Schema Refinement and Normal Forms
Database Design Steps

1. Real world
to
2. E/R model
to
3. Relational schema
to
4. **Better relational schema (new!)**
to
5. Relational DBMS

Step 3 to Step 4 is based on a design theory for relations and is called “normalization”; key goal: eliminate redundancy

Movie

<table>
<thead>
<tr>
<th>title</th>
<th>year</th>
<th>length</th>
<th>starName</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Dancer in the dark”</td>
<td>2000</td>
<td>140'</td>
<td>Bjork</td>
</tr>
<tr>
<td>“Dancer in the dark”</td>
<td>2000</td>
<td>140'</td>
<td>Catherine Deneuve</td>
</tr>
<tr>
<td>“The 39 steps”</td>
<td>1935</td>
<td>86'</td>
<td>Robert Donat</td>
</tr>
<tr>
<td>“The 39 steps”</td>
<td>1978</td>
<td>92'</td>
<td>Robert Powell</td>
</tr>
</tbody>
</table>

Key? \{title, year, starName\}

Problems with this schema?

- title, year repeated for a movie? Not a problem: both attributes needed to identify movie
- length repeated for a movie? Yes! title and year **determine** length, yet current schema allows for different lengths for the same movie (**redundancy!**), which is a problem
- Also, what if a movie doesn’t have any stars? Where do we store its length?
3 Types of Anomalies in Movie Schema

- **Redundancy:** length for a movie stored multiple times
- **Update anomaly:** inconsistencies possible if we update length of a movie
- **Deletion anomaly:** if we delete a star for a movie, we might accidentally lose the movie length as well (and all records of the movie)

Better design for this information:
- Movie2(title, year, length)
- Stars(title, year, starName)

Good design with (1) no anomalies and (2) ability to “reconstruct” exactly all original information (how?)

Functional Dependencies (FDs)

A functional dependency is a special kind of constraint for a relation:
- is based on knowledge of real world
- must always hold for the relation

Example over Movie table:
- Functional dependency **title, year → length** holds
- Meaning: any two Movie tuples that agree on both title and year (i.e., on left side of FD) must also agree on length (i.e., on right side of FD)
Functional Dependency: Definition

- A functional dependency F for a relation R consists of one or more attributes A_1, A_2, \ldots, A_m of R, followed by symbol \rightarrow, followed by one or more attributes B_1, B_2, \ldots, B_n of R:
 $$A_1, A_2, \ldots, A_m \rightarrow B_1, B_2, \ldots, B_n$$

- We say that F holds for R if, for every legal instance of R, whenever tuples t and u of R agree on all the values of A_1, A_2, \ldots, A_m, then t and u must also agree on all the values of B_1, B_2, \ldots, B_n.

- For brevity, we often omit the commas that separate attributes (so we write, say, $A_1A_2\ldots A_m \rightarrow B_1B_2\ldots B_n$).

Some Example FDs for Movie

Movie(title, year, length, starName)

- title, year \rightarrow length
- title \rightarrow title
- title, year, starName \rightarrow length
- title, year, starName \rightarrow length, year
- …
Revisiting Definition of “Key” Using FDs

• Consider a relation \(R(C_1, C_2, \ldots, C_t) \) and a set of attributes \(K \subseteq \{C_1, C_2, \ldots, C_t\} \)
• \(K \) is a **key** for \(R \) if and only if:
 1. \(K \rightarrow C_1, C_2, \ldots, C_t \) (i.e., \(K \) “functionally determines” all attributes of relation \(R \))
 2. No strict subset of \(K \) satisfies Condition 1 (i.e., \(K \) is minimal)
• In general, if a set of attributes \(K' \subseteq \{C_1, C_2, \ldots, C_t\} \) is such that \(K' \rightarrow C_1, C_2, \ldots, C_t \), then \(K' \) is a **superkey** for \(R \)

 If additionally \(K' \) has the minimality property (Condition 2 above), then \(K' \) is also a key (so every key is a superkey but not the other way around)

Characterizing Functional Dependencies

Consider a functional dependency \(X \rightarrow A \), where \(X \) and \(A \) are sets of attributes of a relation

• \(X \rightarrow A \) is **trivial** if \(A \subseteq X \)
 • title, length \(\rightarrow \) title
 • length, year \(\rightarrow \) length, year
• \(X \rightarrow A \) is **nontrivial** if \(A \not\subseteq X \)
 • title, year \(\rightarrow \) title, length
• \(X \rightarrow A \) is **completely nontrivial** if \(X \cap A = \emptyset \)
 • title, year \(\rightarrow \) length

Most of the time we are interested in completely nontrivial FDs
Reasoning About FDs

• Given some FDs, we can infer additional FDs

• **“Decomposition” Rule:** If \(X \rightarrow B_1, B_2, \ldots, B_n \) holds, then so do \(X \rightarrow B_1, X \rightarrow B_2, \ldots, \) and \(X \rightarrow B_n \)

 • Employees(ssn, name, age)

 • If we are told \(ssn \rightarrow name, age \) holds, then we know \(ssn \rightarrow name \) and \(ssn \rightarrow age \) also hold

 • Can we “split” the left side also? **No!** title, year \(\rightarrow \) length holds on Movie, yet title \(\rightarrow \) length and year \(\rightarrow \) length do **not** hold

• **“Union” Rule:** If \(X \rightarrow B_1, X \rightarrow B_2, \ldots, \) and \(X \rightarrow B_n \) hold, then so does \(X \rightarrow B_1, B_2, \ldots, B_n \)

 • If \(ssn \rightarrow name \) and \(ssn \rightarrow age \) hold, so does \(ssn \rightarrow name, age \)

