
Maintaining Views Incrementally

Extended Abstract

Ashish Gupta * Inderpal Singh Mumick V.S. Subrahmaniant

Stanford University AT&T Bell Laboratories University of Maryland

agupt aCics.stanford.edu mumickt%esearch. at t .com vs@cs. umd.edu

Abstract 1 Introduction

We present incremental evaluation algorithms to compute
A view is a derived (idb) relation defined in terms of

base (stored, or edb) relations. A view can be ma-
changes to m arterialized views in relational and deductive

database systems, in response to changes (insertions,
serialized by storing its extent in the database. In-

deletions, and updates) to the relations. The view dex structures can be built on the materialized view.

definitions can be in SQL or Datalog, and may use UNION, Consequently, database accesses to materialized view

negation, aggregation (e.g. SUM, MI N), linear recursion, tuples is much faster than by recomputing the view.

and general recursion. Materialized views are especially useful in distributed

We first present a counting algorithm that tracks

the number of alternative derivations (counts) for each

derived tuple in a view. The algorithm works with both

set and duplicate semantics. We present the algorithm

for norwecrirsive views (with negation and aggregation),

and show that the count for a tuple can be computed at

little or no cost above the cost of deriving the tuple. The

algorithm is optimal in that it computes exactly those

view tuples that are inserted or deleted. Note that we

store only the number of derivations, not the derivations

themselves.

We then present the Delete and Rederive algorithm,

DRed, for incremental maintenance of recursive views (ne-

gation and aggregation are permitted). The algorithm

works by first deleting a superset of the tuples that need

to be deleted, and then rederiving some of them. The

algorithm can also be used when the view definition is

itself altered.

databases. However, deletion, insertions, and up-

dates to the base relations can change the view. Re-

computing the view from scratch is too wasteful in

most cases. Using the heuristic of inertia (only a part

of the view changes in response to changes in the base

relations), it is often cheaper to compute only the

changes in the view. We stress that the above is only

a heuristic. For example, if an entire base relation

is deleted, it may be cheaper to recompute a view

that depends on the deleted relation (if the new view

will quickly evaluate to an empty relation) than to

compute the changes to the view.

Algorithms that compute changes to a view in re-

sponse to changes to the base relations are called in-

cremental view maintenance algorithms. Several such

algorithms with different applicability domains have

been proposed [BC79, NYtI13, S184, BLT86, BT88,

BCL89, CW91, Kuc91, QW91, WDSY91, CW92,

DT92, HD92]. View maintenance has applications

in integrity constraint maintenance, index mainte-
“This work was supported by NSF grants IRI-91-16646 and

IRI-90-16358, and ARO DAAL-03-G-0177.
nance in object-oriented databases (define the index

t This work was supported by ARO grant DAAL-03-92-G-
between attributes of interest as a view), persistent

0225, and NSF mant IRI-9109755, and AFOSR grant F49620- queries, active database [SPAM91, RS93] (a rule may

93-1-0065. - fire when a particular tuple is inserted into a view).

Permission to copy without fee all or part of this matarial is We present two algorithms, counting and DRed,
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
for incremental maintenance of a large class of

titla of the publication and its date appaar, and notice is givan views. Both algorithms use the view definition to

that copying is by permission of the Association for Computing produce rules that compute the changes to the view
Machinery. To copy otharwise, or to republish, requires a fee using the changes made to the base relations and
and/or specific permission,
SIGMOD 151931Washington, DC, USA

the old materialized views. Both algorithms can

01993 ACM 0-89791-592-5/93/0005/01 57...$1.50

157



handle recursive and nonrecursive views (in SQL or

Datalog extensions) that use negation, aggregation,

and union, and can respond to insertions, deletions

and updates to the base relations. However, we are

proposing the counting algorithm for nonrecursive

views, and the DRed algorithm for recursive views,

as we believe each is better than the other on the

specified domain.

Example 1.1 Consider the following view defini-

tion. link(s, D) is a base relation and link(a, b) is

true if there is a link from source node a to destina-

tion b. hop(c, d) is true if c is connected to d via two

links i.e. there is a link from node c to some node z

and a link from x to d.

CREATE VIEW hop(s, ~) AS

(SELECT rl.S, r2.D

FROM link rl, link r2

WHERE rl.11 = r2.$.

Given link = {(a, b), (b, c), (b, e), (a, d), (d, c)}, the

view hop evaluates to {(a, c), (a, e)}. The tuple

hop(a, e) has a unique derivation. hop(a, c) on the

other hand has two derivations. If the view had

duplicate semantics then hop(a, e) would have a count

of 1 and hop(a, c) would have a count of 2.

Suppose the tuple link(a, 6) is deleted. Then we

can re-evaluate hop to {(a, c)}.

The counting algorithm infers that one derivation

of each of the tuples hop(a, c) and hop(a, e) is

deleted. The algorithm uses the stored counts to

infer that hop(a, c) has one remaining derivation

and therefore only deletes hop(a, e), which has no

remaining derivation.

