COMS E6111
Advanced Database Systems
Fall 2015

Computer Science Department
Columbia University

Your Instructor: Luis Gravano

- Ph.D. in Computer Science, Stanford U.
- Professor, Computer Science Department (at Columbia U. since Fall 1997)
- Senior Research Scientist at Google in 2001 (on leave from Columbia U.)

- Research interests: Databases, Web Search, Information Extraction, Social Media
Class Resources

• Class web page: http://www.cs.columbia.edu/~gravano/cs6111/

• Discussion board: Piazza, which you can access from CourseWorks, at https://courseworks.columbia.edu/

• Email messages with announcements from class staff: from CourseWorks to your @columbia.edu email address

Your Instructor: Luis Gravano

• Various addresses and numbers:
 – gravano@cs.columbia.edu
 – 706 Schapiro CEPSR
 – 1-212-939-7064

• Office hours:
 – Mondays 2-4 p.m.
 – By appointment by email
Your “Instructional Assistants,” or IAs

- Huaiyuan Cao
- Ioannis Paparrizos
- Liang Wu

Please check class webpage in the next few days for coordinates and office hours of the IAs

Class Information: Prerequisites

- COMS W4111 (Introduction to Databases) or equivalent
- Working knowledge of Java or Python

Note that COMS W4112 is not a prerequisite.
Class Information: Lectures

- Tuesdays, 4:10-6:00 p.m.
- 602 Hamilton Hall

Grading Information

- 1st Exam (Tuesday, October 20, in class): 25%
 Covers all lectures and required readings; closed book
- 2nd Exam (Tuesday, December 8, in class): 25%
 Covers all lectures and required readings; closed book; not cumulative
- Projects (3): 50%
 - In Java or Python (student’s choice)
 - All projects are equally weighted
Grading Information (cont.)

• Median grade will be a B+ or slightly higher.
• Alternative or make-up exams will not be given.

Grading Information (cont.)

• To be fair to all students in the class, I will grant no extensions or exceptions for project submission.
• Instead, you have three grace late days total for projects that you can use as you wish throughout the semester. Weekends and university holidays are not counted.
• After using all grace days, you will get a 25% grade deduction for each additional late day.

Check full details on web site.
Projects: In Groups of 2

- You get to choose your group partner.
- Further group-related information will be given with first project.
- You will need one CS account per group. You can open one ($50 fee) from:

Collaboration Policy

- Please check “Lateness and Collaboration Policy” page from the main web page for the class.
- Exams are to be done **individually**. Projects are to be done in **teams**, and different teams cannot collaborate with each other.
- **We will not tolerate cheating**. Check the CS Department policies and procedures regarding academic honesty at: http://www.cs.columbia.edu/education/honesty
 They fully apply to this course.
- **Contact the instructor** right away if you have any questions.
On-going Feedback

• Don’t wait until the end-of-semester course evaluations to complain or give feedback on how to improve the course. (It’s too late then!)
• Come see me early on during my office hours or send me email with your concerns and suggestions, or use the IAs to forward them to me.

Topics Covered

• Information Retrieval
• Web Search
• Information Extraction
• Data Mining
• Data Warehousing, OLAP, Decision Support
• Time Series Mining
• Spatial Data Management
• …
Information Retrieval:

Text Databases

- Objects are text documents
- User queries are usually less “precise” than in the relational world

Examples:
- The archive of a newspaper
- A web search engine

Answering Queries?

Key issue:

Ranking documents in order of expected relevance for a given query
Indexes?

Inverted files:

- "ramakrishnan": doc_1, doc_3, ...
- "databases": doc_1, doc_4, ...
- ...

Web Search Engines

- How do they work?
- What are their latest tricks and trends?
- How can we exploit the link structure of the web?

Subject of first project
Data Mining

Goal:
To find interesting trends or patterns in large datasets

Examples:
• Identify target customers for junk mail
• Decide what to place next to beer in supermarket shelves
• Recommend products to online shoppers

Multidimensional DBs,
Decision Support, OLAP

Data Warehouse:
• Large repository of data about an organization (~ a view)
• Complex queries common
• Goal: support of OLAP, data mining, ...
OLAP: On-Line Analytic Processing

- Multidimensional data:
 Product, Location, Time: Sales value
- Complex queries, with group-by and aggregate operators:
 Total Sales, Total Sales per City, Total Sales per State
- Dimensionality reduction, roll-up & drill-down, slice, dice...

Required Readings
(No Textbook Required)

- Mostly papers/material available online
- Occasionally, chapters from the cs4111 textbook, on reserve in Science and Engineering Library:

Also, some chapters from:
 Available electronically at http://www.mmds.org/