Overview of Course

- **How to use a database management system (DBMS)** → bulk of course
 - database design (today and following lectures)
 - SQL + relational model
 - + object-relational model
- **What happens under the covers of a DBMS** → just a few lectures
 - introduction to query processing and optimization
 - introduction to transaction processing
Steps for Database Design

1. Understand data characteristics and requirements in real-world organization
Steps for Database Design

1. Understand data characteristics and requirements in real-world organization
2. Produce conceptual design, (“pen-and-pencil”) diagram using Entity-Relationship (ER) Model
 - Entities and relationships in organization?
 - Information about entities and relationships that we should store in database?
 - Integrity constraints or business rules that hold?
Steps for Database Design

1. Understand data characteristics and requirements in real-world organization

2. Produce conceptual design, ("pen-and-pencil") diagram using Entity-Relationship (ER) Model
 - Entities and relationships in organization?
 - Information about entities and relationships that we should store in database?
 - Integrity constraints or business rules that hold?

3. Map ER diagram into a relational schema in SQL
Steps for Database Design (cont.)

4. Refine and normalize SQL schema
 ● Check relational schema for redundancies and related anomalies

5. Produce and tune physical database design
 ● Consider typical workloads and further refine the database design, with appropriate indexes, etc.
Conceptual Database Design Using the Entity-Relationship (ER) Model
Conceptual Database Design

Goal: Model data in a real-world organization

Approach: Use a *semantic data model*, which is a collection of concepts for describing data

We will focus on the **Entity-Relationship Model**

ER diagrams help us move from an informal knowledge of the data in a real-world organization to a *detailed, precise description of the data* that is much closer to DBMS
ER Model Basics

- **Entity**: Real-world object distinguishable from other objects; an entity is described using a set of attributes.

Examples:
- Juana González, with ssn = ...
- a branch of a bank
- the address of the branch
- an account in the bank
- ...

ER Model Basics

- **Entity:** Real-world object distinguishable from other objects; an entity is described using a set of attributes

- **Entity set:** Collection of similar entities (e.g., all employees)
 - All entities in an entity set have the same set of attributes (until we consider ISA hierarchies!)

- Each attribute has a **domain**, which is a single, “simple” value (e.g., string, integer, real, date, ...)
- Each entity set has a **key** (more on this later)
Entity Sets

- Entity sets are not necessarily disjoint
 - Example: Bank Employees, Tax Payers

- We should choose attributes to model each entity set carefully:
 - ssn, name, lot relevant for Employees
 - eye color not relevant for Employees
Each Entity Set Has a Key

Key: A minimal set of attributes whose values uniquely identify an entity in the entity set.

If an entity set has only one key, then that key is the primary key, and it is indicated in the ER diagram by underlining its attribute names.

<table>
<thead>
<tr>
<th>Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssn: string</td>
</tr>
<tr>
<td>name: string</td>
</tr>
<tr>
<td>lot: string</td>
</tr>
</tbody>
</table>
Candidate Keys

If an entity set has multiple keys, one is selected as the primary key, and the rest are candidate keys.

Candidate keys are noted in plain-English in the ER diagram (no special notation).
ER Model Basics

- **Relationship**: Association between 2 or more entities (e.g., Jane works in Pharmacy Department)
- **Relationship set**: Collection of similar relationships

 An n-ary relationship set R relates n entity sets $E_1 \ldots E_n$; each relationship in R involves entities e_1, \ldots, e_n

 Relationship sets can also have descriptive attributes (e.g., “since” attribute of Works_In)
ER Model Basics

Relationships are identified fully by the entities that participate in them, **without using the descriptive attributes**
Example of Ternary Relationship Set

- Locations
 - address: string
 - capacity: integer

- Employees
 - ssn: string
 - name: string
 - lot: string

- Works_In2

- Departments
 - did: string
 - dname: string
 - budget: real

- since: date
Same entity set could participate in different relationship sets, or in different “roles” in the same relationship set → we add “role indicators”
Constraints in ER Diagrams

- ER diagrams should express all known real-world “constraints” that the data should satisfy.
- We’ll be able to express many of these constraints using ER model notation.
- Some constraints cannot be expressed using ER model notation: we should still include them as plain-English annotations in the ER diagram, so that we can then remember to model them in SQL when we map the ER diagram to SQL.
Key and Participation Constraints

- We have already discussed domain constraints (for attributes), and primary key and candidate key constraints (for entity sets).

- We will now discuss two kinds of constraints for relationship sets: key constraints and participation constraints.
Key Constraints

Key constraint for Manages relationship set: each department can have at most one manager
Key Constraints

Key constraint for Manages relationship set: each department can have at most one manager.

Also now: Each employee can manage at most one department; how do we update diagram?
Key Constraints in n-ary Relationship Sets with n>2

Meaning of arrow here?

Restriction for n-ary relationship sets with n>2: can have **at most one arrow** (more on this later)
Key Constraints in n-ary Relationship Sets with n>2
Participation Constraints

Participation constraint for Works_In relationship set: each employee must work in at least one department

The participation of Employees in Works_In is total
Participation Constraints in n-ary Relationship with n>2

Locations
- address: string
- capacity: integer

Employees
- ssn: string
- name: string
- lot: string

Departments
- did: string
- dname: string
- budget: real

Works_In4
- since: date
Multiple Participation Constraints Allowed

<table>
<thead>
<tr>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>address: string</td>
</tr>
<tr>
<td>capacity: integer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssn: string</td>
</tr>
<tr>
<td>name: string</td>
</tr>
<tr>
<td>lot: string</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departments</th>
</tr>
</thead>
<tbody>
<tr>
<td>did: string</td>
</tr>
<tr>
<td>dname: string</td>
</tr>
<tr>
<td>budget: real</td>
</tr>
</tbody>
</table>

since: date

Works_In5
ER Diagrams

- We now know how to create:
 - Entity sets
 - Relationship sets
- We also know how to specify:
 - Domain constraints for attributes
 - Primary key and candidate key constraints for entity sets
 - Key and participation constraints for relationship sets
- Several advanced features still to come!