polynomials for the cobble-
stone path graphs, Ringel ladders, circular ladders, and other graph sequences.
However these calculations are considerably longer, and we would not adopt
the method above. Recently, Chen, Gross and Mansour [7, 5] found a new
way to calculate genus distributions for these graph families. We observe that
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the recent results of [5] can be extended to Euler-genus distributions. It fol-
lows that we could calculate Euler-genus distributions for these graph families
within several pages, without recourse to overlap matrices.

4. Euler-Genus polynomials for H-spider-like families

In this section, we give the theorems needed to apply the Three-Step Pro-
cedure of Section 2 to H-linear families, in a form that permits them to be
applied also to ring-like families and, more generally, to spider-like families.
We then apply them to the calculation of crosscap-number polynomials for
sequences of iterated claws and grid-graphs, both of which are H-linear se-
quences. We then apply the theorems to Möbius ladders, which are ring-like,
and to a spider-like variation on ladders.

4.1. H-spider-like families. The concept of an H-linear family of graph-
s was defined by Stahl [40], for studying the genus distributions of graphs.
The present authors [5] have recently extended the concept of H-linearity to
H-spider-like linearity, which includes the oft-studied case of ring-like graph
families.

Let H be a graph. Let U1 = {u1, u2, . . . , us} and V1 = {v1, v2, . . . , vs} be
two disjoint subsets of V (H). For each i ≥ 1, let Hi be a copy of H, and let
fi : Hi → H be an isomorphism. For each i ≥ 1 and 1 ≤ j ≤ s, let

Ui,1 = {ui,1, ui,2, . . . , ui,s} and Vi,1 = {vi,1, vi,2, . . . , vi,s}

be two disjoint subsets of V (Hi). A family of graphs {Gn}∞n=1 is said to be
H-linear if Gn is obtained from {H1, H2, . . . , Hn}, the set of copies of H, by
amalgamating each vertex vi,j of Hi with the vertex ui+1,j of Hi+1, for each
i = 1, 2, . . . , n − 1 and j = 1, 2, . . . , s. In short, an H-linear family of graphs
can be obtained by iteratively amalgamating copies of H. Figure 4.1 shows a
graph Gn in a generic H-linear sequence. Figure 4.3 and Figure 4.4 illustrate
the specific examples of iterated claws and grid-graphs.

H1 H2 Hn
u1,1 v1,1=u2,1

v1,2=u2,2

v1,3=u2,3

u1,2

u1,3

v2,1=u3,1

v2,2=u3,2

v2,3=u3,3

vn,1

vn,2

vn,3

vn-1,1=un,1

vn-1,2=un,2

vn-1,3=un,3

...

...

...

Figure 4.1. The graph Gn in a generic H-linear sequence.
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Elsewhere we allow a “linear sequence” of copies of the iterated subgraph
H to be amalgamated along single edges [35], or along equivalently embedded
copies of arbitrary subgraphs [16], rather than requiring the amalgamations to
be at sets of vertices. The difference is that, as illustrated in Figure 4.3 below,
our present definition of an H-linear sequence may leave some “loose ends”.
Accordingly, the polynomials of interest for a linear sequence of graphs with
loose ends at its extremities may require division by some scalar multiples to
eliminate the algebraic contribution of the loose ends.

We let {Gn}∞n=1 be an H-linear family of graphs, as defined above. Then for
each i ≥ 1, let (Ji, ti) and (J i, ti) be graphs with root-vertices ti and ti, respec-
tively. We construct an H-spider-like graph G◦n from Gn by amalgamating
the vertex u1,j of Gn with the vertex tj of Jj and amalgamating the vertex v1,j
of Gn with tj of J j, for j = 1, 2, . . . , s. The graphs (Ji, ti) and (J i, ti) that are
amalgamated to the extreme copies of H in the chain are called attachments.
Figure 4.2 shows a generic example of a spider-like sequence. As a concrete
example of a spider-like sequence, Figure 4.5 in Subsection 4.5 illustrates a
variation on the ladder graphs..

t1 = u1,1

t2 = u1,2

t3 = u1,3

t1 = vn,1

t2 = vn,2

t3 = vn,3

vj-1,1 = uj,1

vj-1,2 = uj,2

vj-1,3 = uj,3

...

...

... ...
...
...

Gn

Gn

J1 J1

J2

J3

J2

J3

Figure 4.2. The H-spider-like graph G◦n.

