Schema Refinement and
Normal Forms
The Evils of Redundancy

- **Redundancy** is at the root of several problems associated with relational schemas:
 - redundant storage, insert/delete/update anomalies

- Integrity constraints, in particular **functional dependencies**, can be used to identify schemas with such problems and to suggest refinements.

- Main refinement technique: **decomposition** (replacing ABCD with, say, AB and BCD, or ACD and ABD).

- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Functional Dependencies (FDs)

- A functional dependency \(X \rightarrow Y \) holds over relation \(R \) if, for every allowable instance \(r \) of \(R \):
 - \(t1 \) in \(r \), \(t2 \) in \(r \), \(\pi_X(t1) = \pi_X(t2) \) implies \(\pi_Y(t1) = \pi_Y(t2) \)
 - i.e., given two tuples in \(r \), if the \(X \) values agree, then the \(Y \) values must also agree. (\(X \) and \(Y \) are sets of attributes.)

- An FD is a statement about all allowable relations.
 - Must be identified based on semantics of application.
 - Given some allowable instance \(r1 \) of \(R \), we can check if it violates some FD \(f \), but we cannot tell if \(f \) holds over \(R \)!

- K is a candidate key for \(R \) means that \(K \rightarrow R \)
 - However, \(K \rightarrow R \) does not require \(K \) to be minimal!
Example: Constraints on Entity Set

- Consider relation Hourly_Emps:
 - Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

Notation: We will denote this relation schema by listing the attributes: **SNLRWH**
- This is really the set of attributes \{S, N, L, R, W, H\}.
- Sometimes, we will refer to all attributes of a relation by using the relation name (e.g., Hourly_Emps for SNLRWH).

- Some FDs on Hourly_Emps:
 - **ssn** is the key: \(S \rightarrow SNLRWH \)
 - **rating** determines **hrly_wages**: \(R \rightarrow W \)

Example (Contd.)

- Problems due to **R\(\rightarrow \)W**:
 - **Update anomaly:** Can we change \(W \) in just the first tuple of SNLRWH?
 - **Insertion anomaly:** What if we want to insert an employee and don’t know the hourly wage for their rating?
 - **Deletion anomaly:** If we delete all employees with rating 5, we lose the information about the wage for rating 5!
Refining an ER Diagram

- Workers(S,N,L,D,S)
- Departments(D,M,B)
 Lots associated with workers.
- Suppose all workers in a dept are assigned the same lot: \(D \rightarrow L \)
- Redundancy; fixed by:
 - Workers2(S,N,D,S)
 - Dept_Lots(D,L)
- Can fine-tune this:
 - Workers2(S,N,D,S)
 - Departments(D,M,B,L)

Before:

![ER Diagram Before]

After:

![ER Diagram After]

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - \(ssn \rightarrow did, did \rightarrow lot \) implies \(ssn \rightarrow lot \)
- An FD \(f \) is implied by a set of FDs \(F \) if \(f \) holds whenever all FDs in \(F \) hold.
 - \(F^+ = \text{closure of } F \) is the set of all FDs that are implied by \(F \).
- Armstrong’s Axioms (\(X, Y, Z \) are sets of attributes):
 - **Reflexivity**: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - **Augmentation**: If \(X \rightarrow Y \), then \(XZ \rightarrowYZ \) for any \(Z \)
 - **Transitivity**: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- These are sound and complete inference rules for FDs!
Reasoning About FDs (Contd.)

- Couple of additional rules (that follow from AA):
 - **Union**: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - **Decomposition**: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

- Example: Contracts($cid, sid, jid, did, pid, qty, value$), and:
 - C is the key: $C \rightarrow CSJD$PQV
 - Project purchases each part using single contract: $JP \rightarrow C$
 - Dept purchases at most one part from a supplier: $SD \rightarrow P$

- $JP \rightarrow C$, $C \rightarrow CSJD$PQV imply $JP \rightarrow CSJD$PQV
- $SD \rightarrow P$ implies $SDJ \rightarrow JP$
- $SDJ \rightarrow JP$, $JP \rightarrow CSJD$PQV imply $SDJ \rightarrow CSJD$PQV

Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
 - Compute **attribute closure** of X (denoted X^+) wrt F:
 - Set of all attributes A such that $X \rightarrow A$ is in F^+
 - There is a linear time algorithm to compute this.
 - Check if Y is in X^+

- Does $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D \rightarrow E\}$ imply $A \rightarrow E$?
 - i.e., is $A \rightarrow E$ in the closure F^+? Equivalently, is E in A^+?
Normal Forms

- Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- If a relation is in a certain normal form (BCNF, 3NF, etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they’ll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if, for all X → A in F+
 - A ∈ X (called a trivial FD), or
 - X contains a key for R.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
 - No dependency in R that can be predicted using FDs alone.
 - If we are shown two tuples that agree upon the X value, we cannot infer the A value in one tuple from the A value in the other.
 - If example relation is in BCNF, the 2 tuples must be identical (since X is a key).