The DRed algorithm first deletes tuples hop(a, c)

and hop( a, e) since they both depend upon the

deleted tuple. The DRed algorithm then looks

for alternative derivations for each of the deleted

tuples. hop(a, c) is rederived and reinserted into the

materialized view in the second step. ❑

Counting The counting algorithm works by stor-

ing the number of alternative derivations of each tu-

ple t in the materialized view. We call this num-

ber count (-t). count (t) is derived from the multiplic-

ity of tuple t under duplicate semantics, as defined

in [Mum91] for positive programs and in [MS93a] for

programs with stratified negation. Given a program

T defining a set of views VI, . . . . Vj, the counting algo-

rithm derives a program TA at compile time. TA uses

the changes made to base relations and the old values

of the base and view relations to produce as output

the set of changes, A(VI), . . . . A(V~), that need to

be made to the view relations. We assume that the

count value for each tuple is stored in the material-

ized view. In the set of changes, inserted tuples are

represented with positive counts and deleted tuples

are represented with negative counts. The new mate-

rialized view is obtained by combining the changes

A(VI), ..., A(V~) with the stored views VI, . . . . Vk

(combining counts as defined in Section 3), The in-

cremental view maintenance algorithm works for both

set and duplicate semantics. On nonrecursive views

we show that counts can be computed at little or no

cost above the cost of evaluating the view (Section 5)

for both set and duplicate semantics; hence it can be

used for SQL. We propose to use the counting algo-

rithm only for nonrecursive views, and describe the

algorithm for nonrecursive views only.

Deletion and Rederivation The DRed algorithm

can incrementally maintain (general) recursive views,

with negation and aggregation. Given the changes

made to base relations, changes to the view relations

are computed in three steps. First, the algorithm

computes an overestimate of the deleted derived

tuples: a tuple t is in this overestimate if the

changes made to the base relations invalidate any

derivation oft. Second, this overestimate is pruned

by removing (from the overestimate) those tuples

that have alternative derivations in the new database.

Finally, the new tuples that need to be added are

computed using the partially updated materialized

view and the changes made to the base relations.

Only set semantics can be used for this algorithm.

The algorithm can also maintain materialized views

incrementally when rules defining derived relations

are inserted or deleted.

Paper Outline Section 2 compares the results in

our paper with related work. Section 3 introduces

the notation used in the paper. Section 4 describes

the counting algorithm for maintaining nonrecursive

views. Section 5 describes how the counting algo-

rithm can be implemented efficiently. We show that

a computation of counts imposes almost no overhead

in execution time and storage. Section 6 explains

how negation and aggregation are handled by the

counting algorithm of Section 4. Section 7 discusses

the D Red algorithm for maintaining general recursive

views. The results are summarized in Section 8.

2 Related Work

Ceri and Widom [CW91] describe a strategy to ef-

ficiently update views defined in a subset of SQL

158



without, negation, aggregation, and duplicate seman-

tics. Their algorithm depends on keys, and cannot be

used if the view does not contain the key attributes

of a base relation. Qian and Wiederhold [QW91]

use algebraic operations to derive the minimal rela-

tional expression that computes the change to select-

project-join views. The algorithms by Blakeley et.

al. [BLT86] and Nicolas and Yazdanian (The BD-

GEN system [NY83]) are perhaps most closely related

to our counting algorithm. Blakeley’s algorithm is

a special case of the counting algorithm applied to

select-project-join expressions (no negation, aggrega-

tion, or recursion). In BDGEN, the counts reflect

only certain types of derivations, are multiplied to

guarantee an even count for derived tuples, and all

recursive queries are given finite counts. Thus the

BDGEN counts, unlike our counts, do not correspond

to the number of derivations of a tuple, are more ex-

pensive to compute, and the BDGEN algorithm can-

not be used with (SQL) duplicate semantics or with

aggregation, while our algorithm can be.

Kuchenhoff [Kuc91] and Harrison and Dietrich (the

PF algorithm [HD92]) discuss recursive view main-

tenance algorithms related to our rederivatton algo-

rithm. Both of these algorithms cannot handle aggre-

gation (we can). Where applicable, the PF (Prop aga-

tion/Filteration) algorithm computes changes in one

derived predicate due to changes in one base pred-

icate, iterating over all derived and base predicates

to complete the view maintenance. An attempt to

recompute the deleted tuples is made for each small

change in each derived relation. In contrast, our red-

erivation algorithm propagates changes from all base

predicates onto all derived predicates stratum by stra-

tum, and recomputes deleted tuples only once. The

PF algorithm thus fragments computation, can red-

erive changed and deleted tuples again and again, and

can be worse that our rederivation algorithm by an

order of magnitude (examples in full paper), Kuchen-

hoff’s algorithm needs to store auxiliary relations,

and fragments computation in a manner similar to

the PF algorithm.

Dong and Topor [DT92] derive nonrecursive pro-

grams to update right-linear chain views in response

to insertions only. Dong and Su [DS92] give nonrecur-

sive transformations to update the transitive closure

of specific kinds of graphs in response to insertions

and deletions. The algorithm does not apply to all

graphs or to general recursive programs. They also

need auxiliary derived relations, and cannot handle

negation and aggregation. Urpi and Olive [U092]

need to derive functional dependencies, a problem

that is known to be undecidable. Wolfson et. al.

[WDSY91] use a rule language with negation in the

head and body of rules, along with auxiliary informa-

tion about the number of certain derivations of each

tuple. They do not discuss how to handle recursively

defined relations that are derivable in infinitely many

iterations, and do not handle aggregation.

3 Notation

We use Datalog, mostly as discussed in [U1189],

extended with stratified negation [VG86, ABW88],

and stratified aggregation [Mum9 1]. Datalog ex-

tended with stratified negation and aggregation can

be mapped to a class of recursive SQL queries, and

vice versa [Mum91]. We chose Datalog syntax over

SQL syntax for conciseness.

