Your Instructor: Luis Gravano

- Ph.D. in Computer Science, Stanford U.
- Professor, Computer Science Department (at Columbia U. since Fall 1997)
- At Google: Senior Research Scientist (2001), Visiting Faculty Researcher (2018-19)
- Research interests: Databases, Web Search, Information Extraction, Social Media
Class Resources

• Class website: http://www.cs.columbia.edu/~gravano/cs4111

• Discussion board: Piazza, which you can access from CourseWorks, at https://courseworks.columbia.edu/

• Announcements from class staff: on CourseWorks
Your Instructor: Luis Gravano

- gravano@cs.columbia.edu
- 706 Schapiro CEPSR
- +1-212-939-7064

Office hours:
- Thursdays, 9:30-11:30 a.m., or by appointment by email
- Instructor’s office hours always held in 706 Schapiro CEPSR
Your IAs

• To be assigned soon

• All IA office hours are held in the CS TA/CA Room
• IA office hours on class webpage
Class Information: Prerequisites

COMS W3134 – Data Structures in Java,
COMS W3136 – Essential Data Structures in C/C++, or
COMS W3137 – Data Structures and Algorithms
(equivalent courses taken elsewhere are acceptable as well)

You need permission from the instructor if you don’t have the prerequisites.
Class Information: Lectures

• Tuesdays and Thursdays
• 1:10-2:25 p.m.
• 501 Northwest Corner Building
Grading Information

• **Midterm** (Thu Oct 24, in class, closed book): 25%
• **Final** (Tue Dec 17, 1:10-3:10 p.m., cumulative, closed book): 40%
• **Homework assignments** (4, all equally weighted): 15%
• **Projects** (2): 20%
 - Project 1: 15%, Project 2: 5%

• Median grade will be a B+ or slightly higher.
• Alternative or make-up exams will **not** be given.
• All homework assignments are equally weighted.
• Project 1 has higher weight than Project 2.
Homework

• To be fair to all students in the class, I will grant no extensions or exceptions.
• Instead, you have three grace late days for homework that you can use as you wish throughout the semester. Weekends and university holidays are not counted.
• After using all grace days, you will get a 25% grade deduction for each additional late day.

Check full details on website.
2 Projects, in Teams of 2 Students

- You will do the projects on the Google Cloud platform.
- You will have more-than-enough free credit through individual codes that I will distribute once enrollments stabilize.
- Projects will have a non-programming option.
- If you follow the programming option, which I strongly recommend, you will program in Python (only language option):
 - Python is much easier to work with than Java for our database projects.
 - Python is a great, easy-to-learn, widely used language.
 - If you are fluent in Java, you will be able to easily learn the (not-so-deep) level of Python needed for our projects.

- Project 1: model and build an application of your choice on top of a database system, using “traditional” relational database features.
- Project 2: expand Project 1 to use substantial, advanced database system features.

More details announced soon; please be patient and wait until projects announced.
• To be fair to all students in the class, I will grant no extensions or exceptions for project submission.
• Instead, you have three grace late days total for projects that you can use as you wish throughout the semester. Weekends and university holidays are not counted.
• After using all grace days, you will get a 25% grade deduction for each additional late day.

Check full details on website.
Collaboration Policy

• Please check “Collaboration and Academic Honesty” page from the main webpage for the class.

• Homework and exams are to be done individually. Projects are done in teams; no collaboration between different teams.

• **We will not tolerate cheating**, which would be wrong and unfair to the rest of the class. Check the CS Department policies and procedures regarding academic honesty at http://www.cs.columbia.edu/education/honesty; they fully apply to this course.

• Contact the instructor right away if you have any questions.
Optional Textbook

• On reserve in Science and Engineering Library
• Textbook is optional: lectures will cover all material needed for homework assignments and exams
Contests and Rewards

• “A+ letter-and-lunch” reward:
 Students who earn an A+ in the course will get:
 • A personal letter of congratulations from the instructor.
 • An invitation to join the instructor and the other A+ students for lunch at the Columbia Faculty House.
 These students will also be top candidates for cs4111 TA positions in the future.

• Project 1 contest:
 • Four best projects chosen as contest winners.
 • If you win:
 • You will have the option to discuss and demonstrate your project in class.
 • You will get a 10% boost in your Project 1 grade.
Ongoing Feedback

• Don’t wait until the end-of-semester course evaluations to complain or give feedback on how to improve course. (It’s too late then!)