The special case of an H-spider-like graph G◦n in which there exist i, j ≥ 1
such that Ji = J j is called H-ring-like. It is easy to see that the necklaces
[18], Ringel ladders [11, 43], and circular ladders [31, 6] are ring-like graph
families.

Let Z[x] be the set of polynomials in x with integer coefficients. Recently,
the present authors [5] have used the Cayley-Hamilton theorem to derive the
following result on the genus distributions for H-spider-like families of graphs.
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Theorem 4.1. [5] Let G = {G◦n}∞n=1 be an H-spider-like family of graphs, with
attachments (Ji, ti) and (J i, ti), for i = 1, . . . , s. Then there exist a positive
integer k and polynomials a1(x), a2(x), . . . , ak(x) ∈ Z[x] such that the genus
polynomial ΓG◦

n
(x) satisfies the kth-order homogeneous recurrence relation

ΓG◦
n
(x) = a1(x)ΓG◦

n−1
(x) + a2(x)ΓG◦

n−2
(x) + · · ·+ ak(x)ΓG◦

n−k
(x),(4.1)

with ΓG◦
1
(x), ΓG◦

2
(x), . . . , ΓG◦

k
(x) as initial values. �

Let G◦n be the spider-like graph with root vertices u1,1, u1,2, . . . , u1,s in H1

and vn,1, vn,2, . . . , vn,s in Hn. Suppose that there are k embedding types for

the graph G◦n, labeled 1, 2, . . . , k. For 1 ≤ j ≤ k, let εjGn
(i) be the number of

embeddings of G◦n in Si of embedding type j. We define partial Euler-genus
polynomials of G◦n as generating functions

E jGn
(y) =

∑
i≥0

εjGn
(i)yi,

where 1 ≤ j ≤ k. Using the same argument as in the proof of Theorem 2.3
of [5], while replacing the partial genus polynomial ΓjGn

(y) by the partial Euler-

genus polynomial E jGn
(y), for 1 ≤ j ≤ k, we can easily carry out the proof of

the following analogous theorem.

Theorem 4.2. Let G = {G◦n}∞n=1 be an H-spider-like family of graphs, with
attachments (Ji, ti) and (J i, ti), for i = 1, . . . , s. Then there exist a positive in-
teger k and polynomials b1(y), b2(y), . . . , bk(y) ∈ Z[y], such that the Euler-genus
polynomial EG◦

n
(y) satisfies the kth-order homogeneous recurrence relation

EG◦
n
(y) = b1(y)EG◦

n−1
(y) + b2(y)EG◦

n−2
(y) + · · · + bk(y)EG◦

n−k
(y),(4.2)

with initial conditions EG◦
1
(y), EG◦

2
(y), . . . , EG◦

k
(y). �

Remark From the proof of [5, Theorem 2.3], we see that if the number of
partial Euler-genus polynomials of G◦n is k (i.e., the embeddings of G◦n can
be partitioned into k embedding types), then there is a set of l simultaneous
recursions for EG◦

n
(y), where l ≤ k.

In Subsections 4.2 and 4.3, we shall use Theorem 4.2 to calculate the Euler-
genus polynomials and then the crosscap polynomials for two H-linear graph
sequences whose crosscap distributions have not previously been known, name-
ly, the iterated claw graphs of [17] and the grid graphs of [26]. In Subsections
4.4 and 4.5, the same procedure for Euler-genus will be applied to the ring-like
sequence of Möbius ladders and to an H-spider-like variation on the ladder
sequences, thereby demonstrating the application of Theorem 4.2 in full gen-
erality.
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4.2. Euler-genus polynomial for the iterated-claw graph. Let Yn be
the iterated-claw graph of Figure 4.3. The genus polynomial of Yn has been
obtained in [17]. Here we calculate the Euler-genus distribution for Yn.

Theorem 4.3. The Euler-genus polynomial for the iterated-claw graph Yn is
given by

EYn(y) = 2(3y + 28y2)EYn−1(y) − 16(−3y2 − 12y3 + 4y4)EYn−2(y)(4.3)

−3072y6EYn−3(y),

with initial values

EY1(y) = 2,

EY2(y) = 8(2 + 6y + 8y2), and

EY3(y) = 32y(3 + 37y + 108y2 + 108y3).

Figure 4.3. The claw Y (left), and the iterated-claw graph Yn (right).