Definition 3.1 Stratum Numbers (SN) and Rule

Stratum Number ( RSN ): Stratum numbers are as-

signed as follows: Construct a reduced dependency
graph (RDG’) of the given program by collapsing ev-

ery strongly connected component (SCC) of the de-

pendency graph (as defined by [ABW88]) to a single

node. A RDG is guaranteed to be acyclic, A topo-

logical sort of the RDG assigns a stratum number to

each node. If a node represents a SCC, all predicates in

the scc are assigned the stratum number of the node.

By convention, base predicates have stratum number

= O. The rule stratum number of a rule r, RSN(r),

having predicate pin the head is equal to SN(p). 0

P refers to the relation corresponding to predicate p.

P = {d, mn} represents tuples p(a, b) and p(nz, n).

Definition 3.2 A(P): For every relation P, relation

A(P) contains the changes made to P. ❑

For each tuple t IS P, count(t) represents the

number of distinct derivations of tuple t. Similarly

every tuple in A(P) has a count associated with it.

Negative and positive counts correspond to deletions

and insertions respectively. For instance, A(P) =

{ab * 4, mn * –2} says that four derivations of tuple

p(a, b) are inserted into P and two derivations of tuple

p(rn, n) are deleted.

The union operator, U, is defined over sets of tuples

with counts. Given two such sets S1 and S2, S1 u S2

is defined as follows:

1. If tuple t appears in only one of S1 or S2 with a

count c, then tuple t appears in S1 &J S2 with a

count c.

159



2. If a tuple t appears in S1 and S2 with counts of

c1 and C2 respectively, and c1 + cz # O, then tuple

t appears in S1 u S2 with a count c1 + C2. If

c1 + C2 = O then t does not appear in S1 M S2.

P“ refers to the relation P after incorporating the

changes in A(P). Thus, P“ = P M A(P). The

correctness of our algorithm guarantees that a tuple

in P“ will not have a negative count; only tuples in

relation A(P) will have negative counts. The join

operator is also redefined for relations with counts:

when two or more tuples join, the count of the

resulting tuple is a product of the counts of the tuples

joined.

4 Incremental Maintenance of

Nonrecursive Views using Counting

This section gives an algorithm that can be used

to maintain nonrecursive views that use negation and

aggregation. We first give the intuition using an

example.

Example 4.1 Intuition. Consider the view hop

defined in Example 1.1. We rewrite the view

definition using Datalog for succinctness and ease of

explanation. Recall that link = {a~, rnn} represents

tuples link(a, b) and link(rn, n).

(z1): hop(X, Y) :- link(X, Z) & link(Z, Y).

If the base relation link changes, the derived relation

hop may also change. Let the change to the relation

1 ink be represented as A(link). A(link) contains

both inserted and deleted tuples, represented by

positive and negative counts respectively. The new

relation link” can be written as: 1 ink + A(link).

The following rule computes the new value for the

hop relation in terms of the relation link”:

hop”(.Y, Y) :- llnk”(x, Z) & linkv(z, y).

Using 1 ink” = link u A(link) and distributing

joins over unions, the above rule can alternatively be

written as the following set of rules:

hopv(.~, l’) :- link(x, Z) & link(z, Y),

hopv(~-, Y) :- A(link)(x, Z) & llnk(z, Y).

hopv(.~, Y) :- link(x, Z) & A(link)(Z, Y).

hop” (x, Y) :- A(link)(X, Z) & A(link)(Z, Y).

The first rule recomputes relation hop. The remain-

ing three rules define A(hop), the changes in relation

hop. Of these three rules, the last two can be com-

bined, using the fact that link” = link M A(link).

The set of rules that defines predicate A(hop) is

therefore:

(all) : A(hop)(X, Y) :- A(link)(X, Z) & link(Z, Y)

(d2) : A(hop)(X, Y) :- link”(x, Z) & A(link)(Z, Y)

❑

Definition 4.1 Delta Rules: With every rule r of

the form:

(r): p:-s~&... &sn,

we associate n delta rules Ai (r), 1 < i < n, defining

predicate A(p) as follows:

(Ai(r)): A(p) :- S~ & . . . & S;_l & A(s;) &

si+l&. ..&sn.

❑

The counting algorithm is listed as Algorithm 4.1.

Ignore statement (2) (surrounded by a box) for now;

it will be discussed in Section 5.

Example 4.2 Consider the view tri~op defined

using the view hop (rule V1, Example 4.1).

(v2) : tri-hop(X, Y) :- hop(X, Z) & link(Z, Y)

The stratum numbers of predicates hop and tri_hop

are 1 and 2 respectively. Consider the following base

relation link and the associated derived relations hop

and tri_hop.

link = {ah, ad, dc, be, ch, fg}.

hop = {acx 2, dh, bh}.

tri_hop = {ah * 2}.

Let the base relation link be altered as follows:

A(link) = {ah* –1, df, af}.

link” = {ad, af, be, de, ch, df, fg}.

In order to compute the changes, first consider the

rule with the least RSN, namely vI,

(Al(vl)) : Ahop(X, Y) :- Alink(X, Z) & link(z, Y)

(A2(TJ1)) : Ahop(X, Y) :- link” (x, Z) & Alink(Z, Y)

Apply rule AI(w1): A(hop) = {acy –1, ag, dg}
Apply rule A2(v1): A(hop) = {af}

Combining the above changes, we get:

hop” = {at, af, ag, dg, dh, bh},

Now consider the rules with RSN 2, namely rule W2

that defines predicate tri_hop.

(AI(TJ2)): Atri_hop(X, Y) :- Ahop(X, Z) &

li.nk(Z, Y).