Reasoning About FDs

• FD F is **“implied”** by a set of FDs S if F holds whenever all FDs in S hold

• The **closure of S, S⁺**, is the set of all FDs implied by S

• To compute the closure of a set of FDs, we can use **Armstrong’s axioms:**

 • **Reflexivity:** If \(Y \subseteq X \), then \(X \rightarrow Y \)

 • **Augmentation:** If \(X \rightarrow Y \) holds, then \(X \cup Z \rightarrow Y \cup Z \) also holds for any attribute set \(Z \)

 • **Transitivity:** If \(X \rightarrow Y \) and \(Y \rightarrow Z \) hold, then so does \(X \rightarrow Z \)

• Armstrong’s axioms are a **sound** and **complete** set of inference rules for FDs

 • The “decomposition” and “union” rules follow from Armstrong’s axioms. in particular
Using Armstrong's Axioms: An Example

R(A, B, C, D, E) is a relation with given FDs:
(1) A \rightarrow B, (2) B \rightarrow C, and (3) CD \rightarrow E

Question: Does AD \rightarrow E hold for R given that (1), (2), and (3) hold?

Answer: Use Armstrong's axioms to prove that it does, as follows:

• From (1) and (2), and transitivity: (4) A \rightarrow C
• From (4) and augmentation: (5) AD \rightarrow CD
• From (5) and (3), and transitivity: AD \rightarrow E

“Closure” of Set of Attributes

• As an alternative to the axioms for reasoning about what FDs hold, we can use the “closure” of a set of attributes

• Consider a relation R, a set of FDs S for R, and a set of attributes \{A_1, \ldots, A_k\} of R. Then the closure of \{A_1, \ldots, A_k\}, denoted \{A_1, \ldots, A_k\}^+, consists of all attributes B in R such that A_1, A_2, \ldots, A_k \rightarrow B
Closure of Set of Attributes: An Algorithm

To compute the closure of \(\{A_1, \ldots, A_k\} \), \(\{A_1, \ldots, A_k\}^+ \), for a relation R with respect to a set of FDs S for R:

- Start with \(\{A_1, \ldots, A_k\} \)
- Repeat until no change:
 - If current set of attributes includes the full left side of a FD in S, then add all the right side attributes of the FD to the set
- Return the set of attributes

Using Closure of Set of Attributes: Example Revisited

R(A, B, C, D, E) is a relation with given FDs:
(1) A \(\rightarrow \) B, (2) B \(\rightarrow \) C, and (3) CD \(\rightarrow \) E

Question: Does AD \(\rightarrow \) E hold for R given that (1), (2), and (3) hold?

Answer: Compute \(\{A, D\}^+ \) and check if E is in the closure

- Start with closure=\(\{A, D\} \)
- closure includes left side of (1) (i.e., attribute A), so add right side (i.e., attribute B) to closure: closure=\(\{A, D, B\} \)
- closure includes left side of (2) (i.e., attribute B), so add C to closure: closure=\(\{A, D, B, C\} \)
- closure includes left side of (3) (i.e., attributes C and D), so add E to closure: closure=\(\{A, D, B, C, E\} \)
- No more changes possible, so return \(\{A, D\}^+ = \{A, D, B, C, E\} \)
- Because E is in \(\{A, D\}^+ \), it follows that AD \(\rightarrow \) E holds
Identifying All Keys for a Relation

Consider a relation $R(A_1, \ldots, A_n)$ and a given set of functional dependencies S that hold over R. **How do we determine all keys for R?**

Task: Identify every set K of attributes of R such that:
1. $K \rightarrow$ all attributes of R
2. K is minimal with such property (i.e., no strict subset of K functionally determines all attributes of R)

Algorithm for Finding All Keys for Relation R

(note it is exponential in the number of attributes n of the relation)

For $i = 1$ to n:

- Consider each set of attributes C_i with exactly i attributes of R
- If C_i includes a (previously found) key, then ignore C_i (C_i could not satisfy minimality)
- Otherwise, compute the closure of C_i: if $C_i^+ = \{A_1, \ldots, A_n\}$, then C_i is a key for R

Is a Relation Schema “Good”?

- “Normal forms” determine which relation schemas are “good,” in the sense of avoiding certain kinds of redundancy

- **Boyce-Codd Normal Form (BCNF):** Consider a relation R and a set of functional dependencies S for R

 R is in BCNF with respect to FD set S if for every **nontrivial** FD $X \rightarrow A$ that holds over R, X contains a key (i.e., X is a superkey)
Why is violating BCNF bad?

Employees(ssn, name, did, rank, sal)

Given FDs:
- ssn → name, did, rank
- did, rank → sal

First, we can use the algorithm above to identify all keys of the relation: {ssn} is the only key

{ssn}⁺ includes all attributes of the relation and, of course, {ssn} is minimal; furthermore, no other attribute set satisfies these two conditions

Then Employees is not in BCNF: did, rank → sal holds, it is nontrivial, and its left side does not include ssn

Why is this a problem? Value of sal for a did-rank pair is potentially stored many times in relation...

Another Example

Movie(title, year, length, starName)

Given FD: title, year → length

- Only key of the relation is {title, year, starName}
- title, year → length holds for Movie, it is nontrivial, and its left side doesn’t include a key (it’s missing starName)
- Hence Movie is not in BCNF
Handling BCNF Violations

As we will see, when a relation is not in Boyce-Codd Normal Form, we can decompose it into “smaller” relations to avoid redundancy:

- Split Employees(ssn, name, did, rank, sal) into:
 - Employees2(ssn, name, did, rank) and
 - Salaries(did, rank, sal)

- Split Movie(title, year, length, starName) into:
 - Movie2(title, year, length)
 - Stars(title, year, starName)