Proof. We choose the rightmost vertices of Yn as its roots, as shown in black
vertices of Figure 4.3. With symmetry, the embedding types of Yn can be can
be partitioned into 3 types (see [17] for details). From Theorem 4.2, we can
suppose that the Euler-genus polynomials of Yn satisfy the following third-
order linear recursive equation

EYn(y) = b1(y)EYn−1(y) + b2(y)EYn−2(y) + b3(y)EYn−3(y).(4.4)

With the help of a computer program, we get

EY1(y) = 2(4.5)

EY2(y) = 8(2 + 6y + 8y2)(4.6)

EY3(y) = 32y(3 + 37y + 108y2 + 108y3)(4.7)

EY4(y) = 64y2(21 + 279y + 1536y2 + 3492y3 + 2864y4)(4.8)

EY5(y) = 128y3(99 + 2013y + 15444y2 + 58988y3(4.9)

+108672y4 + 76928y5)

EY6(y) = 256y4(549 + 13167y + 134184y2 + 719412y3(4.10)

+2140880y4 + 3313728y5 + 2066688y6).
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By Recursion (4.4), together with Formulas (4.5), (4.6), (4.7), (4.8), (4.9) and
(4.10), we can construct the following system of three linear equations in the
three unknowns b1(y), b2(y), b3(y).

EY4(y) = b1(y)EY3(y) + b2(y)EY2(y) + b3(y)EY1(y)(4.11)

EY5(y) = b1(y)EY4(y) + b2(y)EY3(y) + b3(y)EY2(y)

EY6(y) = b1(y)EY5(y) + b2(y)EY4(y) + b3(y)EY3(y)

Since the corresponding square coefficient matrix has a nonzero determinant,
the linear system (4.11) has a unique solution (e.g., via Cramer’s rule)

b1(y) = 2(3y + 28y2)

b2(y) = −16(−3y2 − 12y3 + 4y4)

b3(y) = −3072y6.

It follows that the Euler-genus polynomial of the iterated-claw graph Yn is
given by the recursion

EYn(y) = 2(3y + 28y2)EYn−1(y) − 16(−3y2 − 12y3 + 4y4)EYn−2(y)(4.12)

− 3072y6EYn−3(y),

with initial values

EY1(y) = 2,

EY2(y) = 8(2 + 6y + 8y2), and

EY3(y) = 32y(3 + 37y + 108y2 + 108y3).

For 1 ≤ l ≤ 3, let

dn−3,l =(4.13)
∑

t1+2t2+3t3 =n−4+l

tl + tl+1 + · · ·+ t3
t1 + t2 + t3

(
t1 + t2 + t3
t1, t2, t3

)[ 3∏
i=1

ai(y)ti

]
.

Then, by applying the method of Mallik [32, §3.1.1], we derive the following
explicit formula for EYn(y), which was previously unknown:

EYn(y) = 32y(3 + 37y + 108y2 + 108y3) dn−3,1(4.14)

+ 8(2 + 6y + 8y2) dn−3,2 + 2dn−3,3. �

Combining our initial values for Euler-genus polynomials of iterated claws
with the genus polynomials for iterated claws obtained in [17], we obtain the
values for the crosscap-number polynomials of iterated-claw graphs listed in
Table 4.1.
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Table 4.1. Crosscap-number polynomials for a few iterated claws.

n XYn(y)

n = 1 0
n = 2 48y(1 + y)
n = 3 96y(1 + 9y + 36y2 + 34y3)
n = 4 192y2(5 + 93y + 482y2 + 1164y3 + 944y4)
n = 5 384y3(33 + 631y + 5148y2 + 19420y3 + 36224y4 + 25584y5)

n = 6
768y4(171 + 4389y + 44180y2 + 239804y3 + 711776y4

+1104576y5 + 688576y6)

4.3. Euler-genus polynomial for the grid graph. Let Gn = P32Pn be
the grid graph, as shown in Figure 4.4. In [26], Khan, Poshni and Gross
obtained the genus distributions for this graph sequence Gn. Here we calculate
the Euler-genus distribution for Gn.

Theorem 4.4. The Euler-genus polynomial for the grid graph Gn is given by

EGn(y) = (1 + 11y + 84y2)EGn−1(y) + 12y2(7 + 30y − 28y2)EGn−2(y)(4.15)

− 288y4(1 + 4y + 32y2)EGn−3(y) + 27648y8EGn−4(y),

with initial values

EG1(y) = 2,

EG2(y) = 24(1 + 3y + 4y2),

EG3(y) = 24(1 + 14y + 117y2 + 320y3 + 316y4), and

EG4(y) = 24(1 + 25y + 439y2 + 3395y3 + 14744y4 + 30692y5 + 24432y6).

Figure 4.4. The grid graph Gn.