(A2(7J2)): AtriJop(X, Y) :- hopv(x, Z) &

Alink(Z, Y).

160



Algorithm 4.1

Input: Anonrecursive program P.

Stored materializations of derived relations in P.

Changes (deletions/insertions) to the base relations occurring in program P.

Output: Changes (deletions/insertions) tothederived relations occurring inP.

Method:

Mark all rules unprocessed.

For all derived predicates p in program P, do

initialize P“ to the materialized relation P.

initialize A(P) = {}

While there is an unprocessed rule

{ Q={r] rule rhasthe least RSNamong allunprocessed rules}

For every rule r E Q do

{ Compute A(P) using the delta rules A,(T), 1< i < n derived from ruler (Definition 4.1)

(Ai(r)): A(p) :-s:& . ..& S._l&A(S~)&S~+I/k . . . &Sn . . . . . . . . . ...(l).

P“= PM A(P), % Update the predicate that is dejined by rule r.

I A(P) = set(PV) – set(P) . . . . . . . . . . . . (2) 1

% For optimization only, discussed in Section 5

Mark rule r as processed.

} }0

Apply rule AI(v2): A(tri_hop) = {ah* –1, ag}

Apply rule A2(v2): A(tri_hop) = {}

Combining the above changes, we get:

tri-hop” = {ah, ag}.

;emma 4.1 Let A- be the set of base tuples deleted

from E. and t be any ground atom that has count(t)

derivations w.r.t. program P and database state (edb)

E. If A- ~ E then Algorithm 4.1 derives tuple A(t)

wtth a count of at least –1 x count(t). ❑

That is, given that we insist that the deleted base

tuples be a subset of the original database, no

more than the original number of derived tuples are

deleted from any derived relation during evaluation

of Algorithm 4.1. Therefore all non-A subgoals have

positive counts.

Theorem 4.1 Let t be any ground atom that has

count(t) derivations w,r. t. program P and database

state (edb) E. Suppose tuple t has count(t”) deriva-

tions when edb E is altered to a new edb E“ (by inser-

ttons/deletions). Then: Algorithm 4.1 derives tuple

A(t) wzth a count of count(t”) – count(t). ❑

If the program needed set semantics, then Algo-

ritlum 4.1 is optimized by propagating changes to

predicates in higher strata only if the relation P“ con-

sidered as a set changes from relation P considered

as a set. This optimization is done by Statement (2)

in Algorithm 4.1 and illustrated in Example 5.1.

5 Implementation Issues and

Optimizations

Algorithm 4.1 needs a count of the number of

derivations for each tuple. Let us see how counts

might be computed during bottom-up evaluation in

a database system.

We first consider database systems that implement

duplicate semantics, such as DB2 and SQL/DS from

IBM, and Nonstop SQL from Tandem. The query

language SQL in the above systems requires dupli-

cates to be retained for semantic correctness [1S090].

In an implementation, duplicates may be represented

either by keeping multiple copies of a tuple, or by

keeping a count with each tuple. In both cases, our

algorithm works without incurring any overhead due

to duplicate computation. The u operator in our al-

gorithm is mapped to the union operator of the sys-

tem when the operands have positive counts. When

an operand has negative counts, the M operator is

equivalent to multiset difference. Though multiset

difference is not provided in any of the above example

SQL systems, it can be executed in time O(n)log(n)

or 0(71) (where n is the size of the operands) depend-

ing on the representation of duplicates.

Second, consider systems that have set semantics,

such as Glue-Na~l and LDL. Such systems can treat

duplicates in one of two possible ways during query

evaluation: (1) Do not eliminate duplicates since du-

plicate elimination is expensive, and may not have

161



enough payoff, and (2) Eliminate duplicates after

each iteration of the semi-naive evaluation. The first

implementation is likely to be useful only for non-

recursive queries because recursive queries may have

infinite counts associated with them. The first imple-

mentation is similar to computing duplicate seman-

tics since all derivation trees will be derived during

evaluation. The second implementation removes du-

plicates, and so it may seem that our incremental

view maintenance algorithm must do extra work to

derive all the remaining derivation trees. But it is not

so for nonrecursive queries.

5.1 Optimization

The boxed statement 2 in Algorithm 4.1 optimizes

the counting algorithm for views where duplicate

semantics is not desired, and for implementations

that eliminate duplicates.

First, note that duplicate elimination is an expen-

sive operation, and we can augment the operation to

count the number of duplicates eliminated without

increasing the cost of the operation. counts can then

be associated with each tuple in the relation obtained

after duplicate elimination. Let us assume that we

do full duplicate computation within a stratum (by

extending the evaluation method in some way), and

then do duplicate elimination and obtain counts for

each tuple computed by the stratum. When comput-

ing the next higher stratum i + 1, we do not need

to make derivations once for each count of a tuple in

stratum i or less. We do not even need to carry the

counts of tuples in stratum i or lower while evaluating

tuples in stratum i +1. We assume that each tuple of

stratum i or less has a count of one, and compute the

duplicate semantics of stratum i + 1. Consequently,

the count value for each tuple t corresponds to the

number of derivations for tuple t assuming that all

tuples of lower strata have count O or 1. Maintaining

counts as above influences the propagation of changes

in a positive manner. For instance, let predicate p in

stratum 1 have 20 derivations for a tuple p(a), and let

changes to the base tuples delete 10 of them. How-

ever the changes need not be cascaded to a predicate

q in stratum 2 because as far as derivations of q are

concerned, p(a) has a count of one as long as its ac-

tual count is positive. The incremental computation

therefore stops at stratum 1. The boxed statement

2 in Algorithm 4.1 causes us to maintain counts as

above. Consider Example 4.2 if the views had set

semantics.