• Come see me early on during my office hours or send me email with your concerns and suggestions, or use an IA to forward them to me.
Thanks to Raghu Ramakrishnan, Johannes Gehrke, and our own Eugene Wu for some of the slides!
What Is a Database Management System (DBMS)?

• A very large, integrated collection of data
• Models real-world enterprise
 • Entities (e.g., students, courses)
 • Relationships (e.g., Jane Smith is taking cs4111)
• A Database Management System (DBMS) is a software system designed to store and manage databases
Why Use a DBMS?

• Data independence and efficient access
• Reduced application development time
• Data integrity and security
• Uniform data administration
• Concurrent access, recovery from crashes
Why Study Databases?

• Shift from computation to information
• Data sets increasing in diversity and volume
 • The Web, online activity and commerce, social media, ...
 • ... need for DBMS exploding
• DBMS encompasses most of CS
 • OS, languages, theory, AI, machine learning, natural language processing, multimedia, ...
Why Study Databases?

• Most structured information on the web lives in databases
 • Projects 1 and 2 will give you the opportunity to understand their potential for data and a domain of your interest

• Databases are critical to organize, query, and perform data analysis (e.g., data mining) of scientific, business and financial, environmental, health data, and much more

• Also extremely helpful to organize large-scale experimental results and data

• Other types of data repositories, such as text content, covered in COMS E6111
Database Courses at Columbia
Course Overview, Introduction to Database Management Systems (DBMSs)

The Entity-Relationship Model

The Relational Model

The Relational Algebra

SQL: Queries, Constraints, Triggers

Embedded SQL, Cursors, SQL APIs

Schema Refinement and Normal Forms

Object-Relational DBMS: Database Design

Introduction to Query Processing and Optimization

Introduction to Transaction Processing
COMS W4112-Database System Implementation
Prerequisites: CS4111; fluency in Java or C++; recommended: CS3827

• Storage Methods and Indexing
• Query Processing and Optimization for 1NF Relations, including External Sorting
• Materialized View Maintenance, Selection, and Use in Query Optimization
• Query Processing and Optimization for ORDBMSs
• Transaction Processing and Recovery
• Parallel and Distributed Databases: Query Processing and Optimization
• Parallel and Distributed Databases: Transaction Processing
• Performance Considerations Beyond I/Os
COMS E6111-Advanced Database Systems
Prerequisites: CS4111; fluency in Java or Python

- Information Retrieval
- Information Extraction
- Web Search
- Data Mining
- Data Warehousing, OLAP, Decision Support
- Time Series Analysis and Mining
- Spatial Data Management
- …
Overview of Database-Related Issues
Data Models

• A data model is a collection of concepts for describing data
• The relational model of data is the most widely used model today
 • Main concept: relation, basically a table with rows and columns
 • Every relation has a schema, which describes the columns, or fields
Levels of Abstraction

• Many views, single conceptual (logical) schema, and physical schema
 • Views describe how users see the data
 • Conceptual schema defines logical structure
 • Physical schema describes the files and indexes used

• Schemas are defined using a data definition language (DDL); data is modified and queried using a data manipulation language (DML)
Example: University Database

- Conceptual schema:
 - Students(sid:string, name:string, login:string, age:integer, gpa:real)
 - Courses(cid:string, cname:string, credits:integer)
 - Enrolled(sid:string, cid:string, grade:string)

- Physical schema:
 - Relations stored as unordered files
 - Index on first column of Students

- External schema (view):
 - Course_info(cid:string, cname:string, enrollment:integer)
Data Independence

• Applications insulated from how data is structured and stored
• **Logical data independence:** Protection from changes in logical structure of data
• **Physical data independence:** Protection from changes in physical structure of data

• One important benefit of using a DBMS
Concurrent execution of user programs is essential for good DBMS performance.
Interleaving actions of different user programs can lead to inconsistency: what if check is cleared while account balance is being computed?
DBMS ensures such problems don’t arise: users can pretend they are using a single-user system.
Transaction: An Execution of a DB Program

- Key concept: **transaction**, which is an atomic sequence of database actions (reads and writes)
 - Example: Transferring funds from one bank account to another, which requires multiple operations over the bank database

- DBMS guarantees important properties of transactions automatically, without user involvement:
 - Preserving consistency of database contents
 - Handling crashes gracefully, without ever losing any data
 - Allowing concurrent execution in a controlled manner that doesn’t create any problems
Summary

• DBMS used to maintain, query large data sets.
• Benefits include recovery from system crashes, concurrent access, quick and flexible application development, data integrity and security.
• Levels of abstraction give data independence.

• Databases is one of the broadest, most useful research and development areas in Computer Science.