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y1</td>
<td>a</td>
</tr>
<tr>
<td>x</td>
<td>y2</td>
<td>?</td>
</tr>
</tbody>
</table>
Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a trivial FD), or
 - X contains a key for R, or
 - A is part of some key for R.
- Minimality of a key is crucial in third condition above!
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no “good” decomposition, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

What Does 3NF Achieve?

- If 3NF violated by $X \rightarrow A$, one of the following holds:
 - X is a subset of some key K
 - We store (X, A) pairs redundantly.
 - X is not a proper subset of any key.
 - There is a chain of FDs $K \rightarrow X \rightarrow A$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.
- But: even if reln is in 3NF, these problems could arise.
 - e.g., Reserves SBDC, $S \rightarrow C$, $C \rightarrow S$ is in 3NF, but for each reservation of sailor S, same (S, C) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.
Decomposition of a Relation Scheme

- Suppose that relation R contains attributes $A_1 ... A_n$. A decomposition of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute of at least one of the new relations.

- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

- E.g., can decompose $SNLRWH$ into $SNLRH$ and RW.

Example Decomposition

- Decompositions should be used only when needed.
 - $SNLRWH$ has FDs $S \rightarrow SNLRWH$ and $R \rightarrow W$
 - Second FD causes violation of 3NF; W values repeatedly associated with R values. Easiest way to fix this is to create a relation RW to store these associations, and to remove W from the main schema:
 - i.e., we decompose $SNLRWH$ into $SNLRH$ and RW

- The information to be stored consists of $SNLRWH$ tuples. If we just store the projections of these tuples onto $SNLRH$ and RW, are there any potential problems that we should be aware of?
Problems with Decompositions

- There are three potential problems to consider:
 - Some queries become more expensive.
 e.g., How much did sailor Joe earn? (salary = W*H)
 - Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 Fortunately, not in the SNLRWH example.
 - Checking some dependencies may require joining the instances of the decomposed relations.
 Fortunately, not in the SNLRWH example.

- Tradeoff: Must consider these issues vs. redundancy.

Lossless Join Decompositions

- Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every instance r that satisfies F:
 - \(\pi_X(r) \bowtie \pi_Y(r) = r \)

- It is always true that \(r \subseteq \pi_X(r) \bowtie \pi_Y(r) \)
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.

- Definition extended to decomposition into 3 or more relations in a straightforward way.

- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2).)
More on Lossless Join

- The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
 - $X \cap Y \rightarrow X$, or
 - $X \cap Y \rightarrow Y$

- In particular, the decomposition of R into UV and $R - V$ is lossless-join if $U \cap V$ holds over R.

Dependency Preserving Decomposition

- Consider $CSJDPQV$, C is key, $JP \rightarrow C$ and $SD \rightarrow P$.
 - BCNF decomposition: $CSJDQV$ and SDP
 - Problem: Checking $JP \rightarrow C$ requires a join!

- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (*Avoids Problem (3).*).

- Projection of set of FDs F:
 - If R is decomposed into X, ... projection of F onto X (denoted F_X) is the set of FDs $U \rightarrow V$ in F^+ (closure of F) such that U, V are in X.
Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is dependency preserving if \((F_X \cup F_Y)^+ = F^+\)
 - i.e., if we consider only dependencies in the closure \(F^+\) that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in \(F^+\).

- Important to consider \(F^+, \text{not } F\), in this definition:
 - ABC, \(A \rightarrow B, B \rightarrow C, C \rightarrow A\), decomposed into AB and BC.
 - Is this dependency preserving? Is \(C \rightarrow A\) preserved?
 - Dependency preserving does not imply lossless join:
 - ABC, \(A \rightarrow B\), decomposed into AB and BC.

- And vice-versa! (Example?)

** Decomposition into BCNF **

- Consider relation R with FDs F. If \(X \rightarrow Y\) violates BCNF, decompose R into \(R - Y\) and \(XY\).
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDPQV, key C, \(JP \rightarrow C, SD \rightarrow P, J \rightarrow S\)
 - To deal with \(SD \rightarrow P\), decompose into SDP, CSJDPQV.
 - To deal with \(J \rightarrow S\), decompose CSJDPQV into JS and CJDQV.

- In general, several dependencies may cause violation of BCNF. The order in which we “deal with” them could lead to very different sets of relations!
BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS→Z, Z→C
 - Can’t decompose while preserving 1st FD; not in BCNF.
- Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP→C, SD→P and J→S).
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - JPC tuples stored only for checking FD! (Redundancy!)

Summary of Schema Refinement

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.