Example 5.1 Consider relations hop” and hop after

the rules A1(v1) and A2(v1) have been applied. In

162

order to compute A(hop) we apply the optimization

of Statement 2 from Algorithm 4.1.

A(hop)= set(hop” ) – sef(hop)

= {ac, a~, ag, dg, dh, bh}- {ac, dh, bh}

= {af, ag, dg}.

Note that unlike Example 4.2, the tuple hop(ac x – 1)

does not appear in A(hop) and is not cascaded to

relation t ri~op. Consequently the tuple (ah * – 1)

will not be derived for A(t ri~op). ❑

Using the above optimizations, the extra evalua-

tion cost incurred by our incremental view mainte-

nance algorithm is in computing the duplicate se-

mantics of each stratum. For a nonrecursive stratum

there is usually no extra cost in computing the du-

plicate semantics. A nonrecursive stratum consists

of a single predicate defined using one or more rules,

evaluated by a sequence of select, join, project, and

union operators. Each of these operators derives one

tuple for each derivation. Thus, tracking counts for a

nonrecursive view is almost as efficient as evaluating

the nonrecursive view.

Even in SQL systems implementing duplicate

semantics, it is possible for a query to require set

semantics (by using the DISTII?CT operator). The

implementation issues for such queries are similar to

the case of systems implementing set semantics.

6 Negation and Aggregation

Algorithm 4.1 can be used to incrementally maintain

views defined using negation and aggregation. How-

ever, we need to describe how statement 1 in Algo-

rithm 4.1 is executed for rules with negated and ag-

gregated subgoals, specifically how A(S) is evaluated

for a negated or GROUPBY subgoal s in rule r.

6.1 Negation

We consider safe stratified negation. Negation is

safe as long as the variables that occur in a negated

subgoal also occur in some positive subgoal of the

same rule. Negation is stratified if whenever a derived

predicate q depends negatively on predicate p, then

SN (p) < SN (q) where SN (p) is the stratum number

of predicate p. Nonrecursive programs are always

stratified.

The following Example 6.1 gives the intuition for

computing counts with negated subgoals. A negated

subgoal is computed in the same way for both set and

duplicate semantics.1

* Formal semantics of

given in [MS93a]

Duplicate Datalog with negation is



Example 6.1 Consider view only.tri-hop that uses

views tri_hop and hop as defined in Example 4.2.

only.t ri~op contains all pairs of nodes that are con-

nected using three links but not using just two.

(v3): only_tri-hop(X, Y) :- tri_hop(X, Y) &

=hop(X, Y).

Consider the relation link = {ah, ae, at, ag, bc,

cd, ck, ed, fd, gh, hk}. The relations hop and tri~op

are {at, ad * 2, ah, bd, bk, gk} and {ad, ak * 2} re-

spectively. The relation only.tri~op = {ak * 2}.

Tuple (a, d) does not appear in only_tri-hop be-

cause hop(a, d) is true. Note that hop(a, d) is true

as long as count(hop(a, d)) > 0. Therefore even if

count(hop(a, d)) was 1 or 5 (as against the indicated

value of 2), relation only.tri_hop would not have

tuple (a, d). ❑

Consider a negated subgoal =q(X, Y) in rule r

defining a view. Because negation is safe, the

variables X and Y also occur in positive subgoals in

rule r. We represent the relation corresponding to the

subgoal Yq as Q. The relation Q is computed using

relation Q and the particular bindings for variables

X and Y provided by the positive subgoals in rule r.

A tuple (a, b) is in Q with a count of 1 if, and only

if, (i) the positive subgoals in rule r assign the values

a and b to the variables X and Y, and (ii) the tuple

q(a, b) is false ((a, b) @Q).

Recall that Algorithm 4.1 creates and evaluates

Delta rules of the form Ai(r):

(A~(r)): A(zJ) :-s! & . . . & s~_l & A(s~)

&Si+l&... &Sri.

In order to define how rule Ai(r) is evaluated,

we exhaustively consider all the positions where a

negated subgoal can occur in rule Ai (r) and define

how the subgoal will be computed:

Case 1: Subgoal sj = -qy j between i+l and n: The

relation Q is computed w described above.

Case 2: Subgoal s; = (-q)”, j between 1 and i -1:

The relation ~“ is equal to the relation @’ by the

following Lemma:

Lemma 6.1 For a negated subgoal, ~q, predtcate

(Tq)” M equivalent to predicate m(q”).D

Because negation is stratified, relation Q“ is com-

puted before rule A~ (r) is used. Relation @’ is com-

puted from Q“ in the same way that Q is computed

from Q.

Case 3: Subgoal A(s~) = A(=g): The relation A(Q)

is computed from relations A(Q) and Q according to

Definition 6.1.

Definition 6.1 A(Q): Say Q represents the relation

for predicate q and A(Q) represents the changes made

to Q. A tuple t is in A(Q) with count(t) = 1 if

t c A(Q) and t @ QuA(Q),

and with count(t) = –1 if

t c A(Q) and t @Q.

Note that t G A(Q) only if t E A(Q). ❑

Note that Definition 6.1 allows A(Q) to be com-

puted without having to evaluate the positive sub-

goals in rule Ai(r). This is important for efficiency,

since the A-subgoal is usually the most restrictive

subgoal in the rule and would be used first in the join

order.