Proof. We proceed the same way as for iterated-claw graphs. We again use
the method of Mallik to find an explicit formula for EGn(y):
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EGn(y) = 24(1 + 25y + 439y2 + 3395y3 + 14744y4 + 30692y5 + 24432y6)en−4,1

+ 24(1 + 14y + 117y2 + 320y3 + 316y4)en−4,2,

+ 24(1 + 3y + 4y2)en−4,3 + 2en−4,4,

where we define

en−4,l =(4.16)
∑

t1+2t2+3t3+4t4 =n−5+l

tl + tl+1 + · · ·+ t4
t1 + t2 + t3 + t4

(
t1 + t2 + t3 + t4
t1, t2, t3, t4

)[ 4∏
i=1

bi(y)ti

]
.

with
b1(y) = 1 + 11y + 84y2,

b2(y) = 12y2(7 + 30y − 28y2),

b3(y) = − 288y4(1 + 4y + 32y2),

b4(y) = 27648y8. �

Similarly, we list some small values for the crosscap-number polynomials of
the grid graph Gn, for n ≤ 6.

Table 4.2. Crosscap-number polynomials for a few grid graphs.

n XGn(y)

n = 1 0
n = 2 24y(3 + 3y)
n = 3 24y(14 + 88y + 320y2 + 298y3)
n = 4 24y(25 + 338y + 3395y2 + 13982y3 + 30692y4 + 24144y5)

n = 5
24y(36 + 709y + 11860y2 + 98439y3 + 540336y4 + 1671196y5

+ 2820864y6 + 1906800y7)

n = 6
24y(47 + 1201y + 27046y2 + 339047y3 + 3101511y4 + 18383560y5

+ 73178996y6 + 181068048y7 + 253232448y8 + 149481792y9)

4.4. Euler-genus polynomial for the Möbius ladders (ring-like). The
Möbius ladder MLn is a cubic graph with an even number 2n of vertices,
formed from an 2n-cycle by adding edges connecting opposite pairs of vertices
in the cycle. Just as the Möbius band can be described as an annulus with
a half-twist, the Möbius ladder can be described as a circular ladder with a
half-twist.

The Euler-genus polynomial for the Möbius ladder MLn is given by the
recursion
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EMLn(y) = (12y + 4)EMLn−1(y) + (−12y2 − 34y − 5)EMLn−2(y)(4.17)

+ (−240y3 − 20y2 + 26y + 2)EMLn−3(y)

+ 4(80y3 + 128y2 + 14y − 1)yEMLn−4(y)

+ 16(112y3 + 8y2 − 14y − 1)y2EMLn−5(y)

− 128(8y2 + 18y + 3)y4EMLn−6(y)

− 2048(2y + 1)y6EMLn−7(y).

with initial values

EML1(y) = 6y2 + 8y + 2,

EML2(y) = 2 + 14y + 56y2 + 56y3,

EML3(y) = 12y + 148y2 + 432y3 + 432y4,

EML4(y) = 10y + 214y2 + 1272y3 + 3496y4 + 3200y5,

EML5(y) = 12y + 292y2 + 2480y3 + 11872y4 + 27264y5 + 23616y6,

EML6(y) = 14y + 438y2 + 4540y3 + 28528y4 + 106032y5

+ 214752y6 + 169984y7, and

EML7(y) = 16y + 660y2 + 8260y3 + 62440y4 + 302288y5

+ 943840y6 + 1664128y7 + 1212672y8.

Defining

(4.18) ME(y, t) =
∑
i≥3

EMLi
(y)ti

and then rewriting ME(y, t) by partial fraction decomposition, we obtain the
formula

ME(y, t) =
(
−48 y3 − 56 y2 − 20 y − 4

)
t2 +

(
−4 y2 − 8 y − 4

)
t

+
2 y3 − 7 y2 − 2 y − 1

4y2
− y − 1

2 ty + t− 1
+

6 y3 + y2 − 6 y − 1

12 (4 ty − 1) y2

+
−6 y3 − 7 y2 + 1

6 (2 ty + 1) y2
+

4y2 (2 ty + t− 1)

16 t2y2 + 4 ty + 2 t− 1

+
−8 ty3 + 2 ty2 + 5 ty + 4 y2 + t− 2 y − 2

16 t2y2 + 4 ty + t− 1

Thus the coefficient EMLn(y) (n ≥ 3) of tn in the generating function ME(y, t)
is given by the formula