Theorem 6.1 Algorithm ,#.1 works correctly in the

presence of negated subgoals. O

6.2 Aggregation

Aggregation is often used to reduce large amounts of

data to more usable form. In this section we use the

semantics for aggregation as discussed in [Mum91].

The following example illustrates the notation and

semantics.

Example 6,2 Consider the relation link from Ex-

ample 1.1 and let tuples in link also have a cost

associated with them, i.e. link(s, d, c) represents a
link from source s to destination d of cost c. We now

redefine the relation hop as follows:

hop(s, D, C1+C’2) :- link(fl, 1, Cl) & link(l, D, C2

Using hop we now define the relation rein-cost-hop

as follows:

(04): min-costLop(S, D, M) :-

GROUPBY (hop(.$, D, C) , [S, D] , M = MIN(C)).

Relation min-cost_hop contains pairs of nodes along

with the minimum cost of a hop between them. ❑

Consider a rule r that contains a GROUPBY subgoal

defined over relation U, The GROUPBY subgoal repre-

sents a relation T whose attributes are the variables

defined by the aggregation, and the variables ~ over

which the groupby occurs. In Example 6.2, the vari-

able defined by the aggregation is &f, and the groupby

occurs over the variables {S, D}. The GROUPBY sub-

goal GROUPBY (hop(S, D, C) , [S, D] , Al = !41N(C’))

thus defines a relation over variables {S, D, iM}. The

relation T contains one tuple for every distinct value

of the groupby attributes. All tuples in the grouped

163



relation U that have the same values for the group-

ing attributes in set ~, say V, contribute one tuple to

relation T, a tuple we denote by Tg. In Example 6.2,

the relation for the GROUPBY subgoal has one tuple

for every distinct pair of nodes [S, D].

Like negation, aggregation subgoals are non-mono-

tonic. Consider inserting tuple p into the relation U

where the values of the ~ attributes in tuple p are

= F. Inserting p can possibly change the value of

the aggregate tuple in relation T that corresponds

to E, z.e. tuple Tz. For instance, in Example 6.2,

inserting the tuple hop(a, b, 10) can only change the

min-cost~op tuple from a to b. The change actually

occurs if the previous minimum cost from a to b had

a cost more than 10. A similar potential change

can occur to tuple TC if an existing tuple p is

deleted from relation U. Using the old tuple TZ

and the tuples in A(U), the new tuple corresponding

to the groupby attribute value F can be computed

incrementally for each of the aggregate functions MIN,

MAX, COUNT, SUM, and for any other incrementally

computable function [DAJ91]. For instance consider

the aggregation operation SUM. The sum of the

attribute A of the tuples in a group can be computed

using the old sum when a new tuple is added to

the group by adding p .A to the old sum. Functions

like AVERAGE and VARIANCE that can be decomposed

into incrementally computable functions can also be

incrementally computed.

To apply Algorithm 4.1 we need to specify how a

GROUPBY subgoal is evaluated in a Delta rule Ai ( r):

(Ai(r)): A(p) :-S! & . . & S;_l & A(s~)

&st+l&. ..&sn.

A,(r) could have one or more aggregate subgoals.

If an aggregate subgoal t occurs between positions

i + 1 ancl n, then the relation T for the subgoal

is computed as in the case of a normal aggregate

subgoal. If an aggregate subgoal occurs between

positions 1, . . . . i – 1 then the relation TV for the

subgoal can be computed as before using relation U“.

If the aggregate subgoal occurs in position j, then the

following algorithm is used to compute the relation

A(T): - -

Algorithm 6.1

Input: An aggregate subgoal:

t = GROUPBY (U, y,2 = . . .).

Changes to the relation for the grouped

predicate u: A(U).

Output: A(T).
Met hod:

For every grouping value y E my A(U)

Incrementally compute Tq” from Tr (old)

and A(U).
If Tg” and TV are different then

A(T) = A(T) w {(TV, –l)} % Insert old

% tuple Tg into A(T) with a count = –1.
A(T) = A(T) w {(Tg”, 1)} % Insert new

% Tq” into A(T) with a count = 1.

% Else the aggregate tuple is unchanged

% and nothing needs to be done.

o

If the aggregation function is not incrementally

computable [DAJ9 1], and is not even decomposable

into incrementally computable functions, then the

computation of TV” may be more expensive. For

non incrementally computable aggregate functions,

the tuple TV” has to be computed using the tuples

of relation [J that have the value v for the variables

1.
—.

Lemma 6.2 For an aggregate subgoal t, relation T“

is equivalent to T w A(T). ❑

Theorem 6.2 .41gorithm 4.1 works correctly in the

presence of aggregate subgoals. u

7 Incremental Maintenance of

Recursive Views

lVe present the DRed algorithm to incrementally

maintain recursive views that use negation and

aggregation and have set semantics.2 The DRed

algorithm can also be used to maintain nonrecursive

views; however the counting algorithm is expected to

be more efficient for nonrecursive views. Conversely,

we note that the counting algorithm can also be

used to incrementally maintain certain recursive

views [GI<M92].

A semi-naive [U1189] computation is sufficient

to compute new inserted tuples for a recursively

defined view when insertions are made to base

relations. In the case of deletions however, simple

semi-naive computation would delete a derived tuple

that depends upon a deleted base tuple i. e, if tuple t

has even one derivation tree that contains a deleted

tuple, then t is deleted. Alternative derivations of t

are not considered. Semi-naive therefore computes

an overestimate of the tuples that actually need

to be deleted. The DRed algorithm refines this

2The D Red algorithm is similar to an algorithm developed

independently, and at the same time as our work, by Ceri

and Widom [C W92], though their algorithm is presented in a

production rule framework, and they don’t handle aggregation

ancl insertions/deletions of rules.

164



overestimate by considering alternative derivations of

the deleted tuples (in the overestimate) as follows:

1.

2.

Delete a s~perset of the derived tuples that need

to be deleted: The overestimate is computed by a

semi-naive evaluation as follows. For each rule r

in the program:

(?’): p:-sl&,,. &si-l&si&... &sn.

Create n A--rules to compute the potentially

deleted tuples6- (p) forpredicatep, Theith A--

rule is:

b-(p) :-51 & . . & s~_l & C$-(si) & Si+l.. & s~.

Say subgoalsi refers predicateq. Ifqisabasere-

lation then 6- (si ) is the given set of tuples deleted

from relation Q; otherwise ti-(si) is the current

overestimate of the deletions from Q. For other

subgoals sj, use the corresponding materialized

or base relation (without incorporating the dele-

tions). The A--rules are applied until the set of

potentially deleted tuples does not change. For

each predicate p in the program, the overestimate

6- (p) of the deleted tuples is removed from the

stored materialization P to get relation P“.

Put back those deleted tuples that have alternative

derivations: For each rule r of the form above,

create one Ar-rule to derive a set 6+(p) of tuples

that were deleted (in Step 1), but have alternative

derivations.

d+(p) :-~-(p) &sy & . . . & s;.

6- (p) is the overestimate of tuples deleted from

predicate p, as computed by Step 1. Let the

predicate for subgoals; be q. If q is a base relation

then s; is the new value of relation Q; otherwise $’

is the current value of Q“ obtained by augmenting

the relation Q“ derived in Step 1 with tuples for

6+ (q) derived so far in Step 2. All tuples for

6+ (p) derived by the A’-rules are inserted into P“,

increasing the accuracy of the underestimate for

predicate p, and the Ar-rules are re-applied until

no more 6+(p) tuples can be derived.

If base tuples are inserted into the database, then a

third step is used to compute new derived tuples.

3. For each rule r of the form above, create n A+-

rules to derive new tuples A+(p) to be inserted

into the relation for predicate p. The ii)’ A+-rule

is:

A+(p) :– S~ & ..S:_l k A+(sa) & S:+~ & . . & S:

Say subgoal s, refers predicate q. If q is a base

relation then A+(si) is the given set of tuples

inserted into relation Q; otherwise A+ (si ) is the

current set of tuples inferred to have been inserted

into Q by the A+-rules. Let the predicate for

subgoal s: be U. Then, the relation for subgoal s;

consists of relation U“ after Step 2 and the tuples

inserted into U in Step 3 until the current point in

the computation. The A+-rules are applied until

no new inserted facts are derived.

This three step process is formalized as an algorithm,

and proved correct, in [G MS92].

A recursive program P can be fragmented into

programs Pl ,..., P~, where Pi = {rl RSN(r) = i}

constitutes stratum i. The DRed algorithm computes

change to a view defined by a recursive program

P by applying the above three steps successively

to every stratum of P. Every derived predicate

in program P, depends only on predicates that are

defined in PI, . ., Pi-l. All base tuples are in

stratum O i.e. in PO. Changes made to stratum i

affect only those strata whose SN is >. i. Propagating

the changes stratum by stratum avoids propagating

spurious changes across strata. Let Deli- 1 (Addi - 1)

be the set of tuples that have been deleted (inserted)

from strata 1, . . . . i– 1 respectively. Consider stratum

i after strata 1, . . . . i - 1 have been updated. Tuples

are deleted from stratum i based on the set of deleted

tuples Deli-1. New tuples are inserted into stratum

i based on the set of inserted tuples Addi - 1.

Theorem 7.1 Let A- and A+ be ihe set of base

iuples deleted and znserted respectively, from the

original set of base tuples E. The new derived view

computed by the DRed algorithm contains tuple t if

and only tf t has a derivation in the database EV =

(E – A-) U A+. 0

The DRed algorithm can be applied to recursive

views with stratified negation and aggregation also.

The details of the algorithm are given in [GMS92].

8 Conclusions and Future Work

We have presented general techniques for maintaining

views in relational and deductive databases, including

SQL with duplicate semantics, when view definitions

include negation, aggregation and general recursion.

The algorithms compute changes to a materialized

view in response to insertions, deletions and updates

to the base relations.

The counting algorithm is presented for nonrecur-

sive views. We show how this incremental view main-

tenance algorithm fits nicely into existing systems

}~ith both set and multiset semantics. The counting

165



algorithm is a general-purpose algorithm that uni-

formly applies to all nonrecursive views, and is the

first to handle aggregation. The DRed algorithm is

presented for maintaining recursive views. DRed is

the first algorithm to handle aggregation in recursive

views. The algorithm first computes an over esti-

mate of tuples that need to be deleted in response to

changes to the underlying database. This estimate

is refined to obtain an exact answer. New derived

tuples are computed subsequently.

Counting can be used to maintain recursive views

also. However computing counts for recursive views

is expensive and furthermore counting may not

terminate on some views. Techniques to detect

finiteness [MS93a] and to use partial derivations for

counting are being explored. Similarly DRed can be

used for nonrecursive views also but it is less efficient

than counting.