EULER-GENUS AND CROSSCAP-NUMBER POLYNOMIALS 19

EMLn(y) = (y − 1)(2y + 1)n − 4n−1

3
yn−2(y − 1)(6y + 1)(y + 1)(4.19)

− 2(−2y)n−2(3y − 1)(2y + 1)(y + 1)

3

+ 2y2(4yi)n
[
Un

(
1 + 2y

4yi

)
− Un−2

(
1 + 2y

4yi

)]
+ (1 + 2y)(1− y)(4yi)n

[
Un

(
1 + 4y

8yi

)
− Un−2

(
1 + 4y

8yi

)]
,

where the first, second, third and fourth lines are the coefficients of tn in the
generating functions

1− y
2 ty + t− 1

+
6 y3 + y2 − 6 y − 1

12 (4 ty − 1) y2
,
−6 y3 − 7 y2 + 1

6 (2 ty + 1) y2
,

4y2 (2 ty + t− 1)

16 t2y2 + 4 ty + 2 t− 1

and
−8 ty3 + 2 ty2 + 5 ty + 4 y2 + t− 2 y − 2

16 t2y2 + 4 ty + t− 1
, respectively.

Similarly, we list some small values for the crosscap-number polynomials of
the Möbius ladder graph MLn, for n ≤ 6.

Table 4.3. Crosscap-number polynomials for a few Möbius ladders.

n XMLn(y)

n = 1 8y + 4y2

n = 2 14y + 42y2 + 56y3

n = 3 12y + 108y2 + 432y3 + 408y4

n = 4 10y + 158y2 + 1272y3 + 3296y4 + 3200y5

n = 5 12y + 220y2 + 2480y3 + 11240y4 + 27264y5 + 23296y6

n = 6 14y + 326y2 + 4540y3 + 27200y4 + 106032y5 + 212096y6 + 169984y7

4.5. Euler-genus polynomial for a spider-like variation on ladders.
Let Gn be the P4-spider-like graph of Figure 4.5. These spider-like graphs
are neither H-linear, nor ring-like. Nonetheless, by proceeding as in previous
examples, we obtain for the Euler-genus polynomial of Gn the recursion

EGn(y) = (2 + 4y)ELn−1(y) + 16y2EGn−2(y)(4.20)

with the initial conditions

EG1(y) = 144 + 576y + 864y2 + 576y3 + 144y4,

EG2(y)(z) = 256 + 1536y + 4288y2 + 6336y3 + 4672y4 + 1344y5.
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J1

J2

J1

J2

Figure 4.5. A ladder variation, with spider-attachments J1, J2, J1, J2.

By solving the recurrence system (4.20) above, we obtain

EGn(y)

(4iy)n−1
=

32(1 + y)2(4 + 16y + 31y2 + 21y3)

1 + 2y
Un−1

(
1 + 2y

4iy

)
+

16(1 + y)2(−1− 4y + 17y2 + 24y3)

1 + 2y
Un−3

(
1 + 2y

4iy

)
,

for all n ≥ 1.

Similarly, we list some small values for the crosscap-number polynomials of
the P4-spider-like graph Gn for n ≤ 6.

Table 4.4. Crosscap-number polynomials for a few P4-spider-like graphs.

n XGn(y)

n = 1 144(−1 + (1 + y)4)
n = 2 64y(24 + 62y + 99y2 + 73y3 + 21y4)
n = 3 128y(32 + 119y + 305y2 + 379y3 + 239y4 + 60y5)
n = 4 256y(40 + 191y + 667y2 + 1247y3 + 1393y4 + 830y5 + 204y6)

n = 5
512y(48 + 279y + 1221y2 + 3085y3 + 5127y4 + 5132y5

+ 2820y6 + 648y7)

n = 6
1024y(56 + 383y + 1999y2 + 6335y3 + 14041y4 + 20394y5

+18656y6 + 9608y7 + 2112y8)

5. Further Observations

5.1. bar-amalgamation. A bar-amalgamation G ⊕uv H of two disjoint
root graphs (G, u) and (H, v) is obtained by adding an edge between the vertex
u of G and the vertex v of H. Theorem 5 of Gross and Furst [15] can be
viewed as the first theorem on the genus polynomial (or distribution) of a
graph. Theorem 5.2 below is an analogous result for the Euler-genus. We
denote the degree of the vertex u in the graph G by dG(u).
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Theorem 5.1. [15, Theorem 5]

ΓG⊕eH(x) = dG(u)dH(v)ΓG(x)ΓH(x). �

Here is the analogous result for the Euler-genus polynomial.