The techniques to handle negation and aggregation

as described in this paper can be used to extend many

other existing view maintenance techniques.

References
[ABW88]

[BC79]

[BCL89]

[BLR91]

[BLT86]

[BMM92]

[BT88]

[CW91]

[CW92]

[DAJ91]

Krzysztof R. Apt, Howard A. Blair, and Adrian
Walker. Towards a Theory oj Declaratwe Knowl-

edge. In Foundations oj Deductive Databases and

Logic P~ogramming. Editor J. Minker, 1988 Mor-

gan Kaufmann.

Peter O. Buneman and Eric K. Clemens. Ef7i-

cientlg Monitoring Relational Databases. In ACM

TODS, Vol 4, No. 3, 1979, 368-382.

J. A. Blakeley, N. Coburn, and P. Larson. Updating

Derived Relations: Detecting Irrelevant and .4u-

tonomously Computable Updates. In ACM TODS

Vol 14, No. 3, 369-400, 1989.

Veronique Benzaken, Christopher Lecluse, and

Philippe l%chard. Enforcing Integrity Constraints
in Database Programming Languages. TR Altair

68-91, Altair, France, 1991.

J. A. Blakeley, P. Larson, and F. W. Tompa. E-&-

ctently Updating Materiaked V;ews. In SIGMOD

1986, pages 61–71.

F. Bry, R. Manthey, and B. Martens. Integrity Ver-

ification in Knowledge Bases. In Logic Program-
ming, LNAI 592, pages 114–139, 1992.

J. A. Blakeley and F. W. Tompa. Maintaining

Materialized Views without Accessing Base Data.

Information Systems, 13(4) :393–406, 1988.

Stefano Ceri and Jennifer Widom. Deriving Pro-

duction Rules for Incremental View Maintenance.

In I ?’th VLDB, 1991.

Stefano Ceri and Jennifer Widom. Deriving
Incremental Production Rules for Deductive Data.

IBM RJ 9071, IBM Almaden, 1992.

S. Dar, R. Agrawal, and H. V. Jagadish. Optimiza-

tion of generalized transitive closure. In Se uenth

[DS92]

[DT92]

[GKM92]

[GMS92]

[HD92]

[1S090]

[KUC91]

[h4S93a]

[Mum91]

[NY83]

[QW91]

[RS93]

[s184]

IEEE International ConjeTence on Data Engineer-

ing, Kobe, Japan, 1991.

Guozhu Dong and Jianwen Su. Incremental and

Decremental Evaluation of Transitive Closure by

Fh-st-Order Queries. TRCS 92-18, University of

California, Santa Barbara, 1992.

Guozhu Dong and Rodney Topor. Incremental

Evaluation oj Datalog Queries. In ICDT, 1992.

Ashkh Gupta, Dinesh Katiyar, and Inderpal Singh

Mumick. Counting Solutions to the View Main-

tenance Problem. In Workshop on Deductive

Databases, JICSLP, 1992.

Ashkh Gupta, Inderpaf Singh Mumick, and V. S.

Subrahmanian. Maintaining views incrementally.

TR 921214-19-TM, AT&T Belf Labs, 1992.

John V. Harrison and Suzanne Dietrich. Main-

tenance of Materialized Views in a Deductive

Database: An Update Propagation Approach. In

Workshop on Deductive Databases, JICSLP, 1992.

ISO-ANSI. ISO-ANSI Working Draft: Database

Language SQL2 and SQL3; X3H2; ISO/IEC

JTC1/SC21/WG3, 1990.

V. Kuchenhoff. On the Efficient Computation

of the Difference Between Consecutive Database

States. In DOOD, LNCS 566, 1991.

Inderpal Singh Mumick and Oded Shmueli. Finite-

ness Properties of Database Queries. In Fourth

AustTa/ian Database Conference, 1993.

Inderpaf Singh Mumick. Query Optimization in

Deductive and Relational Databases. Ph.D. Thesis,

Stanford University, CA 943o5, 1991.

J. M. Nicolas and Yazdanian. An Outline of

BDGEN: A Deductive DBMS. In Information

Processing, pages 705–717, 1983.

Xiaolei Qian and Gio Wiederhold. Incremental
Recomputation oj Active Relational Expressions.

In ACM TKDE, 1991.

Terre R,sch and Martin Sktild. Active rules based

on object-oriented queries. To Appear, ACM

TI<DE, 1993.

Oded Shmueli and Alon Itai. Maintenance of
VZews. In Sigmod RecoTd, 14(2):240-255, 1984.

[SPAM91] Ulf Schreier, Hamid Pirahesh, Rakesh Agrawal,

and C. Mohan. Alert: An Architecture for

Transforming a Passive DBMS Into an Active

DBMS. In 1 ‘7th VLDB, pages 469-478, 1991.

[U1189] Jeffrey D. Unman. Principles of Database and

Ii’nowledge-Base Systems, Volumes 1 and 2. Com-
puter Science Press, 1989.

[U092] Toni Urpi and Antoni Olive. A Method for Change

Computation in Deductive Databases. In 18th

VLDB, pages 225-237, 1992.

[VG86] Allen Van Gelder. Negation as failure using tight

derivations for general logic programs. In ThiTd

IEEE Symposium on Logic Programming, 1986.

Springer- Verlag.

[WDSY91] Ouri Wolfson, Hasanat M. Dewan, Salvatore J.

Stolfo, and Yechlam Yemini. Incremental Evalu-

ation oj Rules and its Relationship to Parallelism.
In SIGMOD 1991, pages 78-87.

166