Theorem 5.2.

EG⊕eH(y) = dG(u)dH(v)EG(y)EH(y).

Proof. Let (ρG, λE(G)) and (ρH , λE(H)) be general rotation systems of the graph-
s G and H, respectively. Let ρG⊕eH(u) be the rotation obtained by inserting
the edge-end of uv at u somewhere into the rotation ρG(u) of G at u. Let
ρG⊕eH(v) be the rotation obtained by inserting the other edge-end of uv some-
where into the rotation ρH(v) of H at v. Then the resulting rotation system
of G⊕e H is

ρG⊕eH = ρG⊕eH(u) ∪ ρG⊕eH(v) ∪
∏

x∈V (G)−u

ρG(x) ∪
∏

y∈V (H)−v

ρH(y),

with twist-indicator λ = λE(G) ∪ λE(H)).

Suppose that the general rotation system (ρG, λE(G)) corresponds to an em-
bedding of G into a surface with Euler-genus i , and that (ρH , λE(H)) corre-
sponds to an embedding of H into a surface with Euler-genus j. The following
four cases are considered.

Case 1: The general rotation system (ρG, λG) corresponds to an embed-
ding of G on the surface S i

2
, and the general rotation system (ρH , λE(H))

corresponds to an embedding of H on the surface S j
2
. By face-tracing,

the general rotation system (ρG⊕eH , λE(G) ∪ λE(H)) corresponds to an
embedding of G⊕e H on the surface S i+j

2
.

Case 2: The general rotation system (ρG, λG) corresponds to an embed-
ding of G on the surface S i

2
, and the general rotation system (ρH , λE(H))

corresponds to an embedding of H on the surface Nj. By face-tracing,
the general rotation system (ρG⊕eH , λE(G) ∪ λE(H)) corresponds to an
embedding of G⊕e H on the surface Ni+j.

Case 3: The general rotation system (ρG, λG) corresponds to an embed-
ding of G on the surface Ni, and the general rotation system (ρH , λE(H))
corresponds to an embedding of H on the surface S j

2
. By face-tracing,

the general rotation system (ρG⊕eH , λE(G) ∪ λE(H)) corresponds to an
embedding of G⊕e H on the surface Ni+j.

Case 4: The general rotation system (ρG, λG) corresponds to an embed-
ding of G on the surface Ni, and the general rotation system (ρH , λE(H))
corresponds to an embedding of H on the surface Nj. By face-tracing,
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the general rotation system (ρG⊕eH , λE(G) ∪ λE(H)) corresponds to an
embedding of G⊕e H on the surface Ni+j. �

5.2. Remarks about algorithms. Thomassen [44] showed that deciding the
minimum genus of a graph G is NP-complete. It follows that calculating
the genus distribution of a graph is NP-hard. Kawarabayashi, Mohar, and
Reed [24] presented a linear-time algorithm for the minimum genus of graphs
of bounded tree-width. Gross [14] developed a quadratic-time algorithm to
calculate the genus distributions of graphs with fixed tree-width and bounded
degree.

We observe that with some minor adjustments, the specific genus distribu-
tion algorithms in [13, 19, 36] as well as the general algorithm [14] can be
extended to Euler-genus distributions.

5.3. Research Problems. We conclude this paper with two research prob-
lems about the Euler-genus polynomials.

Problem 5.3. Kwak and Shim [28] calculated the crosscap-number distribu-
tions for bouquets of circles, with the aid of edge-attaching surgery technique.
It is known that the genus distributions of bouquets of circles satisfy a second-
order recurrence [21]. A natural problem is to find an analogous recurrence for
the Euler-genus distribution of bouquets of circles.

Problem 5.4. A real sequence a0 a1, . . . , an is called unimodal if for some
number m such that 0 ≤ m ≤ n, we have

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . ≥ an,

in which case, m is called the mode of the sequence. Moreover, if for every
j such that 1 ≤ j ≤ n − 1, we have aj

2 ≥ aj−1aj+1, then the sequence is
called log-concave. From Theorem 5.2, we can obtain an explicit formula for
the Euler-genus distribution of a cactus (a graph with maxmum genus 0). One
can easily prove that the Euler-genus distributions of the cacti are log-concave.
Analogous to a conjecture [21], that the genus distribution of a graph is log-
concave, we now ask whether the Euler-genus distribution of a graph is log-
concave. We bear in mind the example of Auslander, Brown, and Youngs [1],
of the existence of graphs of arbitrarily high minimum genus, whose minimum
crosscap-number is 1.
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